1	Impacts of human-induced environmental disturbances on
2	hybridization between two ecologically differentiated
3	Californian oak species
4	
5	Joaquín Ortego ¹ , Paul F. Gugger ² and Victoria L. Sork ^{3,4}
6	
7	¹ Department of Integrative Ecology, Estación Biológica de Doñana, EBD-CSIC, Avda.
8	Américo Vespucio s/n, E-41092 Seville, Spain; ² University of Maryland Center for
9	Environmental Science, Appalachian Laboratory, 301 Braddock Road, Frostburg, MD
10	21532, USA; ³ Department of Ecology and Evolutionary Biology, University of
11	California, Box 957239, Los Angeles, CA 90095, USA; ⁴ Institute of the Environment
12	and Sustainability, University of California, Box 951496, Los Angeles, CA 90095-
13	1496, USA
14	
15	
16	Author for correspondence:
17	Joaquín Ortego
18	Estación Biológica de Doñana, EBD-CSIC,
19	Avda. Américo Vespucio s/n, E-41092 Seville, Spain
20	E-mail: joaquin.ortego@csic.es
21	Phone: +34 954 232 340
22	
23	Running title: Ecological drivers of hybridization in oaks

24 Summary

25

26	• Natural hybridization, which can be involved in local adaptation and in speciation
27	processes, has been linked to different sources of anthropogenic disturbance.
28	• Here, we use genotypic data to study range-wide patterns of genetic admixture
29	between the serpentine-soil specialist leather oak (Quercus durata) and the widespread
30	Californian scrub oak (Q. berberidifolia). First, we estimated hybridization rates and the
31	direction of gene flow. Second, we tested the hypothesis that genetic admixture
32	increases with different sources of environmental disturbance, namely anthropogenic
33	destruction of natural habitats and wildfire frequency estimated from long-term records
34	of fire occurrence.
35	• Our analyses indicate considerable rates of hybridization (>25%), asymmetric gene
36	flow from Q. durata into Q. berberidifolia, and a higher occurrence of hybrids in areas
37	where both species live in close parapatry. In accordance with the environmental
38	disturbance hypothesis, we found that genetic admixture increases with wildfire
39	frequency, but we did not find a significant effect of other sources of human-induced
40	habitat alteration (urbanization, land clearing for agriculture) or a suite of ecological
41	factors (climate, elevation, soil type).
42	• Our findings highlight that wildfires constitute an important source of environmental
43	disturbance promoting hybridization between two ecologically well-differentiated
44	native species.
45	
46	Key words: environmental disturbance, California, genetic structure, genetic admixture,
47	hybridization, introgression, Quercus, wildfire.

49 Introduction

51	Hybridization has attracted the attention of biologists for a long time (Linnaeus, 1735;
52	Darwin, 1859; Anderson & Stebbins, 1954) and is widely recognized as an important
53	evolutionary force involved in adaptation to novel environmental conditions (Lewontin
54	& Birch, 1966; Morjan & Rieseberg, 2004; Baskett & Gomulkiewicz, 2011) and
55	speciation (Anderson, 1948; Rieseberg, 1997; Abbott et al., 2013). Despite the potential
56	benefits of hybridization to biodiversity, this phenomenon has also been linked to the
57	disruption of local adaptation and species loss (Rhymer & Simberloff, 1996). This is of
58	particular concern when exotic taxa are involved, as hybridization can potentially
59	increase their invasiveness and lead to the extinction of native species (Ellstrand &
60	Schierenbeck, 2000; Prentis et al., 2007). Beyond introductions of exotic species by
61	humans, different forms of anthropogenic disturbance have also been hypothesized to
62	increase hybridization rates among native, exotic and native-exotic taxa (Crispo et al.,
63	2011; Guo, 2014). The disturbance hypothesis postulates that habitat alterations
64	increase opportunities for hybridization via the breakdown of premating reproductive
65	isolating mechanisms and/or creating environmental gradients with novel or
66	intermediate niches where hybrids outperform parental species (Anderson & Stebbins,
67	1954; see also Anderson, 1948, 1953). Anthropogenic disturbances that have been
68	linked with increased hybridization rates include land use alterations (Lamont et al.,
69	2003; Thompson et al., 2010; Hoban et al., 2012; Guo, 2014), climate change (Muhlfeld
70	et al., 2014) and, more counterintuitively, the disruption of natural disturbances that
71	promote reproductive isolation and maintain species boundaries (e.g. suppression of
72	natural wildfires; King et al., 2015; Stewart et al., 2015). Support for this hypothesis has
73	been found across multiple taxa ("hybrid richness") at a continental scale (Guo, 2014)

and within pairs of interbreeding species at local (Hasselman *et al.*, 2014), regional
(Thompson *et al.*, 2010; Muhlfeld *et al.*, 2014) and range-wide scales (Hoban *et al.*,
2012).

77 *Quercus* (oak) is a classic example of a genus with many highly hybridizing 78 species that maintain their taxonomic and ecological identity in the presence of frequent 79 interspecific gene flow (Muller, 1952; Whittemore & Schaal, 1991; Rushton, 1993). 80 Species relative abundance and density (Lepais et al., 2009; Lagache et al., 2013), 81 environment (e.g. Muller, 1952; Anderson & Stebbins, 1954; Williams et al., 2001; 82 Ortego et al., 2014a) and population history (Zeng et al., 2011) have been found to be 83 important explanatory factors of spatial patterns of hybridization in oaks, but less 84 attention has been paid to the potential role of environmental disturbance. On the basis 85 of morphological characters, Silliman & Leisner (1958) found evidence for higher 86 hybridization rates in a stand showing signs of successive disturbances by fire and 87 lumbering operations in comparison with a mixed oak forest established in a stable and 88 undisturbed environment. At a local scale, Lagache et al. (2013) found that reduced 89 conspecific density, likely resulting from environmental disturbance, increases 90 hybridization rates through decreased intensity of pollen competition. However, despite 91 considerable research on hybridization that has been performed on oaks, large-scale 92 studies comparing rates of genetic admixture across multiple populations subjected to 93 different sources of environmental disturbance are lacking (Rushton, 1993). 94 Here, we study the ecological drivers of range-wide patterns of genetic 95 admixture between the widespread California scrub oak (Quercus berberidifolia) and 96 the serpentine-soil specialist leather oak (Quercus durata), two Californian endemic 97 sister taxa (Ortego *et al.*, 2015a) with partly overlapping distributions and for which 98 previous morphology- and molecular-based studies have reported a frequent occurrence

99	of interspecific hybrids (Forde & Faris, 1962; eFloras, 2015; Ortego et al., 2015a). A
100	previous study on the Californian scrub white oak species complex showed that these
101	two species probably diverged in peripatry or sympatry \sim 23-26 k years BP, the oldest
102	split among the three pairs of sister taxa within the complex, and supported the
103	monophyletic origin of <i>Q. durata</i> (Ortego <i>et al.</i> , 2015a). In this study, we primarily aim
104	to investigate the impacts of different sources of environmental disturbance on
105	hybridization rates between these two shrub species (Anderson, 1948; Anderson &
106	Stebbins, 1954), with particular emphasis on the potential role of human-induced
107	landscape alterations (e.g. Thompson et al., 2010; Guo, 2014). California offers an
108	excellent setting to address this question. It is a climatically and geologically complex
109	region, a fact that has been linked with high rates of interspecific hybridization (Dodd &
110	Afzal-Rafii, 2004; Guo, 2014; Ortego et al., 2014a), speciation (Calsbeek et al., 2003;
111	Lancaster & Kay, 2013) and local adaptation processes across many organisms and
112	spatiotemporal scales (Ortego et al., 2012; Langin et al., 2015). Much of this region is
113	also highly impacted by urbanization and anthropogenic habitat degradation, which has
114	altered population connectivity in many organisms (e.g. Riley et al., 2006; Vandergast
115	et al., 2007) and increased risk of extinction in several species (Myers et al., 2000;
116	Schwartz et al., 2006; Vandergast et al., 2008). Beyond urbanization and agriculture,
117	wildfires are also an important source of environmental disturbance in Californian
118	ecosystems and their occurrence and impact have steadily increased since European
119	settlement associated with growing population densities, urbanization, and human-
120	induced climate change (Westerling et al., 2006; Syphard et al., 2007; Moritz et al.,
121	2014). Despite the fact that natural wildfire regimes are an important component of
122	Californian ecosystems (Rundel, 1982; Keeley et al., 2012), their increased frequency
123	associated with human activities has been linked with population declines in several

124 species already impacted by other sources of habitat loss and degradation (Syphard et 125 al., 2007; Barr et al., 2015). These different sources of environmental disturbance, 126 together with the high richness of native and exotic species in the region (Calsbeek et 127 al., 2003; Lancaster & Kay, 2013; Guo, 2014), have been suggested to underlie the high 128 proportion of hybrids found in California in comparison with most other states of the 129 country (Guo, 2014). 130 The overall goal of this study is to investigate the extent to which wildfire 131 frequency, human-induced habitat transformation, and local environmental factors 132 influence hybridization between Q. berberidifolia and Q. durata. Using genotypic data 133 for 58 stands (> 400 individuals) sampled across California we tested two specific 134 hypotheses. First, we estimated hybridization rates and direction of gene flow between 135 the two focal species and (i) tested whether the adaptation of *O. durata* to serpentine 136 soils results in asymmetric gene flow from this species into *O. berberidifolia*, which 137 would be expected if hybrids show a lower performance in serpentine than in non-138 serpentine soils due to a higher niche breath of serpentine-adapted plants (i.e. more 139 tolerant to different soil types; Whittaker, 1954; Kruckeberg, 1984; Wright, 2007). 140 Then, we studied the potential role of different ecological factors on spatial patterns of 141 hybridization, primarily focusing on analyzing the impacts of human-induced 142 environmental disturbance (Anderson, 1948; Anderson & Stebbins, 1954; Arnold, 143 1997). In particular, we tested the hypothesis that (ii) hybridization increases with two 144 sources of environmental disturbance, namely anthropogenic large-scale destruction of 145 natural habitats (urbanization and agriculture) and wildfire frequency. We addressed 146 this main question controlling for other potential drivers of hybridization such as 147 species co-occurrence (range overlap) and environment (climate, elevation, soil type) 148 that have been previously reported to influence interspecific gene flow in oaks (e.g.

149	Williams et al., 2001; Dodd & Afzal-Rafii, 2004; Alberto et al., 2010; Ortego et al.,
150	2014a). We analyzed whether the contribution of these factors to explain population-
151	level genetic admixture varies with the spatial scale at which they are measured, an
152	issue that has been seldom addressed in the context of hybridization studies, despite the
153	possibility that it can have a non-negligible impact on the inferences obtained (Barton &
154	Hewitt, 1985; Harrison, 1986; Barton, 2001; Buggs, 2007), particularly in wind-
155	pollinated species with large scales of dispersal (e.g. Dow & Ashley, 1998; Buschbom
156	<i>et al.</i> , 2011).
157	
158	Materials and Methods
159	
160	Population sampling
161	
101	
162	Between 2010 and 2014, we sampled 529 reproductive individuals (i.e. we did not
162 163	Between 2010 and 2014, we sampled 529 reproductive individuals (i.e. we did not sample seedlings or saplings) from a total of 58 localities in California (Fig. 1;
161 162 163 164	Between 2010 and 2014, we sampled 529 reproductive individuals (i.e. we did not sample seedlings or saplings) from a total of 58 localities in California (Fig. 1; Supporting Information Table S1). Plants were morphologically identified in the field
161 162 163 164 165	Between 2010 and 2014, we sampled 529 reproductive individuals (i.e. we did not sample seedlings or saplings) from a total of 58 localities in California (Fig. 1; Supporting Information Table S1). Plants were morphologically identified in the field and tentatively assigned to parental taxa or hybrids according with available guides and
161 162 163 164 165 166	Between 2010 and 2014, we sampled 529 reproductive individuals (i.e. we did not sample seedlings or saplings) from a total of 58 localities in California (Fig. 1; Supporting Information Table S1). Plants were morphologically identified in the field and tentatively assigned to parental taxa or hybrids according with available guides and floras (Roberts, 1995; eFloras, 2015). We aimed to collect samples from populations
161 162 163 164 165 166 167	Between 2010 and 2014, we sampled 529 reproductive individuals (i.e. we did not sample seedlings or saplings) from a total of 58 localities in California (Fig. 1; Supporting Information Table S1). Plants were morphologically identified in the field and tentatively assigned to parental taxa or hybrids according with available guides and floras (Roberts, 1995; eFloras, 2015). We aimed to collect samples from populations located across the entire distribution range of <i>Q. berberidifolia</i> Liebmann and <i>Q. durata</i>
 161 162 163 164 165 166 167 168 	Between 2010 and 2014, we sampled 529 reproductive individuals (i.e. we did not sample seedlings or saplings) from a total of 58 localities in California (Fig. 1; Supporting Information Table S1). Plants were morphologically identified in the field and tentatively assigned to parental taxa or hybrids according with available guides and floras (Roberts, 1995; eFloras, 2015). We aimed to collect samples from populations located across the entire distribution range of <i>Q. berberidifolia</i> Liebmann and <i>Q. durata</i> Jepson and designed sampling using occurrence records available in the Calflora
 161 162 163 164 165 166 167 168 169 	Between 2010 and 2014, we sampled 529 reproductive individuals (i.e. we did not sample seedlings or saplings) from a total of 58 localities in California (Fig. 1; Supporting Information Table S1). Plants were morphologically identified in the field and tentatively assigned to parental taxa or hybrids according with available guides and floras (Roberts, 1995; eFloras, 2015). We aimed to collect samples from populations located across the entire distribution range of <i>Q. berberidifolia</i> Liebmann and <i>Q. durata</i> Jepson and designed sampling using occurrence records available in the Calflora database (http://www.calflora.org/). Some sampled individuals (<i>n</i> = 78) were
 161 162 163 164 165 166 167 168 169 170 	Between 2010 and 2014, we sampled 529 reproductive individuals (i.e. we did not sample seedlings or saplings) from a total of 58 localities in California (Fig. 1; Supporting Information Table S1). Plants were morphologically identified in the field and tentatively assigned to parental taxa or hybrids according with available guides and floras (Roberts, 1995; eFloras, 2015). We aimed to collect samples from populations located across the entire distribution range of <i>Q. berberidifolia</i> Liebmann and <i>Q. durata</i> Jepson and designed sampling using occurrence records available in the Calflora database (http://www.calflora.org/). Some sampled individuals (<i>n</i> = 78) were genetically identified as hybrids with other taxa within the scrub white oak species
 161 162 163 164 165 166 167 168 169 170 171 	Between 2010 and 2014, we sampled 529 reproductive individuals (i.e. we did not sample seedlings or saplings) from a total of 58 localities in California (Fig. 1; Supporting Information Table S1). Plants were morphologically identified in the field and tentatively assigned to parental taxa or hybrids according with available guides and floras (Roberts, 1995; eFloras, 2015). We aimed to collect samples from populations located across the entire distribution range of <i>Q. berberidifolia</i> Liebmann and <i>Q. durata</i> Jepson and designed sampling using occurrence records available in the Calflora database (http://www.calflora.org/). Some sampled individuals (<i>n</i> = 78) were genetically identified as hybrids with other taxa within the scrub white oak species complex (Ortego <i>et al.</i> , 2015a) and were excluded from subsequent analyses. Thus, all
 161 162 163 164 165 166 167 168 169 170 171 172 	Between 2010 and 2014, we sampled 529 reproductive individuals (i.e. we did not sample seedlings or saplings) from a total of 58 localities in California (Fig. 1; Supporting Information Table S1). Plants were morphologically identified in the field and tentatively assigned to parental taxa or hybrids according with available guides and floras (Roberts, 1995; eFloras, 2015). We aimed to collect samples from populations located across the entire distribution range of <i>Q. berberidifolia</i> Liebmann and <i>Q. durata</i> Jepson and designed sampling using occurrence records available in the Calflora database (http://www.calflora.org/). Some sampled individuals (<i>n</i> = 78) were genetically identified as hybrids with other taxa within the scrub white oak species complex (Ortego <i>et al.</i> , 2015a) and were excluded from subsequent analyses. Thus, all analyses presented in this study are based on 451 individuals of <i>Q. berberidifolia</i> , <i>Q</i> .

174	
175	Microsatellite genotyping
176	
177	We genotyped samples of <i>Q. berberidifolia</i> and <i>Q. durata</i> using 16 nuclear
178	microsatellite markers previously developed for other species (Table S2). DNA
179	extraction and microsatellite amplification and genotyping were performed as described
180	in Ortego et al. (2015a). Microsatellite data are available in the DRYAD Digital
181	Repository (doi: 10.5061/dryad.52504).
182	
183	Genetic structure, hybrid identification and admixture analyses
184	
185	We identified hybrid and purebred individuals in our empirical dataset using the
186	Bayesian Markov chain Monte Carlo clustering analyses implemented in the programs
187	STRUCTURE 2.3.3 (Pritchard et al., 2000; Falush et al., 2003; Hubisz et al., 2009) and
188	NEWHYBRIDS 1.1 (Anderson & Thompson, 2002). In STRUCTURE, the posterior
189	probability (q) describes the proportion of an individual genotype originating from each
190	of K clusters. In NEWHYBRIDS, q describes the probability that an individual belongs to
191	each of six different genotypic groups that include two parental species and four hybrid
192	classes (F1, F2 and first generation backcrosses). The assignment to a specific hybrid
193	class is often uncertain in NEWHYBRIDS (Burgarella et al., 2009). Thus, as done in
194	previous studies, we summed q values over all hybrid genotype frequency classes (e.g.
195	Cullingham et al., 2011; Hasselman et al., 2014; Haines et al., 2016). Given that
196	NEWHYBRIDS can only accommodate two species/clusters and our analyses support
197	genetic substructure within Q. berberidifolia (see Results), we conservatively based
198	subsequent analyses on estimates of admixed ancestry obtained from STRUCTURE (e.g.

199	Haines et al., 2016). Details of STRUCTURE and NEWHYBRIDS settings are presented in
200	Notes S1.

201	Complementary to Bayesian clustering analyses, we performed an individual-
202	based principle components analysis (PCA) using the R 3.0.3 (R Core Team, 2013)
203	package ADEGENET (Jombart, 2008). This analysis does not rely on Hardy-Weinberg or
204	linkage equilibrium and it has often been shown to be useful to complement the results
205	of clustering analyses in studies of hybridization (e.g. Saarman & Pogson, 2015). Then,
206	we employed a MANOVA to compare the PCA scores obtained for the first two principal
207	component (PC) axes among the two parental species and hybrids identified on the basis
208	of STRUCTURE and NEWHYBRIDS analyses. Post hoc Tukey tests were used to examine
209	differences between parental species and between parental species and their hybrids.
210	MANOVA were performed using SPSS 22.0.
211	We calculated the level of genetic differentiation (F_{ST}) between species in FSTAT
212	2.9.3 (Goudet, 1995) considering pure individuals from either parental species identified
213	by STRUCTURE and NEWHYBRIDS analyses. Confidence intervals (95% CI) were
214	estimated by bootstrapping over loci (10 000 randomizations).
215	
216	Hybrid simulation and genetic assignment
217	
218	We used simulations to determine the accuracy, efficiency and overall performance
219	(Vähä & Primmer, 2006) of our set of markers for identifying hybrid and purebred
220	individuals on the basis of the probabilities of membership inferred from STRUCTURE
221	and NEWHYBRIDS analyses and the often used threshold of $Q \ge 0.90$ (e.g. Cullingham <i>et</i>
222	al., 2011; Hasselman et al., 2014). Further details of our approach are described in

223 Notes S2.

2	2	Λ
L	L	4

225 Bayesian comparison of gene flow models

227	We used MIGRATE-N 3.6.11 to test different scenarios of gene flow between our two
228	focal species (Beerli & Felsenstein, 2001; Beerli, 2006; Beerli & Palczewski, 2010).
229	This program estimates mutation-scaled effective population size ($\theta = 4N_e\mu$, where $N_e =$
230	effective population size and μ = mutation rate per generation) and migration rates (M =
231	m/μ , where $m =$ migration rate) for multiple populations in a coalescent framework by
232	which alleles are traced back in time to a single ancestral copy (the most recent common
233	ancestor, MRCA) (Beerli, 2009). STRUCTURE analyses on our empirical database
234	revealed the presence of three genetic groups, one corresponding to Q. durata and the
235	other two corresponding to <i>Q. berberidifolia</i> (see Results section for more details).
236	Although the two genetic clusters identified within <i>Q. berberidifolia</i> have a high degree
237	of spatial genetic admixture, they roughly separate populations located in southern
238	California (south of the Transverse Ranges) and parapatric populations with Q. durata
239	in the north (see results section). Thus, we used MIGRATE-N to test six models that
240	considered different patterns of gene flow among three population groups defined a
241	priori, namely populations of Q. durata and the two clusters of Q. berberidifolia
242	identified by STRUCTURE analyses (Fig. S1a). The two population groups within Q .
243	berberidifolia were defined according to (i) the probabilities of genetic membership
244	inferred by STRUCTURE analyses (see Results section) and (ii) considering whether the
245	populations were located or not in areas overlapping with the distribution range of Q .
246	durata (i.e. north and south of the Transverse Ranges, respectively). Further, we tested
247	two different sets of models: one only including purebred individuals for each taxon and
248	cluster according with STRUCTURE analyses ($Q \ge 0.90$; see Results section for more

249 details) and another considering both purebred and hybrids individuals (e.g. Field et al., 250 2011; Andrew et al., 2012; Starr et al., 2013). Hybrids were assigned to each of the 251 three groups according to majority population genetic assignment to each group (O >252 0.5) according to STRUCTURE analyses. Details of MIGRATE-N settings are presented in 253 Notes S3. 254 255 GIS analyses 256 257 We obtained information from wildfire frequency using the CALFIRE Fire Perimeters 258 Geodatabase version 13.2 (http://frap.cdf.ca.gov/). Briefly, we transformed the vector 259 layer containing the polygons delimiting wildfires perimeters for each year from 1900 to 2013 (114 years) into one raster layer per year in which burned areas (\sim 50 m² pixels) 260 were given a pixel value equal to one. Then, we summed all year-based raster layers in 261 262 order to generate a new raster containing information on the number of years that each 263 pixel has been affected by wildfires. Finally, we calculated average wildfire frequency 264 within a circular area of 10, 100 and 1000 km² around each sampling locality, which 265 allowed us to assess the potential impact of spatial scale on our results (see next 266 section). 267 We estimated the proportion of habitats disturbed by agriculture and human 268 development from the Conterminous United States Land Cover 200 m resolution layer 269 (http://nationalmap.gov/small_scale/atlasftp.html). We considered as disturbed areas 270 those devoted to different forms of agriculture (categories 61, 71, 81, 82, 83 and 84), 271 urbanization (categories 21, 22, 23, and 85) and mining (category 32) (see Land Cover 272 layer legend for the description of the different categories). The proportion of disturbed 273 areas was calculated for the three same spatial scales considered for wildfire frequency.

274	Climate and elevation data were obtained from the WorldClim 1.4 dataset
275	(http://www.worldclim.org/) (Hijmans et al., 2005). We downloaded the 19 climatic and
276	elevation layers at a 30-arcsec resolution (c. 1-km) and extracted average values for
277	each of them at the same spatial scales considered for wildfire frequency. We performed
278	a PCA on the 19 climatic variables and retained for subsequent analyses the first
279	principal component (PC1), which explained a large proportion of the variance at all the
280	spatial scales considered (>93 % in all cases).
281	We obtained soil data for each sampling locality from the SSURGO datasets
282	available at the Web Soil Survey from the United States Department of Agriculture
283	(USDA) (http://websoilsurvey.sc.egov.usda.gov/; Staff, 2012). In this case, we only
284	obtained soil order data (based on USDA Soil Taxonomy categories) for each sampling
285	locality (i.e. this parameter was not estimated at multiple spatial scales) given that the
286	successful establishment of seedlings is only expected to be influenced by soil
287	properties a few meters around the germination site (e.g. Wright, 2007; Langhans et al.,
288	2009). All GIS calculations were performed in ARCMAP 10.2.1 (ESRI, Redlands, CA,
289	USA).
290	
291	Analyses of genetic admixture
292	
293	We estimated the degree of genetic admixture of the studied populations using the
294	'genetic admixture index' (G_{Admix}), calculated as described in Ortego <i>et al.</i> (2015b).
295	G_{Admix} ranges from 0 to 1, with values equal to 0 indicating no admixture (i.e.
296	genetically pure populations assigned to a single genetic cluster) and values equal to 1
297	indicating maximum admixture (i.e. genetically admixed populations with an equal
298	probability of membership to each inferred genetic cluster). Thus, this summary statistic

299	provides information on within-population genetic admixture that can be directly
300	compared with different population characteristics (Ortego et al., 2015b). We used an
301	information-theoretic model selection approach to analyse which variables contribute to
302	explain patterns of G_{Admix} in the studied populations. We considered four covariates
303	(climatic conditions, PC1; elevation; proportion of habitats disturbed by agriculture and
304	human development; wildfire frequency) and two fixed factors (species range overlap;
305	soil type). Species range overlap was defined as a categorical variable, which
306	considered whether the studied populations were located (=1) or not (=0) in areas where
307	the distribution ranges of Q. durata and Q. berberidifolia overlap. Ranges for both
308	species were defined according with known records of the species obtained from
309	Calflora database (<u>http://www.calflora.org/</u>) and verified with distribution maps from
310	eFloras (2015). Given that the distribution of <i>Q. durata</i> in entirely embedded within the
311	range of Q. berberidifolia (Fig. 1), we just considered areas of range overlap as those
312	defined by the distribution of the former (eFloras, 2015). It should be noted that our
313	study does not aim to link contemporary hybridization with specific disturbance events,
314	as this approach would require genetic information from cohorts (e.g. seedlings or
315	saplings) established after the disturbance took place and, ideally, comparisons with
316	individuals collected from nearby non-disturbed areas (e.g. Stewart et al., 2015).
317	Instead, our large-scale study covering entire species ranges aims to retrieve information
318	from populations located in areas experiencing contrasting environmental disturbances
319	(e.g. with different wildfire regimes; Fig. 1) in order to link this information with their
320	past hybridization history reflected in their overall degree of genetic admixture (e.g.
321	Ortego et al., 2014a).
322	We analysed the data using General Linear Models (GLM) with a Gaussian error
323	structure and identity link function as implemented in the R 3.0.0 package LME4 (R

324	Core Team, 2012). The precision of G_{Admix} estimates may differ among populations due
325	to differences in sample sizes and we took this into account using a weighted least
326	square method, where weight equals the sample size for each studied population (Table
327	S1). Model selection and averaging were performed using the R package AICCMODAVG
328	(R Core Team, 2012) as detailed in Ortego et al. (2015c). We ran three subsets of
329	models considering in each one the same variables but measured at the three different
330	spatial scales described in the previous section. Complementarily, we also built three
331	similar models in which we replaced species range overlap with latitude and longitude
332	(fitted as covariates) to evaluate the potential impact of the spatial location of the study
333	populations on our results. Note that species range overlap is highly associated with
334	latitude ($F_{1,56} = 50.53$, $P < 0.001$) and longitude ($F_{1,56} = 89.50$, $P < 0.001$), so these
335	three variables were not simultaneously fitted in the same models in order to avoid
336	strong multicollinearity problems.
337	
338	Results
	ittsuits
339	i courto
339 340	Hybrid identification and genetic structure
339340341	Hybrid identification and genetic structure
339340341342	Hybrid identification and genetic structure Considering the dataset simulated on the basis of purebred individuals identified by
 339 340 341 342 343 	Hybrid identification and genetic structure Considering the dataset simulated on the basis of purebred individuals identified by STRUCTURE analyses, the assignment of purebred and hybrid individuals to their correct
 339 340 341 342 343 344 	Hybrid identification and genetic structure Considering the dataset simulated on the basis of purebred individuals identified by STRUCTURE analyses, the assignment of purebred and hybrid individuals to their correct class was 93% for NEWHYBRIDS and 96% for STRUCTURE (Fig. S2a, b and Table S3a).
 339 340 341 342 343 344 345 	Hybrid identification and genetic structure Considering the dataset simulated on the basis of purebred individuals identified by STRUCTURE analyses, the assignment of purebred and hybrid individuals to their correct class was 93% for NEWHYBRIDS and 96% for STRUCTURE (Fig. S2a, b and Table S3a). Similarly, considering the dataset simulated on the basis of purebred individuals
 339 340 341 342 343 344 345 346 	Hybrid identification and genetic structure Considering the dataset simulated on the basis of purebred individuals identified by STRUCTURE analyses, the assignment of purebred and hybrid individuals to their correct class was 93% for NEWHYBRIDS and 96% for STRUCTURE (Fig. S2a, b and Table S3a). Similarly, considering the dataset simulated on the basis of purebred individuals identified by NEWHYBRIDS analyses, the assignment of purebred and hybrid individuals
 339 340 341 342 343 344 345 346 347 	Hybrid identification and genetic structure Considering the dataset simulated on the basis of purebred individuals identified by STRUCTURE analyses, the assignment of purebred and hybrid individuals to their correct class was 93% for NEWHYBRIDS and 96% for STRUCTURE (Fig. S2a, b and Table S3a). Similarly, considering the dataset simulated on the basis of purebred individuals identified by NEWHYBRIDS analyses, the assignment of purebred and hybrid individuals to their correct class was 97% for NEWHYBRIDS and 98% for STRUCTURE (Fig. S2c, d
 339 340 341 342 343 344 345 346 347 348 	Hybrid identification and genetic structure Considering the dataset simulated on the basis of purebred individuals identified by STRUCTURE analyses, the assignment of purebred and hybrid individuals to their correct class was 93% for NEWHYBRIDS and 96% for STRUCTURE (Fig. S2a, b and Table S3a). Similarly, considering the dataset simulated on the basis of purebred individuals identified by NEWHYBRIDS analyses, the assignment of purebred and hybrid individuals to their correct class was 97% for NEWHYBRIDS and 98% for STRUCTURE (Fig. S2c, d and Table S3b). As found in previous studies, NEWHYBRIDS tended to detect a higher

349	number of hybrids than STRUCTURE (e.g. Haines et al., 2016) (Fig. S2). Overall, the
350	performance of our set of markers to identify hybrids is similar to that reported in other
351	microsatellite-based studies on trees (e.g. Lepais et al., 2009; Cullingham et al., 2012)
352	and our simulations support that a threshold value of $Q = 0.9$ allows differentiating
353	correctly purebred individuals from hybrids with a high confidence (Table S3). Thus,
354	individuals with $Q \ge 0.90$ for either parental species were considered as purebred
355	genotypes and all other individuals were classified as hybrids or introgressed genotypes
356	(e.g. Vähä & Primmer, 2006; Lepais et al., 2009; Cullingham et al., 2011, 2012).
357	Log probabilities $[Pr(X K)]$ of STRUCTURE analyses on our empirical data
358	sharply increased from $K = 1$ to $K = 2$ and reached a plateau at $K = 3$ (Fig. 2c). The
359	statistic ΔK indicated an "optimal" value of $K = 2$ (Fig. 2c), which roughly grouped Q .
360	berberidifolia and Q. durata in different genetic clusters (Fig. 2a). Log probabilities
361	were significantly higher for any $K > 1$ than for $K = 1$ (Wilcoxon rank-sum tests, $P <$
362	0.001), rejecting the possibility of a single panmictic population (Fig. 2c). Analyses for
363	K = 2 showed a very high degree of genetic admixture between both species (Fig. 2a).
364	As a result, 210 individuals (47%) were classified as hybrids ($Q < 0.90$) and many of
365	them belonged to populations from areas where the distribution ranges of both species
366	do not overlap (60 hybrids, 39% of individuals from allopatric areas). Analyses for $K =$
367	3 showed a clearer separation between both species, with one cluster including
368	individuals of Q. durata and the two other clusters reflecting a latitudinal cline of
369	genetic differentiation within Q. berberidifolia (Ortego et al., 2015a). A much lower
370	number of individuals were identified as hybrids for $K = 3$ ($n = 118, 26\%$) and only a
371	few were collected in areas of allopatry ($n = 18$; 12 % of individuals from allopatric
372	areas). Thus, the number of hybrid individuals was much higher for $K = 2$ than for $K = 3$
373	and these differences were highly significant considering all populations ($\chi^2 = 40.55$; P

374	< 0.001), populations located in areas where the range of both species overlap (χ^2 =
375	17.31; <i>P</i> < 0.001) or populations from allopatric areas ($\chi^2 = 30.22$; <i>P</i> < 0.001). For <i>K</i> =
376	2, a considerable number of individuals morphologically identified in the field as Q .
377	<i>berberidifolia</i> were assigned to purebred <i>Q</i> . <i>durata</i> ($Q \ge 0.90$; $n = 19$) or had a much
378	higher probability of membership to Q. durata cluster than to Q. berberidifolia cluster
379	$(Q \ge 0.8; n = 41)$. For $K = 3$, the number of misclassified individuals was much lower:
380	one individual identified in the field as Q. berberidifolia was assigned to purebred Q.
381	durata and two individuals morphological identified as Q. durata were genetically
382	assigned to purebred Q. berberidifolia. Accordingly, only a few individuals
383	morphologically identified as <i>Q</i> . <i>durata</i> $(n = 3)$ and <i>Q</i> . <i>berberidifolia</i> $(n = 4)$ had a high
384	probability of genetic membership ($Q \ge 0.8$) to the other species. Thus, the number of
385	misclassified individuals was much higher for $K = 2$ than for $K = 3$, either considering Q
386	$\geq 0.90 \ (\chi^2 = 11.93; P < 0.001) \ \text{or} \ Q \geq 0.8 \ (\chi^2 = 25.43; P < 0.001).$ For these reasons, $K =$
387	3 was regarded as a biologically more meaningful clustering solution than $K = 2$ and
388	considered for subsequent analyses.
389	In accordance with STRUCTURE analyses for $K = 2$, NEWHYBRIDS identified 188
390	hybrids (42%) and many of them belonged to areas where the distribution ranges of
391	both species do not overlap (29 hybrids, 19% of individuals from allopatric areas) (Fig.
392	2b). The number of hybrid individuals identified by NEWHYBRIDS was higher than those
393	identified by STRUCTURE analyses for $K = 3$ considering all populations ($\chi 2 = 24.23$; P
394	< 0.001), populations located in areas where the range of both species overlap ($\chi 2 =$
395	23.89; $P < 0.001$) or populations from allopatric areas ($\chi 2 = 3.03$; $P = 0.08$). It is
396	remarkable the much lower number of purebred individuals of Q. durata identified by
397	NEWHYBRIDS ($n = 18$) in comparison with STRUCTURE analyses for both $K = 2$ ($n = 100$)
398	$(\chi 2 = 28.26; P < 0.001)$ and $K = 3$ $(n = 57)$ $(\chi 2 = 74.26; P < 0.001)$.

Page 17 of 54

New Phytologist

399	Principal components analyses also supported the separation between the two
400	parental species and their hybrids identified by STRUCTURE (MANOVA, PC1: $F_{2,448}$ =
401	434.33, $P < 0.001$; PC2: $F_{2,448} = 7.18$, $P = 0.001$; Fig. 3a) and NEWHYBRIDS analyses
402	(MANOVA, PC1: $F_{2,448} = 293.22$, $P < 0.001$; PC1: $F_{2,448} = 8.69$, $P < 0.001$; Fig. 3b).
403	There was no overlap along PC1 among purebred individuals of the two parental
404	species identified by either STRUCTURE or NEWHYBRIDS analyses (Fig 3a, b). Post hoc
405	Tukey tests showed that the only non-significant pairwise comparisons were those
406	between Q. berberidifolia and Q. durata and between Q. durata and hybrid individuals
407	for PC2 ($P > 0.05$). The two genetic clusters within <i>Q. berberidifolia</i> identified by
408	STRUCTURE analyses for $K = 3$ were also well separated along PC1 of a PCA only
409	including purebred individuals ($Q \ge 0.9$) of this species (MANOVA, PC1: $F_{2, 274} = 106.04$,
410	$P < 0.001$; PC2: $F_{2,274} = 1.96$, $P = 0.142$; Fig. 3c). Post hoc Tukey tests showed that all
411	pair-wise comparisons for PC1 were highly significant (all $Ps < 0.001$), supporting the
412	separation among individuals with a high probability of assignment to any of the two
413	genetic clusters within <i>Q</i> . <i>berberidifolia</i> ($Q \ge 0.9$) and those showing admixed ancestry
414	(<i>Q</i> <0.9).
415	The degree of genetic differentiation between the two parental species estimated
416	on the basis of purebred individuals ($Q \ge 0.9$) identified by STRUCTURE ($F_{ST} = 0.041$,
417	95% CI: 0.030-0.053) and NEWHYBRIDS ($F_{ST} = 0.062, 95\%$ CI: 0.040-0.084) analyses
418	was similar to that reported among other species within the scrub white oak species
419	complex (Ortego et al., 2015a) and within the same order of magnitude previously
420	reported for other hybridizing species (Cullingham et al., 2011; Haines et al., 2016).
421	
422	Bayesian comparison of gene flow models

424	The scenario considering unidirectional gene flow from Q. durata into both parapatric
425	and allopatric populations of Q. berberidifolia was the most supported in analyses both
426	including and excluding hybrids individuals from the dataset (Table 1; Fig. S1b). The
427	second best ranked model was the same but exclusively considering gene flow from Q .
428	durata into populations of Q. berberidifolia located in areas where the distribution
429	range of both species overlap (Table 1). MIGRATE-N analyses failed to converge when
430	hybrids individuals were included, but model choice was consistent across replicated
431	runs (data not shown). This indicates that we can be confident in model choice but
432	parameter estimates for models including hybrids must be interpreted with caution (Fig
433	S1b). Convergence issues in models including hybrid individuals may be related with
434	the fact that different runs provided a good fit of our data for contrasting combinations
435	of estimates of effective population sizes and migration rates (see Beerli, 2006, 2009).
436	
437	Factors associated with genetic admixture
438	
439	Only wildfire frequency and range overlap were consistently included in models of

genetic admixture (G_{Admix}) for all spatial scales (Table 2 and Table S4). Genetic 440 441 admixture tended to be higher in populations located in areas where the distributions 442 ranges of both species overlap, but these differences only were marginally significant 443 (i.e. unconditional CIs crossed zero; Table 3). Accordingly, the frequency of hybrids (Q444 < 0.90) was significantly lower in areas of allopatry than in the vast region where the ranges of both species overlap ($\chi^2 = 25.88$, P < 0.001). Genetic admixture was 445 446 positively associated with wildfire frequency at all spatial scales (Table 3 and Table S5; 447 Fig. 4). Although wildfire frequency always had a significant effect, its effect size was higher at the two largest spatial scales (Table 3 and Table S5). All other variables were 448

449	not included in any model (climate) or were included in some of them but showed no
450	significant effects (elevation, proportion of habitats disturbed by agriculture and human
451	development, soil category, latitude, longitude) (Tables 2-3 and Supporting Information
452	Tables S4-5). Analyses based on soil suborder category (rather than order category)
453	provided analogous results as well as analyses exclusively focused on populations
454	located in areas where the distribution range of both species overlap (data not shown).
455	
456	Discussion
457	
458	Our STRUCTURE and NEWHYBRIDS analyses indicate considerable rates of hybridization
459	between Q. durata and Q. berberidifolia across their distribution ranges, which is
460	consistent with patterns found at local scales in a previous morphology-based study
461	(Forde & Faris, 1962). Although the two species are expected to share some alleles due
462	to common ancestry, several lines of evidence support that the observed patterns of
463	genetic admixture have resulted from genuine interspecific hybridization and cannot be
464	merely explained by incomplete lineage sorting (Muir & Schlotterer, 2005; Lexer et al.,
465	2006): i) Bayesian and PCA analyses identified two genetic clusters that are in good
466	agreement with the two morphological species and (ii) simulations demonstrated a high
467	performance of our set of markers to correctly identify hybrids and purebred
468	individuals; iii) We found strong differences in the rates of hybridization between
469	populations from parapatric and sympatric areas (Fig. 2), a spatial pattern that is
470	incompatible with ancestral polymorphism; iv) The presence within the same locality of
471	individuals with very different levels of admixed ancestry indicates that genetic
472	admixture is consequence of hybridization (i.e. the co-existence of purebred individuals,
473	first generation hybrids and backcrosses), as incomplete lineage sorting would have

474	resulted in a nearly identical background level of admixed ancestry across all
475	individuals from the same population (e.g. Fig. 2 in Tsuda et al., 2015).
476	STRUCTURE supports the presence of two main clusters corresponding with the
477	two parental species, but these analyses also point to a south to north cline of genetic
478	subdivision within <i>Q. berberidifolia</i> that seems to be the biologically most meaningful
479	clustering solution to explain spatial patterns of genetic admixture and species
480	boundaries (Fig. 2a; Ortego et al., 2015a). The two clusters of Q. berberidifolia roughly
481	separate populations north and south of the Transverse Ranges, a geographic barrier that
482	has been frequently identified to be associated with phylogeographic breaks in many
483	other Californian taxa (Calsbeek et al., 2003; Chatzimanolis & Caterino, 2007; Davis et
484	al., 2008). According to STRUCTURE analyses for $K=3$, twenty-six percent of the
485	analysed individuals were identified as hybrids according with the $Q \ge 0.90$ threshold
486	criterion (Vähä & Primmer, 2006; Lepais et al., 2009; Cullingham et al., 2012) (Fig.
487	2a), and this figure increased to 34 % when only populations located in areas of
488	geographic range overlap were considered. NEWHYBRIDS analyses estimated a higher
489	frequency of hybrids than STRUCTURE for both the entire study area (42%) and the
490	region of parapatry (54%), which may be explained by the presence of genetic
491	substructure within Q. berberidifolia and the fact that NEWHYBRIDS can only
492	accommodate two genetic clusters (Anderson & Thompson, 2002). These hybridization
493	rates are similar to those reported for two other hybridizing Californian oaks (Ortego et
494	al., 2014a) but markedly higher than those found among most interbreeding taxa within
495	the genus (e.g. Craft et al., 2002; Curtu et al., 2007; Cavender-Bares & Pahlich, 2009).
496	The higher occurrence of hybrids in areas where the geographical ranges of both
497	parental taxa overlap confirms previous studies indicating that spatial proximity is an
498	important factor determining hybridization rates (e.g. Dodd & Afzal-Rafii, 2004; Ortego

499	et al., 2014a). However, we found evidence of introgression of Q. durata in allopatric
500	populations of <i>Q. berberidifolia</i> located >190 km away from the closest populations of
501	the former (Fig. 2a). This could have resulted from long-distance pollen dispersal (e.g.
502	Dodd & Afzal-Rafii, 2004) or historic hybridization events followed by local extinction
503	of one parental species (Ortego et al., 2014a), being this last hypothesis very unlikely to
504	explain our results due to the lack of serpentine soils in southern Californian
505	(Kruckeberg, 1984). The high admixture proportions found in some individuals from
506	populations of <i>Q</i> . <i>berberidifolia</i> located far away from the distribution limit of <i>Q</i> .
507	durata (e.g. IGN and ELS; Fig. 2a) suggests the presence of first generation
508	hybrids/backcrosses and points to long-distance pollen dispersal as the most likely
509	proximate mechanism explaining the occurrence of a few introgressed genotypes in
510	allopatric populations (Dodd & Afzal-Rafii, 2004). These results are in agreement with
511	paternity-based studies on oaks showing that although pollen dispersal quickly decays
512	with distance from paternal trees (e.g. Streiff et al., 1999; Pluess et al., 2009), sporadic
513	long-distance pollination events can still have certain impact on the genetic structure
514	and diversity of faraway populations (e.g. Buschbom et al., 2011; Hampe et al., 2013).
515	Our data suggest that both species maintain their genetic and ecological identity
516	in the presence of frequent interspecific gene flow, a typical outcome for highly
517	interbreeding oaks in which the hybrid state often constitutes a transitory phase
518	followed by parental species "resurrection" in a few generations via recurrent
519	backcrossing and asymmetrical gene flow (Bacilieri et al., 1996; Petit et al., 2004;
520	Lepais & Gerber, 2011). The adaptation of <i>Q. durata</i> to serpentine soils in which <i>Q</i> .
521	berberidifolia is unable to form stable populations is likely to have resulted in disruptive
522	selection linked to microhabitat specialization (Whittaker, 1954; Brady et al., 2005;
523	Wright, 2007). Despite the fact that both taxa often grow in very close geographical

524	proximity and have high potential for interspecific pollen flow (Forde & Faris, 1962),
525	the formation of hybrid swarms may be prevented by strong selection against
526	introgressed individuals in microhabitats that are mostly optimal for either parental
527	species (Barton & Hewitt, 1985). However, coalescent-based estimates of migration
528	indicated that the model best supporting the data was the one considering asymmetric
529	gene flow from <i>Q. durata</i> into both allopatric and parapatric populations of <i>Q</i> .
530	berberidifolia, which suggests that hybrids may be less competitive in serpentine sites
531	because of their lower tolerance to these soils (Brooks, 1987; Harrison, 1999; Brady et
532	al., 2005). The fact that MIGRATE-N analyses based on purebred individuals identified
533	using the $Q = 0.90$ threshold criterion have also inferred the presence of asymmetric
534	gene flow (Table 1) indicates that the small degree of admixed ancestry (<10%) present
535	in putative "purebred" individuals contain a detectable genetic signal of asymmetric
536	introgression, highlighting the impacts of this phenomenon beyond first-generation
537	hybrids (see also Starr et al., 2013). Phenology mismatches have been also suggested as
538	an important isolation mechanism both within and across different oak species (e.g.
539	Cavender-Bares & Pahlich, 2009). Accordingly, Forde and Faris (1962) found evidence
540	for differences in flowering time between nearby populations of Q. durata and Q.
541	berberidifolia, which may be an important premating barrier reducing hybridization
542	rates even when both taxa live at a dispersal distance from each other. Thus,
543	environment-mediated selection and/or assortative mating are likely to explain why
544	populations located in areas where the ranges of both species overlap do not generally
545	converge into hybrid swarms (Fig. 2).
546	
547	Environmental disturbance

549	In accordance with the environmental disturbance hypothesis, we found that genetic
550	admixture increases with wildfire frequency, an effect that was significant across a wide
551	range of spatial scales and also exclusively considering parapatric populations from
552	both species. Different mechanisms could explain the positive effects of wildfire
553	frequency on local patterns of hybridization. Frequent wildfires are expected to reduce
554	intra- and interspecific competition, which may relax selection against hybrids and
555	increase their rates of successful establishment even if they still perform worse than
556	either parental species (Brooks, 1987; Harrison, 1999; Brady et al., 2005). Although
557	scrub oaks are good resprouters (Keeley, 1992), the re-establishment of parental species
558	through vegetative regeneration is expected to be hampered by a high wildfire
559	frequency and intensity (Pausas & Keeley, 2014; Pausas et al., 2016), which may
560	ultimately increase the rates of seedling recruitment and the establishment of hybrids.
561	Wildfires also open habitat patches and reduce local population densities and sizes,
562	which is expected to decrease conspecific pollen availability (Breed et al., 2012; Ortego
563	et al., 2014b), allow immigrant pollen from other species to compete with local
564	conspecific pollen (Lagache et al., 2013), and favour more effective pollen and seed
565	dispersal from neighbouring population across barren landscapes (Bacles et al., 2006;
566	Bacles & Ennos, 2008). Finally, wildfires can potentially open new niches where
567	hybrids may outperform or perform similarly well than parental taxa (Lewontin &
568	Birch, 1966) due to biotic and abiotic changes in soil composition (Cerdà & Robichaud,
569	2009) or altered interactions with species involved in earlier stages of secondary
570	ecological succession (Horn, 1974). Thus, different factors can result in burned habitat
571	patches being occupied more frequently by genetically admixed individuals and their
572	persistence may be linked with the frequency of the disturbance, as has been proposed
573	to explain geographical patterns of genetic admixture and diversity for other plants in

relation with the degree of stability of suitable habitats across glacial and interglacial
cycles (i.e. higher admixture/hybridization in populations from climatically less stable
areas; e.g. Ortego *et al.*, 2015b; Guo, 2014).

577 Despite support for an important role of wildfire frequency on patterns of 578 hybridization, habitat disturbance by urbanization and land clearing for agriculture was 579 only included in models for two spatial scales with a positive, but non-significant effect 580 on the degree of genetic admixture. Some previous studies on trees have found that 581 hybrids between native and introduced species are more frequently established in 582 human-altered landscapes such as roadsides and urbanized areas (Thompson et al., 583 2010; Hoban et al., 2012), whereas others have reported widespread hybridization 584 across a variety of natural and disturbed areas (Zalapa *et al.*, 2009). The fact that these 585 studies are focused on native-exotic species hybridization may be confounding the 586 effects purely due to environmental disturbance with those resulting from introduction 587 history, which is expected to be biased towards human-populated areas that, in turn, are 588 subjected to many different forms of anthropogenic alterations (Guo, 2014). On the 589 other hand, large-scale human alterations may have weak effects on hybridization rates 590 as a consequence of complete or nearly complete habitat depletion, i.e. environmental 591 disturbance does not result in a new niche that is suitable for either hybrids or any 592 parental species (Anderson, 1948; Anderson & Stebbins, 1954; Arnold, 1997). 593

594 Environmental conditions

595

596 The studied environmental factors (elevation, climate, and soil type) unrelated with 597 habitat disturbance had no significant effect on estimates of mixed gene pools. This 598 result contrasts with previous studies showing that the occurrence of hybrids is

599	constrained by the presence of patches with particular environments suitable for
600	seedling establishment and survival (e.g. Williams et al., 2001; Dodd & Afzal-Rafii,
601	2004; Cullingham et al., 2012; Ortego et al., 2014a). In our study system, the random
602	distribution of hybrids with respect to climate and elevation may be explained by the
603	fact that the most important selective force controlling the distribution of the two focal
604	species is probably the presence of serpentine soils (Forde & Faris, 1962). These soils
605	are scattered in the landscape and often vary in terms of occurrence and chemical
606	composition at scales of a few tens of meters, a fine-grain heterogeneity not covered by
607	available soil maps including information on soil taxa order and suborder (Whittaker,
608	1954; Kruckeberg, 1984; Brady et al., 2005).
609	
610	Conclusions and future directions
611	
011	
612	Overall, our study shows for the first time that wildfires are an important source of
612 613	Overall, our study shows for the first time that wildfires are an important source of environmental disturbance promoting genetic admixture between two ecologically well-
611612613614	Overall, our study shows for the first time that wildfires are an important source of environmental disturbance promoting genetic admixture between two ecologically well- differentiated species. Our results suggest that the future predictions for increased
 611 612 613 614 615 	Overall, our study shows for the first time that wildfires are an important source of environmental disturbance promoting genetic admixture between two ecologically well- differentiated species. Our results suggest that the future predictions for increased wildfire frequency in California and many other parts of the world linked with human-
 611 612 613 614 615 616 	Overall, our study shows for the first time that wildfires are an important source of environmental disturbance promoting genetic admixture between two ecologically well- differentiated species. Our results suggest that the future predictions for increased wildfire frequency in California and many other parts of the world linked with human- induced climate and land use changes (Westerling <i>et al.</i> , 2006; Westerling & Bryant,
 611 612 613 614 615 616 617 	Overall, our study shows for the first time that wildfires are an important source of environmental disturbance promoting genetic admixture between two ecologically well- differentiated species. Our results suggest that the future predictions for increased wildfire frequency in California and many other parts of the world linked with human- induced climate and land use changes (Westerling <i>et al.</i> , 2006; Westerling & Bryant, 2008) will have an important impact not only on species distribution and demographic
 611 612 613 614 615 616 617 618 	Overall, our study shows for the first time that wildfires are an important source of environmental disturbance promoting genetic admixture between two ecologically well- differentiated species. Our results suggest that the future predictions for increased wildfire frequency in California and many other parts of the world linked with human- induced climate and land use changes (Westerling <i>et al.</i> , 2006; Westerling & Bryant, 2008) will have an important impact not only on species distribution and demographic dynamics but also on interspecific patterns of gene flow (Barr <i>et al.</i> , 2015).
 611 612 613 614 615 616 617 618 619 	Overall, our study shows for the first time that wildfires are an important source of environmental disturbance promoting genetic admixture between two ecologically well- differentiated species. Our results suggest that the future predictions for increased wildfire frequency in California and many other parts of the world linked with human- induced climate and land use changes (Westerling <i>et al.</i> , 2006; Westerling & Bryant, 2008) will have an important impact not only on species distribution and demographic dynamics but also on interspecific patterns of gene flow (Barr <i>et al.</i> , 2015). Longitudinal studies analysing temporal changes in the proportion and genetic
 611 612 613 614 615 616 617 618 619 620 	Overall, our study shows for the first time that wildfires are an important source of environmental disturbance promoting genetic admixture between two ecologically well- differentiated species. Our results suggest that the future predictions for increased wildfire frequency in California and many other parts of the world linked with human- induced climate and land use changes (Westerling <i>et al.</i> , 2006; Westerling & Bryant, 2008) will have an important impact not only on species distribution and demographic dynamics but also on interspecific patterns of gene flow (Barr <i>et al.</i> , 2015). Longitudinal studies analysing temporal changes in the proportion and genetic composition of hybrids after specific disturbances (e.g. Muhlfeld <i>et al.</i> , 2014) and
 611 612 613 614 615 616 617 618 619 620 621 	Overall, our study shows for the first time that wildfires are an important source of environmental disturbance promoting genetic admixture between two ecologically well- differentiated species. Our results suggest that the future predictions for increased wildfire frequency in California and many other parts of the world linked with human- induced climate and land use changes (Westerling <i>et al.</i> , 2006; Westerling & Bryant, 2008) will have an important impact not only on species distribution and demographic dynamics but also on interspecific patterns of gene flow (Barr <i>et al.</i> , 2015). Longitudinal studies analysing temporal changes in the proportion and genetic composition of hybrids after specific disturbances (e.g. Muhlfeld <i>et al.</i> , 2014) and experimental/quasi-experimental approaches considering different spatial replicates and
 611 612 613 614 615 616 617 618 619 620 621 622 	Overall, our study shows for the first time that wildfires are an important source of environmental disturbance promoting genetic admixture between two ecologically well- differentiated species. Our results suggest that the future predictions for increased wildfire frequency in California and many other parts of the world linked with human- induced climate and land use changes (Westerling <i>et al.</i> , 2006; Westerling & Bryant, 2008) will have an important impact not only on species distribution and demographic dynamics but also on interspecific patterns of gene flow (Barr <i>et al.</i> , 2015). Longitudinal studies analysing temporal changes in the proportion and genetic composition of hybrids after specific disturbances (e.g. Muhlfeld <i>et al.</i> , 2014) and experimental/quasi-experimental approaches considering different spatial replicates and intensities of environmental disturbances (e.g. Stewart <i>et al.</i> , 2015) will provide

624	processes of inter-specific hybridization. Future studies considering detailed analyses of
625	soil chemistry (Forde & Faris, 1962; Yost et al., 2012), species phenology (Lamont et
626	al., 2003), interspecific fecundity (Williams et al., 2001) and contemporary patterns of
627	pollen flow (Lepais et al., 2009; Lagache et al., 2013) will also help to determine more
628	accurately the factors influencing hybridization and how they interact with
629	environmental heterogeneity and habitat disturbance. Finally, genome scans aimed to
630	identify regions under selection and containing gene variants associated with local
631	adaptation processes can provide important insights to understand the ecological and
632	evolutionary mechanisms underlying asymmetric patterns of introgression in response
633	to human-induced environmental perturbations and climate change (Gailing et al., 2004;
634	Renaud <i>et al.</i> , 2013).
635	

636 Acknowledgements

637

638 We wish to thank to Isabel Afán (LAST-EBD) for her valuable help in GIS analyses.

639 Four anonymous referees provided valuable comments on an earlier draft of this

640 manuscript. JO was supported by a Ramón y Cajal (RYC-2013-12501) and Severo

641 Ochoa (SEV-2012-0262) research fellowships. This work was supported by an internal

EBD "Microproyectos" grant to JO, financed by the Spanish Ministry of Economy and

643 Competitiveness through the Severo Ochoa Program for Centres of Excellence in

644 R+D+I (SEV-2012-0262). Logistical support was provided by the Laboratorio de

645 Ecología Molecular, Estación Biológica de Doñana, CSIC (LEM-EBD). Support for

646 fieldwork was provided by UCLA research funds of VLS.

647

648 Author contributions

649	J.O. and V.L.S conceived and designed the study. J.O., P.F.G. and V.L.S collected the
650	samples. J.O. performed the genetic analyses, analysed the data and wrote the
651	manuscript.
652	
653	References
654	
655	Abbott R, Albach D, Ansell S, Arntzen JW, Baird SJE, Bierne N, Boughman JW,
656	Brelsford A, Buerkle CA, Buggs R, et al. 2013. Hybridization and speciation.
657	Journal of Evolutionary Biology 26(2): 229-246.
658	Alberto F, Niort J, Derory J, Lepais O, Vitalis R, Galop D, Kremer A. 2010.
659	Population differentiation of sessile oak at the altitudinal front of migration in
660	the French Pyrenees. <i>Molecular Ecology</i> 19 (13): 2626-2639.
661	Anderson E. 1948. Hybridization of the habitat. <i>Evolution</i> 2(1): 1-9.
662	Anderson E. 1953. Introgressive hybridization. Biological Reviews of the Cambridge
663	Philosophical Society 28(3): 280-307.
664	Anderson E, Stebbins GL. 1954. Hybridization as an evolutionary stimulus. Evolution
665	8 (4): 378-388.
666	Anderson E, Thompson EA. 2002. A model-based method for identifying species
667	hybrids using multilocus genetic data. Genetics 160(3): 1217-1229.
668	Andrew RL, Ostevik KL, Ebert DP, Rieseberg LH. 2012. Adaptation with gene flow
669	across the landscape in a dune sunflower. <i>Molecular Ecology</i> 21 (9): 2078-2091.
670	Arnold ML. 1997. Natural Hybridization and Evolution. Oxford, UK: Oxford
671	University Press.
672	Bacilieri R, Ducousso A, Petit RJ, Kremer A. 1996. Mating system and asymmetric
673	hybridization in a mixed stand of European oaks. Evolution 50(2): 900-908.

674	Bacles CFE, Ennos RA. 2008. Paternity analysis of pollen-mediated gene flow for
675	Fraxinus excelsior L. in a chronically fragmented landscape. Heredity 101(4):
676	368-380.
677	Bacles CFE, Lowe AJ, Ennos RA. 2006. Effective seed dispersal across a fragmented
678	landscape. Science 311(5761): 628-628.
679	Barr KR, Kus BE, Preston KL, Howell S, Perkins E, Vandergast AG. 2015. Habitat
680	fragmentation in coastal southern California disrupts genetic connectivity in the
681	cactus wren (Campylorhynchus brunneicapillus). Molecular Ecology 24(10):
682	2349-2363.
683	Barton NH. 2001. The role of hybridization in evolution. <i>Molecular Ecology</i> 10 (3):
684	551-568.
685	Barton NH, Hewitt GM. 1985. Analysis of hybrid zones. Annual Review of Ecology
686	and Systematics 16: 113-148.
687	Baskett ML, Gomulkiewicz R. 2011. Introgressive hybridization as a mechanism for
688	species rescue. Theoretical Ecology 4(2): 223-239.
689	Beerli P. 2006. Comparison of Bayesian and maximum-likelihood inference of
690	population genetic parameters. <i>Bioinformatics</i> 22 (3): 341-345.
691	Beerli P. 2009. How to Use MIGRATE or Why are Marko Chain Monte Carlo Programs
692	Difficult to Use? New York, NY, USA: Cambridge University Press.
693	Beerli P, Felsenstein J. 2001. Maximum likelihood estimation of a migration matrix
694	and effective population sizes in n subpopulations by using a coalescent
695	approach. Proceedings of the National Academy of Sciences of the United States
696	<i>of America</i> 98 (8): 4563-4568.
697	Beerli P, Palczewski M. 2010. Unified framework to evaluate panmixia and migration
698	direction among multiple sampling locations. <i>Genetics</i> 185 (1): 313-326.

699	Brady KU, Kruckeberg AR, Bradshaw HD. 2005. Evolutionary ecology of plant
700	adaptation to serpentine soils. Annual Review of Ecology Evolution and
701	<i>Systematics</i> 36 : 243-266.
702	Breed MF, Gardner MG, Ottewell KM, Navarro CM, Lowe AJ. 2012. Shifts in
703	reproductive assurance strategies and inbreeding costs associated with habitat
704	fragmentation in Central American mahogany. Ecology Letters 15: 444-452.
705	Brooks RR. 1987. Serpentine and its Vegetation: A Multidisciplinary Approach.
706	Portland, OR, USA: Dioscorides.
707	Buggs RJA. 2007. Empirical study of hybrid zone movement. <i>Heredity</i> 99(3): 301-312.
708	Burgarella C, Lorenzo Z, Jabbour-Zahad R et al. 2009. Detection of hybrids in
709	nature: application to oaks (Quercus suber and Q. ilex). Heredity 102(5), 442-
710	452.
711	Buschbom J, Yanbaev Y, Degen B. 2011. Efficient long-distance gene flow into an
712	isolated relict oak stand. Journal of Heredity 102(4): 464-472.
713	Calsbeek R, Thompson JN, Richardson JE. 2003. Patterns of molecular evolution
714	and diversification in a biodiversity hotspot: the California Floristic Province.
715	<i>Molecular Ecology</i> 12 (4): 1021-1029.
716	Cavender-Bares J, Pahlich A. 2009. Molecular, morphological and ecological niche
717	differentiation of sympatric sister oak species, Quercus virginiana and Q.
718	geminata (Fagaceae). American Journal of Botany 96(9): 1690-1702.
719	Cerdà A, Robichaud P. 2009. Fire Effects on Soils and Restoration Strategies. Enfield,
720	NH, USA: Science Publishers.
721	Craft KJ, Ashley MV, Koenig WD. 2002. Limited hybridization between Quercus
722	lobata and Quercus douglasii (Fagaceae) in a mixed stand in central coastal
723	California. American Journal of Botany 89(11): 1792-1798.

724	Crispo E, Moore JS, Lee-Yaw JA, Gray SM, Haller BC. 2011. Broken barriers:
725	Human-induced changes to gene flow and introgression in animals. Bioessays
726	33 (7): 508-518.
727	Cullingham CI, James PMA, Cooke JEK, Coltman DW. 2012. Characterizing the
728	physical and genetic structure of the lodgepole pine jack pine hybrid zone:
729	mosaic structure and differential introgression. <i>Evolutionary Applications</i> 5 (8):
730	879-891.
731	Cullingham CI, Cooke JEK, Dang S, Davis CS, Cooke BJ, Coltman DW. 2011.
732	Mountain pine beetle host-range expansion threatens the boreal forest.
733	<i>Molecular Ecology</i> , 20 (10):2157–2171.
734	Curtu AL, Gailing O, Finkeldey R. 2007. Evidence for hybridization and
735	introgression within a species-rich oak (Quercus spp.) community. BMC
736	Evolutionary Biology 7: 218.
737	Chatzimanolis S, Caterino MS. 2007. Toward a better understanding of the
738	"Transverse Range Break": Lineage diversification in southern California.
739	<i>Evolution</i> 61 (9): 2127-2141.
740	Darwin CR. 1859. On the Origin of Species by Means of Natural Selection. London,
741	UK: John Murray.
742	Davis EB, Koo MS, Conroy C, Patton JL, Moritz C. 2008. The California Hotspots
743	Project: identifying regions of rapid diversification of mammals. Molecular
744	<i>Ecology</i> 17 (1): 120-138.
745	Dodd RS, Afzal-Rafii Z. 2004. Selection and dispersal in a multispecies oak hybrid
746	zone. Evolution 58 (2): 261-269.
747	Dow BD, Ashley MV. 1998. High levels of gene flow in bur oak revealed by paternity
748	analysis using microsatellites. Journal of Heredity 89(1): 62-70.

- 749 Doyle J, Doyle J. 1990. Isolation of plant DNA from fresh tissue. *Focus*, 12: 13-15.
- 750 eFloras. 2015. Flora of North America. URL http://www.efloras.org [accessed on 20]
- 751 December 2015]. St. Louis, MO, USA & Cambridge, MA, USA: Missouri
- 752 Botanic Garden & Harvard University Herbaria.
- 753 Ellstrand NC, Schierenbeck KA. 2000. Hybridization as a stimulus for the evolution
- of invasiveness in plants? *Proceedings of the National Academy of Sciences of*
- 755 *the United States of America* **97**(13): 7043-7050.
- 756 Falush D, Stephens M, Pritchard JK. 2003. Inference of population structure using
- 757 multilocus genotype data: Linked loci and correlated allele frequencies. *Genetics*758 164(4): 1567-1587.
- 759 Field DL, Ayre DJ, Whelan RJ, Young AG. 2011. Patterns of hybridization and
- asymmetrical gene flow in hybrid zones of the rare *Eucalyptus aggregata* and
 common *E. rubida*. *Heredity* **106**(5): 841-853.
- 762 Forde MB, Faris DG. 1962. Effect of introgression on serpentine endemism of
- 763 *Quercus durata. Evolution* **16**(3): 338-347.
- 764 Gailing O, Macnair MR, Bachmann K. 2004. QTL mapping for a trade-off between
- 765 leaf and bud production in a recombinant inbred population of *Microseris*
- 766 *douglasii* and *M. bigelovii* (Asteraceae, Lactuceae): A potential preadaptation
- for the colonization of serpentine soils. *Plant Biology* **6**(4): 440-446.
- Goudet J. 1995. FSTAT (Version 1.2): A computer program to calculate F-statistics.
 Journal of Heredity 86(6): 485-486.
- 770 **Guo QF. 2014.** Plant hybridization: the role of human disturbance and biological
- invasion. *Diversity and Distributions* **20**(11): 1345-1354.
- Haines ML, Melville J, Sumner J, Clemann N, Chapple DG, Stuart-Fox D. 2016.
- 773 Geographic variation in hybridization and ecological differentiation between

774	three syntopic, morphologically similar species of montane lizards. Molecular
775	<i>Ecology</i> , 25 (12): 2887-2903.
776	Hampe A, Pemonge MH, Petit RJ. 2013. Efficient mitigation of founder effects
777	during the establishment of a leading-edge oak population. Proceedings of the
778	Royal Society B-Biological Sciences 280: 20131070.
779	Harrison RG. 1986. Pattern and process in a narrow hybrid zone. Heredity 56: 337-
780	349.
781	Harrison S. 1999. Local and regional diversity in a patchy landscape: Native, alien, and
782	endemic herbs on serpentine. <i>Ecology</i> 80 (1): 70-80.
783	Hasselman DJ, Argo EE, McBride MC, Bentzen P, Schultz TF, Perez-Umphrey
784	AA, Palkovacs EP. 2014. Human disturbance causes the formation of a hybrid
785	swarm between two naturally sympatric fish species. <i>Molecular Ecology</i> 23 (5):
786	1137-1152.
787	Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. 2005. Very high resolution
788	interpolated climate surfaces for global land areas. International Journal of
789	<i>Climatology</i> 25 (15): 1965-1978.
790	Hoban SM, McCleary TS, Schlarbaum SE, Anagnostakis SL, Romero-Severson J.
791	2012. Human-impacted landscapes facilitate hybridization between a native and
792	an introduced tree. Evolutionary Applications 5(7): 720-731.
793	Horn HS. 1974. The ecology of secondary succession. Annual Review of Ecology and
794	<i>Systematics</i> 5 : 25-37.
795	Hubisz MJ, Falush D, Stephens M, Pritchard JK. 2009. Inferring weak population
796	structure with the assistance of sample group information. Molecular Ecology
797	<i>Resources</i> 9 (5): 1322-1332.

798	Jombart T. 2008.	ADEGENET: a I	R package	for the m	ultivariate an	alvsis of	genetic
							D

- 799 markers. *Bioinformatics* **24**(11): 1403-1405.
- 800 Keeley JE, Bond WJ, Bradstock RA, Pausas JG, Rundel PW. 2012. Fire in
- 801 *Mediterranean Ecosystems: Ecology, Evolution and Management.* Cambridge,
- 802 UK: Cambridge University Press.
- 803 Keeley JE. 1992. Recruitment of seedlings and vegetative sprouts in unburned
- 804 chaparral. *Ecology* **73**(4): 1194-1208.
- King RS, Boysen JR, Brenneman JM, Cong RM, Hunter TS. 2015. Fire created
- habitat partitioning and isolation between hybridizing warblers. *Ecosphere* 6(3):
 34.
- 808 Kruckeberg AR. 1984. California Serpentines: Flora, Vegetation, Geology, Soils, and
- 809 Management Problems. Los Angeles, CA, USA: University of California
- 810 Publications in Botany.
- 811 Lagache L, Klein EK, Guichoux E, Petit RJ. 2013. Fine-scale environmental control
- 812 of hybridization in oaks. *Molecular Ecology* **22**(2): 423-436.
- 813 Lamont BB, He T, Enright NJ, Krauss SL, Miller BP. 2003. Anthropogenic
- 814 disturbance promotes hybridization between *Banksia* species by altering their
- 815 biology. *Journal of Evolutionary Biology* **16**(4): 551-557.
- 816 Lancaster LT, Kay KM. 2013. Origin and diversification of the California flora: re-
- 817 examining classic hypotheses with molecular phylogenies. *Evolution* **67**(4):
- 818 1041-1054.
- 819 Langhans TM, Storm C, Schwabe A. 2009. Biological soil crusts and their
- 820 microenvironment: Impact on emergence, survival and establishment of
- seedlings. *Flora* **204**(2): 157-168.

822	Langin KM, Sillett TS, Funk WC, Morrison SA, Desrosiers MA, Ghalambor CK.
823	2015. Islands within an island: Repeated adaptive divergence in a single
824	population. <i>Evolution</i> 69 (3): 653-665.
825	Lepais O, Gerber S. 2011. Reproductive patterns shape introgression dynamics and
826	species succession within the European white oak species complex. Evolution
827	65 (1): 156-170.
828	Lepais O, Petit RJ, Guichoux E, Lavabre JE, Alberto F, Kremer A, Gerber S.
829	2009. Species relative abundance and direction of introgression in oaks.
830	<i>Molecular Ecology</i> 18 (10): 2228-2242.
831	Lewontin RC, Birch LC. 1966. Hybridization as a sournce of variation for adaptation
832	to new environments. Evolution 20 (3): 315-336.
833	Lexer C, Kremer A, Petit RJ. 2006. Shared alleles in sympatric oaks: recurrent gene
834	flow is a more parsimonious explanation than ancestral polymorphism.
835	<i>Molecular Ecology</i> 15 (7): 2007-2012.
836	Linnaeus C. 1735. Systema Naturae 1st edition. Leiden, the Netherlands: Theodorum
837	Haak.
838	Moritz MA, Batllori E, Bradstock RA, Gill AM, Handmer J, Hessburg PF,
839	Leonard J, McCaffrey S, Odion DC, Schoennagel T, et al. 2014. Learning to
840	coexist with wildfire. Nature 515(7525): 58-66.
841	Morjan CL, Rieseberg LH. 2004. How species evolve collectively: implications of
842	gene flow and selection for the spread of advantageous alleles. Molecular
843	<i>Ecology</i> 13 (6): 1341-1356.
844	Muhlfeld CC, Kovach RP, Jones LA, Al-Chokhachy R, Boyer MC, Leary RF,
845	Lowe WH, Luikart G, Allendorf FW. 2014. Invasive hybridization in a

846	threatened species is accelerated by climate change. Nature Climate Change
847	4 (7): 620-624.
848	Muir G, Schlotterer C. 2005. Evidence for shared ancestral polymorphism rather than
849	recurrent gene flow at microsatellite loci differentiating two hybridizing oaks
850	(Quercus spp.). Molecular Ecology 14(2): 549-561.
851	Muller CH. 1952. Ecological control of hybridization in Quercus - A factor in the
852	mechanism of evolution. Evolution 6(2): 147-161.
853	Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J. 2000.
854	Biodiversity hotspots for conservation priorities. Nature 403(6772): 853-858.
855	Ortego J, Riordan EC, Gugger PF, Sork VL. 2012. Influence of environmental
856	heterogeneity on genetic diversity and structure in an endemic southern
857	Californian oak. <i>Molecular Ecology</i> 21 (13): 3210-3223.
858	Ortego J, Gugger PF, Riordan EC, Sork VL. 2014a. Influence of climatic niche
858 859	Ortego J, Gugger PF, Riordan EC, Sork VL. 2014a. Influence of climatic niche suitability and geographical overlap on hybridization patterns among southern
858 859 860	Ortego J, Gugger PF, Riordan EC, Sork VL. 2014a. Influence of climatic niche suitability and geographical overlap on hybridization patterns among southern Californian oaks. <i>Journal of Biogeography</i> 41 (10): 1895-1908.
858 859 860 861	 Ortego J, Gugger PF, Riordan EC, Sork VL. 2014a. Influence of climatic niche suitability and geographical overlap on hybridization patterns among southern Californian oaks. <i>Journal of Biogeography</i> 41(10): 1895-1908. Ortego J, Bonal R, Munoz A, Aparicio JM. 2014b. Extensive pollen immigration and
858 859 860 861 862	 Ortego J, Gugger PF, Riordan EC, Sork VL. 2014a. Influence of climatic niche suitability and geographical overlap on hybridization patterns among southern Californian oaks. <i>Journal of Biogeography</i> 41(10): 1895-1908. Ortego J, Bonal R, Munoz A, Aparicio JM. 2014b. Extensive pollen immigration and no evidence of disrupted mating patterns or reproduction in a highly fragmented
858 859 860 861 862 863	 Ortego J, Gugger PF, Riordan EC, Sork VL. 2014a. Influence of climatic niche suitability and geographical overlap on hybridization patterns among southern Californian oaks. <i>Journal of Biogeography</i> 41(10): 1895-1908. Ortego J, Bonal R, Munoz A, Aparicio JM. 2014b. Extensive pollen immigration and no evidence of disrupted mating patterns or reproduction in a highly fragmented holm oak stand. <i>Journal of Plant Ecology</i> 7(4): 384-395.
858 859 860 861 862 863 864	 Ortego J, Gugger PF, Riordan EC, Sork VL. 2014a. Influence of climatic niche suitability and geographical overlap on hybridization patterns among southern Californian oaks. <i>Journal of Biogeography</i> 41(10): 1895-1908. Ortego J, Bonal R, Munoz A, Aparicio JM. 2014b. Extensive pollen immigration and no evidence of disrupted mating patterns or reproduction in a highly fragmented holm oak stand. <i>Journal of Plant Ecology</i> 7(4): 384-395. Ortego J, Noguerales V, Gugger PF, Sork VL. 2015a. Evolutionary and demographic
858 859 860 861 862 863 864 865	 Ortego J, Gugger PF, Riordan EC, Sork VL. 2014a. Influence of climatic niche suitability and geographical overlap on hybridization patterns among southern Californian oaks. <i>Journal of Biogeography</i> 41(10): 1895-1908. Ortego J, Bonal R, Munoz A, Aparicio JM. 2014b. Extensive pollen immigration and no evidence of disrupted mating patterns or reproduction in a highly fragmented holm oak stand. <i>Journal of Plant Ecology</i> 7(4): 384-395. Ortego J, Noguerales V, Gugger PF, Sork VL. 2015a. Evolutionary and demographic history of the Californian scrub white oak species complex: An integrative
858 859 860 861 862 863 864 865 866	 Ortego J, Gugger PF, Riordan EC, Sork VL. 2014a. Influence of climatic niche suitability and geographical overlap on hybridization patterns among southern Californian oaks. <i>Journal of Biogeography</i> 41(10): 1895-1908. Ortego J, Bonal R, Munoz A, Aparicio JM. 2014b. Extensive pollen immigration and no evidence of disrupted mating patterns or reproduction in a highly fragmented holm oak stand. <i>Journal of Plant Ecology</i> 7(4): 384-395. Ortego J, Noguerales V, Gugger PF, Sork VL. 2015a. Evolutionary and demographic history of the Californian scrub white oak species complex: An integrative approach. <i>Molecular Ecology</i> 24(24): 6188-6208.
 858 859 860 861 862 863 864 865 866 867 	 Ortego J, Gugger PF, Riordan EC, Sork VL. 2014a. Influence of climatic niche suitability and geographical overlap on hybridization patterns among southern Californian oaks. <i>Journal of Biogeography</i> 41(10): 1895-1908. Ortego J, Bonal R, Munoz A, Aparicio JM. 2014b. Extensive pollen immigration and no evidence of disrupted mating patterns or reproduction in a highly fragmented holm oak stand. <i>Journal of Plant Ecology</i> 7(4): 384-395. Ortego J, Noguerales V, Gugger PF, Sork VL. 2015a. Evolutionary and demographic history of the Californian scrub white oak species complex: An integrative approach. <i>Molecular Ecology</i> 24(24): 6188-6208. Ortego J, Gugger PF, Sork VL. 2015b. Climatically stable landscapes predict patterns
858 859 860 861 862 863 864 865 866 866 867 868	 Ortego J, Gugger PF, Riordan EC, Sork VL. 2014a. Influence of climatic niche suitability and geographical overlap on hybridization patterns among southern Californian oaks. <i>Journal of Biogeography</i> 41(10): 1895-1908. Ortego J, Bonal R, Munoz A, Aparicio JM. 2014b. Extensive pollen immigration and no evidence of disrupted mating patterns or reproduction in a highly fragmented holm oak stand. <i>Journal of Plant Ecology</i> 7(4): 384-395. Ortego J, Noguerales V, Gugger PF, Sork VL. 2015a. Evolutionary and demographic history of the Californian scrub white oak species complex: An integrative approach. <i>Molecular Ecology</i> 24(24): 6188-6208. Ortego J, Gugger PF, Sork VL. 2015b. Climatically stable landscapes predict patterns of genetic structure and admixture in the Californian canyon live oak. <i>Journal of</i>

870	Ortego J, Aguirre MP, Noguerales V, Cordero PJ. 2015c. Consequences of
871	extensive habitat fragmentation in landscape-level patterns of genetic diversity
872	and structure in the Mediterranean esparto grasshopper. Evolutionary
873	<i>Applications</i> 8 (6): 621-632.
874	Pausas JG, Keeley JE. 2014. Evolutionary ecology of resprouting and seeding in fire-
875	prone ecosystems. New Phytologist, 204(1): 55-65.
876	Pausas JG, Pratt RB, Keeley JE, Jacobsen AL, Ramirez AR, Vilagrosa A, Paula S,
877	Kaneakua-Pia IN, Davis SD. 2016. Towards understanding resprouting at the
878	global scale. New Phytologist, 209(3): 945-954.
879	Petit RJ, Bodenes C, Ducousso A, Roussel G, Kremer A. 2004. Hybridization as a
880	mechanism of invasion in oaks. New Phytologist 161(1): 151-164.
881	Pluess AR, Sork VL, Dolan B, Davis FW, Grivet D, Merg K, Papp J, Smouse PE.
882	2009. Short distance pollen movement in a wind-pollinated tree, Quercus lobata
883	(Fagaceae). Forest Ecology and Management 258(5): 735-744.
884	Prentis PJ, White EM, Radford IJ, Lowe AJ, Clarke AR. 2007. Can hybridization
885	cause local extinction: a case for demographic swamping of the Australian
886	native Senecio pinnatifolius by the invasive Senecio madagascariensis? New
887	Phytologist 176(4): 902-912.
888	Pritchard JK, Stephens M, Donnelly P. 2000. Inference of population structure using
889	multilocus genotype data. Genetics 155(2): 945-959.
890	R Core Team. 2015. <i>R: A Language and Environment for Statistical Computing.</i>
891	Version 3.0.2. URL <u>http://www.rproject.org</u> . Vienna, Austria: R Foundation for
892	Statistical Computing.

893	Renaut S. Grassa C.I. Veaman S	Movers	RT Lai Z	Kane NC	Bowers JE	Burke
095	Reliant S, Grassa CJ, Teaman S	, widy ci s	DI, Lai L,	Nane IVC,	DUNCISJE,	DUIKC

- **JM, Rieseberg LH. 2013.** Genomic islands of divergence are not affected by
- geography of speciation in sunflowers. *Nature Communications* **4**: 1827.
- 896 **Rhymer JM, Simberloff D. 1996.** Extinction by hybridization and introgression.
- 897 *Annual Review of Ecology and Systematics* **27**: 83-109.
- 898 Rieseberg LH. 1997. Hybrid origins of plant species. Annual Review of Ecology and
- *Systematics* **28**: 359-389.
- 900 Riley SPD, Pollinger JP, Sauvajot RM, York EC, Bromley C, Fuller TK, Wayne
- 901 **RK. 2006.** A southern California freeway is a physical and social barrier to gene
 902 flow in carnivores. *Molecular Ecology* 15(7): 1733-1741.
- 903 **Roberts FM. 1995.** Illustrated guide to the oaks of the Southern California Floristic
- 904 *Province*. Encinitas, CA, USA: F.M. Roberts Publications.
- 905 Rundel PW. 1982. Fire as an ecological factor. In: Lange OL, Nobel PS, Osmond CB,
- 906 Ziegler H, eds. *Physiological Plant Ecology I*. New York, USA: Springer-
- 907 Verlag, 501-538.
- 908 **Rushton BS. 1993.** Natural hybridization within the genus *Quercus* 1. *Annales des*
- 909 Sciences Forestieres, Vol 50, Supplement 1, 1993 Genetics of Oaks: S73-S90.
- 910 Saarman NP, Pogson GH. 2015. Introgression between invasive and native blue
- 911 mussels (genus *Mytilus*) in the central California hybrid zone. *Molecular*
- 912 *Ecology* **24**(18): 4723-4738.
- 913 Schwartz MW, Thorne JH, Viers JH. 2006. Biotic homogenization of the California
- flora in urban and urbanizing regions. *Biological Conservation* **127**(3): 282-291.
- 915 Silliman FE, Leisner RS. 1958. An analysis of a colony of hybrid oaks. American
- 916 *Journal of Botany* **45**(10): 730-736.

- 917 Staff SS. 2012. Soil Survey Geographic (SSURGO) database for California. URL
- 918 <u>http://websoilsurvey.sc.egov.usda.gov</u> [accessed on 20 December 2015].
- 919 Starr TN, Gadek KE, Yoder JB, Flatz R, Smith CI. 2013. Asymmetric hybridization
- 920 and gene flow between Joshua trees (Agavaceae: Yucca) reflect differences in
- 921 pollinator host specificity. *Molecular Ecology* **22**(2): 437-449.
- 922 Stewart JF, Will RE, Robertson KM, Nelson CD. 2015. Frequent fire protects
- 923 shortleaf pine (*Pinus echinata*) from introgression by loblolly pine (*P. taeda*).
- 924 *Conservation Genetics* **16**(2): 491-495.
- 925 Streiff R, Ducousso A, Lexer C, Steinkellner H, Gloessl J, Kremer A. 1999. Pollen
- 926 dispersal inferred from paternity analysis in a mixed oak stand of *Quercus robur*

927 L- and *Q. petraea* (Matt.) Liebl. *Molecular Ecology* **8**(5): 831-841.

- 928 Syphard AD, Radeloff VC, Keeley JE, Hawbaker TJ, Clayton MK, Stewart SI,
- 929 Hammer RB. 2007. Human influence on California fire regimes. *Ecological*
- 930 *Applications* **17**(5): 1388-1402.
- 931 Thompson SL, Lamothe M, Meirmans PG, Perinet P, Isabel N. 2010. Repeated
- 932 unidirectional introgression towards *Populus balsamifera* in contact zones of
- exotic and native poplars. *Molecular Ecology* **19**(1): 132-145.
- 934 Tsuda Y, Nakao K, Ide Y, Tsumura Y. 2015. The population demography of Betula
- 935 *maximowicziana*, a cool-temperate tree species in Japan, in relation to the last
- glacial period: its admixture-like genetic structure is the result of simple
- 937 population splitting not admixing. *Molecular Ecology* **24**(7): 1403-1418.
- 938 Vähä JP, Primmer CR. 2006. Efficiency of model-based Bayesian methods for
- 939 detecting hybrid individuals under different hybridization scenarios and with
- 940 different numbers of loci. *Molecular Ecology* **15**(1): 63-72.

941	Vandergast AG, Bohonak AJ, Hathaway SA, Boys J, Fisher RN. 2008. Are hotspots
942	of evolutionary potential adequately protected in southern California? Biological
943	Conservation 141(6): 1648-1664.
944	Vandergast AG, Bohonak AJ, Weissman DB, Fisher RN. 2007. Understanding the
945	genetic effects of recent habitat fragmentation in the context of evolutionary
946	history: phylogeography and landscape genetics of a southern California
947	endemic Jerusalem cricket (Orthoptera: Stenopelmatidae: Stenopelmatus).
948	<i>Molecular Ecology</i> 16 (5): 977-992.
949	Westerling AL, Bryant BP. 2008. Climate change and wildfire in California. Climatic
950	<i>Change</i> 87 : S231-S249.
951	Westerling AL, Hidalgo HG, Cayan DR, Swetnam TW. 2006. Warming and earlier
952	spring increase western US forest wildfire activity. Science 313(5789): 940-943.
953	Whittaker RH. 1954. The ecology of serpentine soils. <i>Ecology</i> 35(2): 258-259.
954	Whittemore AT, Schaal BA. 1991. Interspecific gene flow in sympatric oaks.
955	Proceedings of the National Academy of Sciences of the United States of
956	<i>America</i> 88 (6): 2540-2544.
957	Williams JH, Boecklen WJ, Howard DJ. 2001. Reproductive processes in two oak
958	(Quercus) contact zones with different levels of hybridization. Heredity 87: 680-
959	690.
960	Wright JW. 2007. Local adaptation to serpentine soils in Pinus ponderosa. Plant and
961	<i>Soil</i> 293 (1-2): 209-217.
962	Yost JM, Barry T, Kay KM, Rajakaruna N. 2012. Edaphic adaptation maintains the
963	coexistence of two cryptic species on serpentine soils. American Journal of
964	<i>Botany</i> 99 (5): 890-897.

965	Zalapa JE, Brunet J, Guries RP. 2009. Patterns of hybridization and introgression
966	between invasive Ulmus pumila (Ulmaceae) and native U. rubra. American
967	Journal of Botany 96(6): 1116-1128.
968	Zeng YF, Liao WJ, Petit RJ, Zhang DY. 2011. Geographic variation in the structure
969	of oak hybrid zones provides insights into the dynamics of speciation. Molecular
970	<i>Ecology</i> 20 (23): 4995-5011.
971	
972	Supporting Information
973	
974	Additional Supporting Information may be found online in the supporting information
975	tab for this article:
976	
977	Table S1 Geographical location of Quercus berberidifolia and Q. durata sampling sites
978	in California.
979	
980 981	Table S2 Microsatellite loci used to genotype Quercus berberidifolia and Q. durata.
982	Table S3 Accuracy, efficiency and overall performance of assignment of simulated
983	genotypes of Quercus berberidifolia, Q. durata and their hybrids.
984 985	Table S4 Model selection for analyses of genetic admixture (G_{Admix}).
986	
987	Table S5 General linear model summaries for analyses of genetic admixture (G_{Admix}).
988	
989	Fig. S1 Models tested using MIGRATE-N and Bayesian estimates of mutation-scaled
990	effective population sizes and migration rates
//0	encente population sizes and instanton faces.

991	
992	Fig. S2 Ancestry plots for simulated genotypes of <i>Q. berberidifolia</i> , <i>Q. durata</i> and four
993	hybrid classes analyzed with STRUCTURE and NEWHYBRIDS.
994	
995	Notes S1 Settings of Structure and Newhybrids analyses.
996	
997	Notes S2 Hybrid simulation and genetic assignment.
998	

999 Notes S3 Settings of MIGRATE-N analyses.

Table 1 Model description and results from model comparison in MIGRATE-N for analyses excluding and including interspecific hybrids between
 Quercus berberidifolia and *Q. durata* identified by STRUCTURE analyses (*Q* < 0.90) (see also Supporting Information Fig. S1a). Bézier
 approximation scores of log marginal likelihoods, log Bayes factors (LBF) and model probabilities are shown. Best supported model is indicated
 in bold.

1004

	Excluding hybrids		In	Including hybr		
Model description	Bézier	LBF	Probability	Bézier	LBF	Probability
(I) Full migration model	-270658	-525823	< 0.0001	-415896	-691754	< 0.0001
(II) Bidirectional interspecific gene flow restricted to						
parapatric populations	-140090	-264686	< 0.0001	-255323	-370607	< 0.0001
(III) Unidirectional gene flow from <i>Q. berberidifolia</i>						
to Q. durata	-113727	-211961	< 0.0001	-292242	-444446	< 0.0001
(IV) Unidirectional gene flow from Q. durata to Q.						
berberidifolia	-7747	0	1.0000	-70019	0	1.0000
(V) Unidirectional gene flow from <i>Q</i> . <i>berberidifolia</i>						
to Q. durata restricted to parapatric populations	-81256	-147017	< 0.0001	-295109	-450180	< 0.0001
(VI) Unidirectional gene flow from <i>Q</i> . <i>durata</i> to <i>Q</i> .						
berberidifolia restricted to parapatric populations	-16421	-17347	< 0.0001	-115182	-90325	< 0.0001

1006	Table 2 Model selection to assess the relationship between genetic admixture (G_{Admix})
1007	of Quercus berberidifolia and Q. durata and [A] species range overlap, [B] climate, [C]
1008	elevation, [D] soil type, [E] proportion of habitats disturbed by agriculture and human
1009	development, and [F] wildfire frequency. We run three subsets of models considering
1010	the same parameters but with some of them (B, C, E and F) measured at three different
1011	spatial scales [(a) 10 km ² , (b) 100 km ² , and (c) 1000 km ² around sampling localities].
1012	Only best ranked equivalent models ($\Delta AICc \leq 2$) are shown.

Model no.	Model	K	AIC _c	ΔAIC_{c}	ω_i
(a) G_{Admix} (1)	10 km^2)				
1	F	3	11.33	0.00	0.13
2	A+C+F	5	12.46	1.13	0.07
3	A+F	4	12.68	1.35	0.07
4	C+F	4	13.01	1.67	0.06
5	E+F	4	13.06	1.73	0.05
(b) G_{Admix}	100 km^2)				
1	F	3	7.41	0.00	0.19
2	A+F	4	8.42	1.01	0.11
(c) G_{Admix} (1)	1000 km^2)				
1	A+F	4	3.01	0.00	0.17
2	E+F	4	3.46	0.44	0.13
3	A+E+F	5	4.49	1.48	0.08
4	A+D+F	5	5.01	2.00	0.06

K, number of parameters in the model; AIC_c, corrected Akaike's information criterion (AIC) 1017 value; Δ AIC_c, difference in AIC_c value from that of the strongest model; ω_i , AIC_c weight

1022	Table 3 General linear models (GLMs) for genetic admixture (G_{Admix}) of Quercus
1023	berberidifolia and Q. durata. Parameter estimates and unconditional standard errors
1024	(USE) were obtained performing model averaging of the best ranked equivalent models
1025	$(\Delta AICc \leq 2)$ (see Table 1). Variables are sorted according with their relative importance
1026	based on the sum of Akaike weights (S $\omega_i)$ of those models with $\Delta AICc \leq 2$ in which
1027	the variable was present. Bold type indicates significant variables, i.e. variables for
1028	which their unconditional 95 % confidence interval (CI) did not cross zero. The
1029	percentage of explained deviance for each model is indicated in parentheses. We run
1030	three subsets of models considering the same parameters but with some of them (fire
1031	frequency, climate, proportion of habitats disturbed by agriculture and human
1032	development and elevation) measured at three different spatial scales [(a) 10 km ² , (b)
1033	100 km ² , and (c) 1000 km ² around sampling localities].
1024	

	Estimate \pm USE	$\Sigma\;\omega_i$	Lower	Upper
			95% CI	95% CI
(a) G_{Admix} (10 km ²) (% of exp	lained deviance: 18	8.20)		
Intercept	0.331 ± 0.100			
Wildfire frequency	0.087 ± 0.033	0.38	0.02	0.15
Range overlap	0.096 ± 0.078	0.14	-0.06	0.25
Elevation	0.001 ± 0.001	0.13	-0.01	0.01
% of disturbed habitat	-0.001 ± 0.002	0.05	-0.01	0.01
(b) G_{Admix} (100 km ²) (% of ex	plained deviance:	19.15)		
Intercept	0.313 ± 0.063			
Wildfire frequency	0.127 ± 0.037	0.30	0.06	0.20
Range overlap	0.069 ± 0.062	0.11	-0.05	0.19
(c) $G_{\text{Admix}}(1000 \text{ km}^2)$ (% of explained deviance: 28.03)				
Intercept	0.082 ± 0.124			
Wildfire frequency	0.259 ± 0.067	0.44	0.13	0.39
Range overlap	0.136 ± 0.072	0.31	-0.01	0.28
% of disturbed habitat	0.004 ± 0.003	0.21	-0.01	0.01
Soil type	0.012 ± 0.020	0.06	-0.02	0.05

1036	Figure	legends
	0	

1038	Fig. 1 Map from California representing wildfire frequency estimated as the number of
1039	years that a given area was burned between 1900 and 2013 (source: CALFIRE Fire
1040	Perimeters Geodatabase version 13.2). The map also represents sampling localities for
1041	putative Quercus berberidifolia (blue stars) and Q. durata (red stars). Right top inset
1042	shows the range distributions of Q. berberidifolia (blue) and Q. durata (red) according
1043	with records of the two species available in Calflora database (<u>http://www.calflora.org/</u>).
1044	
1045	Fig. 2 Results of genetic assignments based on the programs (a) STRUCTURE ($K = 2$ and
1046	K = 3) and (b) NEWHYBRIDS. Each individual is represented by a vertical bar, which is
1047	partitioned into K coloured segments showing the individual's probability of assignment
1048	to Quercus berberidifolia (blue), Q. durata (red) and hybrids (yellow, only for
1049	NEWHYBRIDS). Thin vertical black lines separate individuals from different sampling
1050	localities arranged according to their geographical location from southeast (left) to
1051	northwest (right) (population codes are described in Supporting Information Table S1).
1052	The horizontal bar indicates whether the different sampled populations are located or
1053	not in areas of geographical range overlap between the two focal studied species
1054	(allopatry vs. parapatry). Areas of parapatry and allopatry were defined according with
1055	records of the two species available in Calflora database (<u>http://www.calflora.org/</u>) and
1056	verified with distribution maps from eFloras (2015). Panel (c) shows the mean (\pm SD)
1057	log probability of the data ($\ln Pr(X K)$) over 10 runs of STRUCTURE (left axis, black dots
1058	and error bars) for each value of K and the magnitude of ΔK (right axis, open dots). (d)
1059	Detail of the leaves of the two study species, Quercus berberidifolia (left) and Q. durata
1060	(right) (photographs by Joaquín Ortego).

1062	Fig. 3 Principal component analyses (PCA) for genetic data of <i>Q. berberidifolia</i> , <i>Q.</i>
1063	durata and their hybrids. Panels a-b) show a PCA including all individuals and
1064	indicating their assignment to either parental species (red and blue circles) or their
1065	hybrids (yellow triangles) according to (a) STRUCTURE analyses for $K = 3$ and (b)
1066	NEWHYBRIDS (considering a threshold of $Q \ge 0.9$). Panel c) shows a PCA only
1067	including purebred ($Q \ge 0.9$) individuals of Q . berberidifolia and indicating their
1068	assignment to the two clusters identified within this species according to STRUCTURE
1069	analyses for $K = 3$.
1070	
1071	Fig. 4 Relationship between genetic admixture of Quercus berberidifolia and Q. durata
1072	(G_{Admix}) and average wildfire frequency estimated in an area of (a) 10 km ² , (b) 100 km ² ,
1073	and (c) 1000 km ² around sampling localities. Regression lines are indicated and dot size
1074	is proportional to sample size for each studied population.

1075

-31200

-31400

к

1084 Figure 3

1085

1086

1089 Figure 4

1090

Quercus berberidifolia

Quercus durata

PC 1 (1.55 % inertia)

