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ABSTRACT 23 

Aim The extent of the study area (geographical background, GB) can strongly affect the 24 

results of species distribution models (SDMs), but as yet we lack objective and 25 

practicable criteria for delimiting the appropriate GB. We propose an approach to this 26 

problem using trend surface analysis (TSA) and provide an assessment of the effects of 27 

varying the GB extent on the performance of SDMs for four species. 28 

Location Mainland Spain. 29 

Methods Using data for four well-known wild ungulate species and different GBs 30 

delimited with a TSA, we assessed the effects of the GB extent on the predictive 31 

performance of the SDMs; specifically, on model calibration (Miller’s statistic) and 32 

discrimination (AUC, sensitivity and specificity), and on the tendency of the models to 33 

predict environmental potential when they are projected beyond their training area.  34 

Results In the training area, discrimination significantly increased and calibration 35 

decreased as the GB was enlarged. In contrast, as GB was enlarged, both discriminatory 36 

power and calibration decreased when assessed in the core area of the species 37 

distributions. When models trained using small GBs were projected beyond their 38 

training area, they showed a tendency to predict higher environmental potential for the 39 

species than those models trained using large GBs. 40 

Main conclusions By restricting the GB extent using a geographical criterion, model 41 

performance in the core area of the species distribution can be significantly improved. 42 

Large GBs make models demonstrate high discriminatory power but are barely 43 

informative. By delimiting GB using a geographical criterion, the effect of historical 44 

events on model parameterization may be reduced. Thus, purely environmental models 45 

are obtained which, when projected onto a new scenario, depict the potential 46 
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distribution of the species. We therefore recommend the use of TSA in geographically 47 

delimiting the GB for use in SDMs.  48 

 49 

Keywords Calibration, discrimination, environmental potential, extent, 50 

geographical background, historical factors, Spain, species distribution models, 51 

trend surface analysis, ungulate distributions. 52 

53 
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INTRODUCTION 54 

Recent studies have shown that the extent of the study area – or geographical 55 

background (GB) – in species distribution modelling (SDM) has a strong effect on the 56 

parameterization and evaluation of the models (Barve et al., 2011). If the GB is too 57 

small to fully represent the ranges of the species, then the importance of coarse-scale 58 

factors such as climate may be underestimated when one delimits the species 59 

distribution (Jiménez-Valverde et al., 2011a; Sánchez-Fernández et al., 2011). On the 60 

other hand, if the GB is very large then the ability of the models to tease out the fine-61 

scale conditions that actually determine species distribution will be limited (Lobo et al., 62 

2010). VanDerWal et al. (2009) showed that as the GB extent decreases, so does the 63 

number of variables included in the models, which in turn affects the predicted spatial 64 

patterns. 65 

 66 

The effects of the extent of the GB on the discriminatory power of a model, i.e. the 67 

effectiveness of the scoring rule (suitability value in a broad sense) in separating 68 

instances of presence from those of absence, are noteworthy (Lobo et al., 2008; Barve et 69 

al., 2011). Higher and more significant discriminatory values can be obtained simply by 70 

increasing the GB extent such that the number of uninhabited and unsuitable localities 71 

under consideration increases. In this way, it is easy to obtain models with high 72 

discriminatory power but with little informational content (Jiménez-Valverde et al., 73 

2008).  74 

 75 

Anderson & Raza (2010), working with sister species, demonstrated the effects of the 76 

GB extent on model transferability, and discussed their results within a potential versus 77 

realized distribution framework (see Jiménez-Valverde et al., 2008). They argued that if 78 
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unoccupied but environmentally suitable areas for the species are considered for model 79 

training, then the capacity to predict the species’ potential distribution will be reduced. 80 

On the other hand, if the models are trained using a small area in which the species may 81 

have a high probability of being at equilibrium with the environment, then the models 82 

will be able to identify other potential occurrence areas when transferred. Barve et al. 83 

(2011) went a step further and argued that the appropriate GB for model training, 84 

validation, and comparison should comprise the set of localities that a species has 85 

‘sampled’ over its history, i.e. ‘the parts of the world that have been accessible to the 86 

species via dispersal over relevant periods of time’ (Barve et al., 2011, p. 1811). This 87 

accessible area is called ‘M’ in the Biotic, Abiotic and Movement (BAM) diagram 88 

terminology (sensu Soberón & Peterson, 2005; see also Barve et al., 2011) and it is 89 

important to realize that it is specific to each species. Both Anderson & Raza (2010) and 90 

Barve et al. (2011) recognized that delimiting the appropriate GB is generally not 91 

feasible because the biological information required for this purpose is rarely available 92 

for most species. 93 

 94 

Barve et al. (2011) discussed several methods for delimiting the proper GB for an SDM 95 

analysis. They suggested that the most workable approach could be to use biotic 96 

regions, i.e. climatic and geographic units with organisms that share broad 97 

environmental adaptations and history. Another method would be to use SDMs in a 98 

two-step procedure: using the results of a first round of modelling to help define the 99 

appropriate GB to be considered in a second round. Finally, they noted that the most 100 

interesting but also the most challenging approach would be to use information related 101 

to the dispersal capacity of the species, phylogeographic data and palaeoclimatic data. 102 

However, Barve et al. (2011) recognized the excessive simplicity, the circularity, and 103 
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the lack of operability, respectively, of their proposals. In this study, we propose and 104 

assess a species-specific, practicable procedure to delimit the GB based on the global 105 

surface-fitting procedure known as trend surface analysis (TSA; Legendre & Legendre, 106 

1998).  107 

 108 

We argue that to develop purely environmental models in SDM (i.e. the so-called 109 

ecological niche models sensu Soberón, 2010), a GB which maximizes the likelihood 110 

that the targeted species is interacting with the environment should first be delimited. 111 

This can be done by controlling for the broad-scale geographical structure of the data 112 

that may be caused by numerous factors such as dispersal limitation, geographical 113 

characteristics or historical events, among others (McGlone, 1996; Soberón & Peterson, 114 

2005; Svenning & Skov, 2005). As the present distributional range of a species is 115 

determined by its past distribution and population dynamics, the geographical universe 116 

delimited with the TSA may be considered a reflection of the history of the ecological 117 

interactions of the species (e.g., Real et al., 2003). With the TSA, we can delimit the 118 

area that has the highest probability of being accessible to a species given its present 119 

distributional pattern and at the same time avoid the inclusion of geographical regions 120 

that, due to their spatial remoteness, may be uninformative for an ecological model 121 

(Lobo et al., 2010). By accounting for the broad-scale spatially structured variation of 122 

species occurrence data, the GB on which SDMs should be trained is defined. Because 123 

SDMs are eco-geographical, once the broad-scale geographical structure has been 124 

accounted for, the models parameterized within the GB (delimited with the TSA) can be 125 

considered to be largely environmental, and these are the models that can be projected 126 

onto new territories to identify favourable locations for the species. 127 

 128 
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In this context, our main objective is to propose an approach to delimiting the GB by 129 

using TSA to objectively identify the area within which SDMs should be built. Based 130 

on this approach, we also assess the effects of the GB extent on the predictive 131 

performance of the SDMs, and specifically on model calibration and discrimination. To 132 

the best of our knowledge, the effects of the GB extent on model calibration have not 133 

been evaluated. However, this is not surprising because calibration, i.e. how closely the 134 

predicted probabilities match the observed proportions of occurrence (Pearce & Ferrier, 135 

2000), is rarely assessed in SDM. We also evaluate the effects of the GB extent on the 136 

tendency of the models to predict environmental potential when they were projected 137 

onto a new scenario. To this end, we modelled the distribution of four mammal species 138 

with well known and contrasting distribution patterns in mainland Spain. 139 

 140 

MATERIALS AND METHODS 141 

The data 142 

The study area was mainland Spain, an environmentally heterogeneous territory with a 143 

complex geological history (Font, 2000; Hevia, 2004). For modelling purposes we used 144 

the Universal Transverse Mercator (UTM) 10 km × 10 km squares as territorial units (n 145 

= 4684 squares in the study area). We modelled the distribution of four well-known 146 

native species (see Fig. 1): red deer (Cervus elaphus), roe deer (Capreolus capreolus), 147 

Iberian wild goat (Capra pyrenaica), and Pyrenean chamois (Rupicapra pyrenaica). 148 

The red deer is a common species (n = 1530 presences), and is widely distributed 149 

throughout the study area. The roe deer is also a common species (n = 1782 presences) 150 

in the northern half of Spain. The Iberian wild goat is mainly distributed in the eastern 151 

mountain ranges (n = 621 presences). Finally, the Pyrenean chamois has a very limited 152 

distribution (n = 173 presences) restricted to the northern mountain ranges. Presence 153 
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data for these species were extracted from Palomo et al. (2007), and information on the 154 

Iberian wild goat was updated using data from Acevedo & Cassinello (2009). The rate 155 

of false absence data can be considered negligible. 156 

 157 

Delimiting GB 158 

A third-degree TSA was fitted, as this is recommended for exploring processes that 159 

occur at the same or a higher spatial scale than the study area (Legendre & Legendre, 160 

1998; p. 742). The saturated functions of TSA, i.e., without the selection of predictors, 161 

were used to obtain comparable models for the different species. For each species, 162 

seven GBs of different extent were delimited using the TSA predicted values. The first 163 

extent was delimited by the lowest TSA value assigned to a presence (GBLOW); the 164 

reasoning behind this GB is that it seems logical to select a GB that includes all the 165 

presence records currently known for the species. Next, the GB was restricted by 166 

selecting as thresholds the TSA values which correspond to excluding 1% (GB−1), 5% 167 

(GB−5) and 10% (GB−10) of the presences with the lowest TSA values. Similarly, the 168 

extent was enlarged including 1% (GB+1), 5% (GB+5) and 10% (GB+10) of the absences 169 

that had the highest TSA values lower than the values for any presence. Finally, the 170 

total study area (mainland Spain) was also included as an additional extent (GBMS). In 171 

summary, eight GBs of different extents were considered for each species and these 172 

GBs were each used to assess the effects of the GB extent on the performance of the 173 

models. 174 

 175 

Species distribution models  176 

Logistic regressions were performed for each species and criterion (n = 32 models) with 177 

28 environmental predictors related to topography (2 variables), climate (22 variables), 178 
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human activity (3 variables), and lithology (1 variable; see Table 1). Variables were 179 

chosen on the basis of availability and potential predictive power for wild ungulates in 180 

Spain (see Acevedo & Real, 2011). As investigating the environmental factors that 181 

modulate species distribution was not the aim of this study, we have not described the 182 

variables further; details can be found in Barbosa et al. (2003).  183 

 184 

Logistic models were forward–backward stepwise fitted using a 0.05 significance 185 

threshold for the inclusion of the variables and 0.10 for their exclusion. Models were 186 

trained on each extent (eight different GBs) and projected onto mainland Spain for each 187 

species. To compare the results of each model obtained from species with different 188 

prevalences, the favourability function was applied to convert logistic probabilities (P) 189 

into favourability values (F) that are independent of sample prevalence (for further 190 

details about this function see Real et al., 2006). 191 

 192 

Training and evaluation data sets 193 

For each species and GB, a distribution model was trained using a 70% random sample 194 

of the data. The predictive performance of the models was assessed on three evaluation 195 

data sets: (1) on independent data and within the GB considered in the training process, 196 

i.e., on the remaining 30% of the data (evaluation in the training area); (2) only on the 197 

independent data that are included within GB−10 (evaluation in the core area – 198 

independent data); and (3) in order to avoid problems because of a small sample size in 199 

the previous evaluation data set, models were also evaluated using all the localities 200 

included in GB−10 for each species (evaluation in the core area – full data). Different 201 

evaluation data sets were selected to analyse the effects of GB extent in different 202 

contexts of the distribution of a species (core area in relation to the complete training 203 
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area). The ‘core area – full data’ data set was constant across GBs for each species and 204 

therefore provided a way of comparing performance in a quasi-standardized manner 205 

between all models for each species.  206 

 207 

Predictive performance 208 

Sensitivity (Se, the ratio of correctly predicted presences to the total number of 209 

presences), specificity (Sp, the ratio of correctly predicted absences to the total number 210 

of absences), and the AUC (area under the curve of the receiver operating characteristic 211 

plot) were computed to assess the discriminatory power of the models on each 212 

evaluation data set. Se and Sp were calculated using a cut-off of F = 0.5 according to the 213 

favourability concept (Real et al., 2006). Calibration of the P-values was assessed using 214 

Miller’s statistic, which is based on the hypothesis that the calibration line – perfect 215 

calibration – has an intercept of zero and a slope of one (for details see Miller et al., 216 

1991; Pearce & Ferrier, 2000). The R script provided by Wintle et al. (2005) was used 217 

for calculating Miller’s statistic. Finally, for each species and GB, the number of 218 

territorial units predicted as presences (F > 0.5) in the whole study area was calculated 219 

as a proxy of the environmental potential predicted by models. 220 

 221 

Assessing the effect of the GB extent  222 

The effects of the GB extent on each of the performance measures and evaluation data 223 

sets were assessed using general linear mixed models because performance measures 224 

are not independent (Zuur et al., 2009). The species was included as a random factor 225 

and the GB extent – measured as number of territorial units – as a covariable. The 226 

normality of the residuals of each model was determined using the Kolmogorov–227 
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Smirnov test (Zar, 1999). All models were assessed using the statistical package SPSS 228 

18. 229 

 230 

RESULTS 231 

The results of TSA provided evidence of broad-scale spatial trends in the distribution of 232 

the four species (Fig. 2). The favourability maps obtained from the 32 models are 233 

shown in Appendix S1 in the Supporting Information; the case of the roe deer is 234 

presented as an example (Fig. 3). In general, visual assessment of the geographical 235 

patterns shows that the predictions of the models for each species are quite similar in the 236 

core area (GB−10), and that the highest variability between the different models is 237 

obtained when making predictions outside the training data sets (see Appendix S1). 238 

 239 

The results of the statistical models used to assess the effect of the GB extent on the 240 

measures of model performance are summarized in Table 2 (statistical parameters are 241 

given in Appendix S2). The residuals of each model were normally distributed (P > 242 

0.05 in all cases). In most cases, the GB extent was significantly associated with the 243 

four performance measures. There was a negative association between the 244 

discriminatory power – AUC and Sp – and the GB extent when models were assessed in 245 

the core areas and a positive association when the evaluation was performed on the 246 

training area. The relationship with Se was positive in all cases, although it was not 247 

always significant. Miller’s statistic, in which high values indicate poorly calibrated 248 

models, was positively associated with the GB extent when the models were assessed 249 

on both the training and the core area data sets. Finally, there was a negative association 250 

between the GB extent and the area predicted as suitable for mainland Spain (F1,27 = 251 

6.023, P = 0.021; species was included as a random factor: F1,27 = 62.022, P < 0.001). 252 
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In summary, as the GB extent increases, the discriminatory power within the considered 253 

GB improves but on closer inspection, when only the performance in the core area is 254 

assessed, the discriminatory capacity worsens due to overprediction. Calibration is 255 

always negatively affected by increasing the GB extent. Furthermore, when the models 256 

are projected beyond their training area, the smaller the GB extent, the higher the 257 

capacity to predict environmental potential becomes (Fig. 3; see also Appendix S1). 258 

 259 

DISCUSSION 260 

Our results demonstrate that the GB selected has visible effects on the parameters used 261 

to measure the predictive performance of SDMs, namely model discrimination (Lobo et 262 

al., 2008; VanDerWal et al., 2009; Barve et al., 2011), calibration, and the model’s 263 

capacity to predict environmental potential (Anderson & Raza, 2010). Unfortunately, 264 

the GB has usually been defined using geopolitical criteria with no real biological 265 

justification (Meyer & Thuiller, 2006). Sufficient evidence has now been accumulated 266 

showing the effects of GB on SDMs, and steps to delimit it are beginning to be 267 

contemplated; the approach that is proposed in this study is a practical and objective 268 

way to do so.  269 

 270 

The inclusion of absences from beyond the geographical domain of the species, i.e., 271 

increasing GB, is an easy way to obtain models with a high capacity to discriminate 272 

between instances of presence and instances of absence (Lobo et al., 2008; Barve et al., 273 

2011). This is corroborated by the positive association between the GB extent and the 274 

discrimination measures obtained when the models were evaluated on the training area 275 

data sets. However, discriminatory power decreased as GB increased when assessed on 276 

the core area of the species distribution (i.e. GB−10, the minimum extent). On the other 277 
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hand, calibration improved when models were built using smaller GBs. In other words, 278 

if absences from beyond the geographical domain of the species are included, then the 279 

models will not effectively reflect the probability of presence. In summary, increasing 280 

GB produces apparently better (in terms of discrimination) but barely informative 281 

models (see also Lobo et al., 2010).  282 

 283 

Our results indicate that larger favourable areas in mainland Spain were predicted when 284 

using smaller GBs (see Fig. 3 and Appendix S1). Although there is no objective way to 285 

assess the accuracy of the estimations of environmental potential, these were consistent 286 

with expert opinions for the studied species. Anderson & Raza (2010) found a similar 287 

pattern and explained that using a large GB in SDM could make the models prone to 288 

overfit the environmental conditions present in the region occupied by the species. This 289 

may happen because the algorithm recognizes spurious environmental differences 290 

between the inhabited localities and localities that could be inhabited but are not, which 291 

may be due, for example, to barriers preventing species dispersion or other historical 292 

events restricting the species current distribution. By delimiting the GB using 293 

geographical criteria, we may be excluding – or at least minimizing – the effect of 294 

historical events on model parameterization. Thus, we may be able to obtain 295 

environmental models which, when projected onto a new scenario, may help to depict 296 

the potential distribution of the species more reliably. The extrapolation of models is 297 

risky and requires caution and careful consideration (Jiménez-Valverde et al., 2011b). 298 

For instance, it is necessary to highlight the areas that have environmental values that 299 

are beyond those shown in the training region, because the predictions there are more 300 

uncertain (Elith et al., 2010; Jiménez-Valverde et al., 2011c). It is also advisable to 301 

check for maintenance of the correlation structure among the independent variables in 302 
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the new geographical area with respect to the training region (see Jiménez-Valverde et 303 

al., 2011c). It is also interesting to highlight that the patterns obtained in this study 304 

using presence–absence data and logistic regression follow the same trend as those 305 

obtained by other authors using presence–background data and MAXENT (Anderson & 306 

Raza, 2010; Barve et al., 2011), which suggests that they do not depend on the 307 

modelling technique. 308 

 309 

To our knowledge, only Barve et al. (2011) have previously presented a framework for 310 

thinking about and estimating the GB in the context of SDM; they suggested several 311 

potential approaches to objectively delimit ‘M’ (see Introduction). The most promising 312 

approach would be to use information related to the dispersal capacity and history of the 313 

species, but the data required are rarely available. More feasible procedures such as the 314 

use of biogeographical regions overlook the species-specificity of the GB and may not 315 

be entirely satisfactory. In this study, we propose a simple but practical and species-316 

specific way to delimit GB using purely geographical criteria. TSA is a simple method 317 

that accounts for broad-scale spatial structures and shows the main geographical trends 318 

in the data (see Legendre & Legendre, 1998). Thus, we argue that TSA is a useful 319 

method for use in delimiting the area in order to maximize the likelihood that the target 320 

species is currently interacting with the environment. At the same time, it minimizes the 321 

probability of including regions that are suitable for the species but that are 322 

uninformative for an ecological model due to their spatial remoteness from the current 323 

geographical range (see Lobo et al., 2010). The TSA should be considered a working 324 

procedure intended to minimize the role played by the factors that operate beyond the 325 

area inhabited by the species. Strictly speaking, the spatial pattern generated with the 326 

TSA cannot be considered a geographical representation of ‘M’ because the concepts 327 
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that underlie each approximation do not necessarily converge on the same geographical 328 

space. Most likely, the longer the species has been present in the accessible area, the 329 

lower the similarity between the spatial patterns yielded by the two approximations will 330 

be. Nevertheless, under such extreme circumstances (long time periods), estimating ‘M’ 331 

is very difficult if not impossible. Whether ‘sampled’ unoccupied localities that are far 332 

away from the present distribution range should be considered in the modelling process, 333 

or should be excluded because they are not informative about the interaction of the 334 

species with the environment (see Lobo et al., 2010), is debatable. We show that TSA is 335 

a practical approach that can be used as a reference for future studies aimed at 336 

developing new ideas in delimiting GB. We also anticipate that other spatial pattern 337 

analytical procedures may merit future investigation, and that the delimitation of the GB 338 

is a promising line of research and debate. 339 
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Table 1 Variables used to model the distribution of wild ungulates. 471 

 472 

Factor Variable description 

Orography Mean elevation (m) * 

Mean slope (degrees; calculated from mean altitude) 

Climatology Mean annual precipitation (mm) [P]
 † 

Maximum precipitation in 24 h (mm) [MP24] 
†
 

Relative maximum precipitation (= MP24/P) 

Mean annual number of days with precipitation ≥ 0.1 mm
 †

 

Mean annual number of hail days 
†
 

Mean annual number of foggy days 
†
 

Inter-annual pluviometric irregularity
 ‡ 

Mean annual potential evapotranspiration (mm) [PET
 
] 

†
 

Mean annual actual evapotranspiration (mm) (= min [P,PET]) 

Mean relative air humidity in July at 07:00 h (%) [HJL] † 

Mean relative air humidity in January at 07:00 h (%) [HJN] 
†
 

Annual humidity range (%)
 
(=HJL−HJN) 

Mean annual solar radiation (kW h m
−2

 day
−1

)
 †

 

Mean temperature in July (ºC) [TJL] 
†
 

Mean temperature in January (ºC) [TJN] 
†
 

Annual temperature range (ºC)
 
(=TJL−TJN) 

Mean annual temperature (ºC) † 

Mean annual number of frost days (minimum temperature ≤ 0 ºC) 
† 

Continentality index 
¶
 

Humidity index 
¶
 

Mean annual insolation (hours year
−1

) 
†
 

Mean annual runoff (mm) ‡ 

Human activity Distance to the nearest town with more than 100,000 inhabitants (km) 
§ 

Distance to the nearest town with more than 500,000 inhabitants (km) 
§ 

Distance to the nearest highway (km) 
§
 

Lithology Soil permeability 
** 

Third-degree 

polynomial of 

the trend surface 

analysis 

Mean latitude (ºN) [LA]
 § 

 

Mean longitude (ºE) [LO]
 §
 

LALO = LA × LO 

LOLA
2 = LO × LA

2 

LO
2
LA = LO

2 
× LA 

LA
2 

= LA × LA 

LO
2 

= LO × LO 
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LA
3 = LA

2 
× LA 

LO
3 

= LO
2 

× LO 

Sources: * http://www.etsimo.uniovi.es/∼feli/data/datos.html. 
†
 Font (1983). 

‡ 
Montero de Burgos & 473 

González-Rebollar (1974). 
¶
 Font (2000). 

§ 
IGN (1999); data on the number of inhabitants of urban 474 

centres taken from the Instituto Nacional de Estadística (http://www.ine.es). ** IGME (1979). 475 

476 
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Table 2 Summary of the results of the general linear mixed models used to assess the 477 

effect of the extent of the geographical background (GB) on the performance 478 

(calibration and discrimination) of species distribution models for four species in 479 

mainland Spain: red deer (Cervus elaphus), roe deer (Capreolus capreolus), Iberian 480 

wild goat (Capra pyrenaica) and Pyrenean chamois (Rupicapra pyrenaica). Species 481 

was included as a random factor. The predictive performance of the models was 482 

evaluated on different data sets (see text for details). Statistical parameters are reported 483 

in the Supporting Information (Appendix S2).  484 

 485 

 486 

 487 

 488 

 489 

 490 

 491 

 492 

 493 

 494 

 495 

ns, non-significant; #, P < 0.08; *, P < 0.05; **, P < 0.01. 496 

497 

Evaluation data set Parameter 

(dependent variable) 

GB extent  

(covariable) 

Training area Miller’s statistic (+)** 

Sensitivity (+) ns 

Specificity (+)** 

AUC (+)* 

Core area – 

independent data 

Miller’s statistic (+)* 

Sensitivity (+) ns 

Specificity (−)** 

AUC (−) # 

Core area – full data Miller’s statistic (+)** 

Sensitivity (+)** 

Specificity (−)** 

AUC (−)* 
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FIGURE LEGENDS 498 

Figure 1 Current distribution of the focus species in mainland Spain: red deer (Cervus 499 

elaphus), roe deer (Capreolus capreolus), Iberian wild goat (Capra pyrenaica) and 500 

Pyrenean chamois (Rupicapra pyrenaica). Presence data were referred to UTM 10 × 501 

10 km grid cells. These were taken from Palomo et al. (2007) and Acevedo & 502 

Cassinello (2009). 503 

 504 

Figure 2 Results of the trend surface analysis (TSA) using a third-degree polynomial of 505 

the spatial coordinates applied to the occurrence localities of the four species in 506 

mainland Spain: red deer (Cervus elaphus), roe deer (Capreolus capreolus), Iberian 507 

wild goat (Capra pyrenaica) and Pyrenean chamois (Rupicapra pyrenaica). 508 

 509 

Figure 3 Species distribution models (favourability values) obtained using different 510 

criteria to delimit the geographical background (GB) extent using roe deer (Capreolus 511 

capreolus) as an example (see also Appendix S1). 'GBMS' indicates the model that 512 

included the complete study area (mainland Spain) as a training data set. 'GBLOW' 513 

indicates the model in which the training area was delimited by the lowest trend surface 514 

analysis (TSA) value assigned to a presence (see text for details). 'GB+10' indicated the 515 

model that included 10% of the absences that, having TSA values lower than any 516 

presence, had the highest TSA values. Finally, 'GB−10' is similar to 'GBLOW' but excludes 517 

10% of the presences. The dashed line marks the area delimited with ‘GB−10’. 518 
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SUPPORTING INFORMATION -- Journal of Biogeography 

 

Delimiting the geographical background in species distribution modelling, by P. Acevedo, A. Jiménez-Valverde, J.M. Lobo and R. Real 

 

Appendix S1 Species distribution models (favourability values) for each of the focus species: red deer (Cervus elaphus), roe deer 

(Capreolus capreolus), Iberian wild goat (Capra pyrenaica) and Pyrenean chamois (Rupicapra pyrenaica). For each species, seven 

geographical backgrounds (GBs) of different extent were delimited. The first extent (GBLOW) was delimited by the lowest trend surface 

analysis (TSA) value assigned to a presence. Next, the extent was constrained by selecting as thresholds the TSA values which correspond 

to excluding 1% (GB−1), 5% (GB−5) and 10% (GB-−10) of the presences with the lowest TSA values. In a similar way, the extent was 

enlarged including 1% (GB+1), 5% (GB+5) and 10% (GB+10) of the absences that had the highest TSA values lower than that of any 

presence. Finally, we also included the complete study area (mainland Spain) as an additional GB (GBMS). 

 

Page 25 of 29 untypeset proof

Journal of Biogeography



Appendix S2 Statistical parameters of the mixed models carried out to assess the effect of the extent of the geographical background (GB) on the 

performance (calibration and discrimination) of the species distribution models for four species in mainland Spain: red deer (Cervus elaphus), roe 

deer (Capreolus capreolus), Iberian wild goat (Capra pyrenaica) and Pyrenean chamois (Rupicapra pyrenaica). Species was included as a 

random factor. The predictive performance of the models was evaluated on different data sets (see text for details). 

 

 

 

Data set Parameter 

(dependent variable) 

Intercept Species  

(random factor) 

GB extent 

(covariable) 

Training 

area 

Miller’s statistic F1,15.16  4.42, P  0.043 F3,27 = 8.22, P < 0.001 (+) F1,27 = 15.11, P = 0.001 

Sensitivity F1,5.19 = 342.70, P < 0.001 F3,27 = 38.77, P < 0.001 (+) F1,27 = 1.52, P = 0.230 

Specificity F1,3.56 = 392.16, P < 0.001 F3,27 = 139.25, P < 0.001 (+) F1,27 = 11.81, P = 0.002 

AUC F1,3.66 = 483.38, P < 0.001 F3,27 = 119.07, P < 0.001 (+) F1,27 = 7.12, P = 0.013 

Core area – 

independent 

data 

Miller’s statistic F1,20.72 = 9.24, P = 0.089 F3,27 = 5.38, P = 0.005 (+) F1,27 = 2.58, P = 0.012 

Sensitivity F1,6.82 = 222.17, P < 0.001 F3,27 = 23.52, P < 0.001 (+) F1,27 = 1.63, P = 0.213 

Specificity F1,14.04 = 536.90, P < 0.001 F3,27 = 9.04, P < 0.001 (−) F1,27 = 9.02, P = 0.006 

AUC F1,3.91 = 706.30, P < 0.001 F3,27 = 87.20, P < 0.001 (−) F1,27 = 2.35, P = 0.077 

Core area – 

full data 

Miller’s statistic F1,7.90 = 3.77, P = 0.092 F3,27 = 18.89, P < 0.001 (+) F1,27 = 26.92, P < 0.001 

Sensitivity F1,3.87 = 270.75, P < 0.001 F3,27 = 90.77, P < 0.001 (+) F1,27 = 14.40, P = 0.001 

Specificity F1,17.51 = 1491.59, P < 0.001 F3,27 = 6.83, P = 0.001 (−) F1,27 = 45.75, P < 0.001 

AUC F1,3.19 = 898.98, P < 0.001 F3,27 = 403.79, P < 0.001 (−) F1,27 = 5.56, P = 0.026 
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Current distribution of the focus species in mainland Spain: red deer (Cervus elaphus), roe deer (Capreolus 
capreolus), Iberian wild goat (Capra pyrenaica) and Pyrenean chamois (Rupicapra pyrenaica). Presence data 

were referred to UTM 10 × 10 km grid cells. These were taken from Palomo et al. (2007) and Acevedo & 
Cassinello (2009).  
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Results of the trend surface analysis (TSA) using a third-degree polynomial of the spatial coordinates applied 
to the occurrence localities of the four species in mainland Spain: red deer (Cervus elaphus), roe deer 

(Capreolus capreolus), Iberian wild goat (Capra pyrenaica) and Pyrenean chamois (Rupicapra pyrenaica).  
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Species distribution models (favourability values) obtained using different criteria to delimit the geographical 
background (GB) extent using roe deer (Capreolus capreolus) as an example (see also Appendix S1). 

'GBMS' indicates the model that included the complete study area (mainland Spain) as a training data set. 
'GBLOW' indicates the model in which the training area was delimited by the lowest trend surface analysis 

(TSA) value assigned to a presence (see text for details). 'GB+10' indicated the model that included 10% of 
the absences that, having TSA values lower than any presence, had the highest TSA values. Finally, 'GB−10' 

is similar to 'GBLOW' but excludes 10% of the presences. The dashed line marks the area delimited with 
‘GB−10’.  
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