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ABSTRACT: The molecular structure of the units that get incorporated into the nuclei of
the crystalline phase and sustain their growth is a fundamental issue in the pathway from a
supersaturated solution to the formation of crystals. Using a fluorescent dye we have
recorded the variation of the pH value in time along a gel where CaCl2 and NaHCO3
counter-diffuse to crystallize CaCO3. The same pH−space−time distribution maps were
also computationally obtained using a chemical speciation code (phreeqc). Using data
arising from this model we investigated the space-time evolution of the activity of the
single species (ions and ion pairs) involved in the crystallization process. Our combined
results suggest that, whatever the pathway from solution to crystals, the neutral pair
CaCO3° is a key species in the CaCO3 precipitation system.

The correct understanding of the nature (ionic or
molecular) and chemical composition of the growth

units building the crystals is important for a wide variety of
crystallization processes ranging from biological mineralization
to materials synthesis. Obtaining this knowledge from
crystallization experiments is rather difficult since it is
mandatory to find experimental evidence of these primary
species. In this work we face such a challenge using the
crystallization of calcium carbonate (CaCO3) as a model
system. This case has been chosen because (i) the reactions
between calcium ions and inorganic carbon may form many
solution species that could either be the crystal building units or
control their concentration; (ii) thermodynamic and kinetic
data on the precipitation of CaCO3 is widely available; (iii)
CaCO3 has important implications in industrial, technological,
environmental, and biological processes and its nucleation and
growth mechanisms are nowadays a matter of intense
debate;1−10 (iv) the precipitation of CaCO3 is a pH controlled
process and can be monitored by pH probes.
This dependence on pH is the first key point for our work,

because it opens a window to the otherwise elusive problem of
identifying the solution species. The evolution of pH over time
has certainly been recorded many times in CaCO3 precipitation
studies. In commonly used precipitation methods, such as
titration and direct mixing of a calcium ion solution with either
a carbonated solution or CO2 gas, only a time series of volume-
averaged pH values can be recorded. The information provided
by these volume-averaged measurements does not inform about
the space distribution of soluble species playing a role during
the crystallization process.

Thus, the second key point of our work is using the
counterdiffusion (CD) method instead of direct mixing. In CD
experiments the distribution of aqueous species is unfolded
along a one-dimensional space.11−13 This allows the recording
of thousands of pH values in different points and at different
times to build a spatiotemporal map of the pH distribution. In
CD crystallization of calcium carbonate two solutions, one
containing hydrogen carbonate ions and the other calcium ions
are allowed to counterdiffuse through a gel matrix or high-
viscosity fluid.14−16 The diffusion of the different chemical
species leads to the development of species concentration
gradients that evolve over time. The CD method has been
traditionally used to optimize the size and quality of crystals for
X-ray diffraction experiments (either from small molecules or
macromolecules),17,18 but their capabilities for space−time
unfolding of experimentally measured values has seldom been
explored.
pH is one of these unfolded values, and the one we use in our

work. The last key ingredient of our study is the development
of an experimental method to measure in situ the pH
distribution in a crystallization experiment by using a pH
sensitive fluorescent dye embedded in the gel. Using this pH
imaging capability to track the evolution of a CaCO3
crystallization experiment by CD, we have produced space-
and time-resolved maps of pH. These maps are made of
thousands of measurements so they can be confidently
compared with the output of transport/speciation simulations
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to derive conclusions and support hypotheses on the
distribution of species in solution. Using this combined method
we have derived the activity of all inorganic aqueous species
revealing the key role of the neutral pair CaCO3° in the
crystallization of CaCO3.
CD experiments have been carried out within U-tubes

(Figure 1a). The two vertical branches were filled respectively

with 0.5 M solutions of the two reagents, sodium hydrogen
carbonate (NaHCO3) (right arm) and calcium chloride (CaCl2·
2H2O) (left arm). The horizontal segment of the U-tube was
filled with 3% (w/w) agarose gel containing the pH-fluorescent
dye (8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt). The
time evolution of the pH has been obtained from time-lapse
series pictures following the procedure shown in Figure 1.
Speciation, mass transport, and precipitation have been
simulated using the Phreeqc code (v 3.1.4).19−22 Species
activities have been calculated using ion association with
thermodynamic data from the Phreeqc.dat database. Mass
transport was simulated using the multicomponent diffusion
algorithm in Phreeqc. In counterdiffusion experiments, the
ionic activity product increases slowly. In these conditions the
first polymorph produced is always calcite, as confirmed in a
previously reported experiment.16 Therefore, only this
crystalline phase was considered in the model. Agarose gel is
not included in the solution chemistry, because although it is
physically embedded into the crystals during their growth, it has
no influence on chemical speciation. All details of the
experiment (SI1) and the Phreeqc input file used in the
simulation (SI2) are available in the Supporting Information.
Figure 2 (left) displays a map showing the variation of pH in

time (vertical axis) and space (horizontal axis) recorded during
the crystallization experiment. The initial pH of the horizontal
agarose-filled segment is 6.5 (red-orange in color scale). Once

diffusion of ions starts, the pH of the right part of the agarose
gel increases upon arrival of HCO3

−/CO3
2− ions (color shifts

quickly from red to dark blue, see label “a” in figure). At the left
part of the gel tube the diffusion of Ca2+ in the opposite
direction keeps the pH acidic, but progressively, the arriving
HCO3

−/CO3
2− ions start to increase the local pH. On the right

part, the increment of pH creates an alkaline front that
penetrates across the tube following a classical diffusion profile.
Close to the center of the tube, a decrease of pH produced by
chemical reactions between the incoming ions is observed
(label “b”). Dashed lines with white arrows mark the evolution
in time of the alkaline front at pH ∼8.
The location of the first forming crystals was observed by

optical microscopy time-lapse images, but also from the pH
versus space/time map, because as soon as the crystals reached
a critical size of a few hundred nanometers they started to
scatter light that, when recorded at the detector, shows as an
apparent local decrease of pH in the map (label “c”). The circle
in Figure 2 (left) marks the position and the time where the
first crystals are observed.
This complex experimental pH distribution in space and time

is notably well reproduced by the simulation output (Figure 2,
right). Apart from some minor differences like the pH
minimum moving from left to right (label “d”) that is less
prominent but present in the experiment or the apparent pH
decrease at positions where crystals are growing (label “c”), the
only difference between the experiment and the model is the
time (vertical) scale. The multicomponent diffusion algorithm21

implemented in Phreeqc was used in our model because the
diffusion coefficients (unknown for most solution species) are
computed ab initio and because ion transport is corrected by
ensuring electrical neutrality over the solution volume. This ab
initio computation of diffusion coefficients is based on tracer
diffusion that is too fast for real solution diffusing through a gel.
This overestimation of the diffusion coefficients produces a
compression of the time dimension in the model output. The
model assumes no nucleation barrier: calcium carbonate starts
to precipitate as soon as it is supersaturated. This strategy was
chosen to avoid the use of free parameters of kinetic nature in
the model, and also contributes to the earlier nucleation events
in the model. The fact that this complex pH landscape is
notably reproduced by an speciation simulation with simple
mass transport and chemical equilibrium equations suggests

Figure 1. Experimental procedure for pH measurements: (a) U-tube
setup used for CaCO3 crystallization by CD method. (b) Optical
setup: a narrow bandpass filter (pink) is used to select a wavelength of
450 nm (blue/purple in the figure) from the xenon lamp illumination.
This radiation excites green fluorescence (green in the figure) in the
pH sensitive ink. This radiation is selectively collected through a
bandpass filter (brown in the figure) and imaged on a CCD. (c) Plot
showing the wavelength filtering previously described; absorbance and
emission curves are included for both the protonated and
deprotonated ink along with their spectral position with respect to
filters. (d) Raw fluorescence image as collected by the CCD. These
images are quantitatively analyzed using a calibration curve (e) to
produce the final pH profile (f). Plots (c) and (e) are available in the
Supporting Information (SI3 and SI4).

Figure 2. Experimental (left) and calculated (right) maps of pH−
space−time. The color scale for pH is shown on top of the left map.
The circle marks the position and the time where first nucleation
occurs. Dashed line with white arrows marks the evolution in time of
the alkaline front at pH ∼ 8. The horizontal dotted lines indicate the
time for which the species activity is plotted in Figure 3.
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that the pH evolution and the onset of calcium carbonate
precipitation is controlled by the distribution of species in
solution. In order to explain these maps and to understand the
precipitation behavior of CaCO3, one needs to know the
spatial-temporal distribution of all solution species and their
mutual interactions. The output of the simulation records each
second at 100 points along the tube the concentration and
activity of the following species: H+, OH−, Cl−, Na+, Ca2+, CO2,
HCO3

−, CO3
2−, CaHCO3

+, CaCO3°, CaOH+, NaCO3
−,

NaHCO3, and NaOH. Maps of these species are available in
the Supporting Information (SI5). Among them, CaCO3° and
CaHCO3

+ (along with pH) were found the most relevant for
the problem at hand. Ca(HCO3)2, that forms at lower pHs
(<6),20 may form at concentrations much smaller than the
major species and play no role in the overall speciation process.
More complex species like polymers or clusters of the relevant
pairs have not been considered in the calculations because their
formation is not described by equilibrium chemical reactions,
which is what the code computes.
Figure 3 shows profiles of these species at times well before

nucleation (1 h), right before nucleation (8 h), and after

nucleation (14 h). These times are marked as white horizontal
dotted lines in Figure 2 (right). The full time evolution is
illustrated as a movie (SI6) in the Supporting Information.
One hour after starting the experiment, the pH profile is

dominated by the presence of Ca2+ and HCO3
− because the

activity of each of them is negligible in all places where the
activity of the other is high. The activity of CO3

2− at that time is

very low compared to that of HCO3
−. The minimum of pH

close to the cationic reservoir (left in the plot) is due to the
hydrolysis of Ca2+, which drives the pH value close to 5.8
(lower dotted horizontal line) according to the equilibrium23

+ ↔ +

= −

+ +

K

Ca H O Ca(OH) H

log 12.8

2
2

h
(1)

Close to the anionic reservoir, the diffusion of HCO3
− raises

the initial pH of the gel (6.5) up to 8.3 (the upper dotted line).
As the counterdiffusion process continues diffusing Ca2+ to

the right and CO3
2−/HCO3

− to the left, new species in solution
start forming (Figure 3, bottom) according to equilibria24
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As shown in the plot (bottom of Figure 3) as well as in
movie SI6, the activities of both pairs increase continuously.
The first solid CaCO3 is formed when the activity of CaCO3°
reaches a critical value (thin horizontal dotted line in the
bottom plot). After this event, the CaCO3° activity, in the
region where crystals are nucleating and growing (marked by
the vertical blue rectangle), remains constant at the critical
value level (the flat top of the orange curve), indicating that this
species is being produced and consumed at the same rate. The
maximum activity of CaHCO3

+ is to the left of the
crystallization region and keeps increasing after solid CaCO3
is formed instead of remaining constant (Figure 3). In the same
region, after the first precipitation, Ca2+ and CO3

2− activities
diverge over time while the ionic product is kept constant, as
expected (Figure 4). The evolution of the activities of both
pairs in a scenario rich in Ca2+ and HCO3

− ions indicates that
neutral CaCO3° is consumed in the process of calcium
carbonate crystallization while charged CaHCO3

+ acts as an
alternative reservoir contributing ions to form CaCO3° in
addition to the Ca2+ and CO3

2− supplied by counterdiffusion.
Note that the overall equilibrium 5, that delivers neutral pairs
on demand, is a combination of equilibria 2, 3, and 4. The
released protons yield the pH minimum that can be observed at
14 h (Figure 3, solid black line) at the crystallization region.
This release of protons also keeps increasing the concentration
of CaHCO3

+ according to24

↔ + = −− − + KHCO CO H log 10.333 3
2

2 (4)

↔ + = −+ + KCaHCO CaCO H log 8.223 3
o

(5)

The relevance of ion pairs in the dissolution and
precipitation processes of CaCO3 was already theoretically
suggested. Plummer and Busenberg24 showed that the
experimental values of solubility equilibrium constants of
CaCO3 polymorphs are consistent with an aqueous model
including CaCO3° and CaHCO3

+. Goḿez-Morales et al.25

found that, by maintaining the ionic activity product constant,
the maximum nucleation rate (minimum induction time)
occurred in solutions with initial stoichiometric Ca2+/CO3

2−

concentrations, whereas maximum growth rate occurred in the
experiments with excess of Ca2+; the activities of CaCO3° in
solution and at the crystal surface respectively were found to be

Figure 3. Evolution in time of pH (black lines) and activities of
CaHCO3

+ (blue lines) and CaCO3° (orange lines) along the gel tube.
For the sake of clarity only plots after 1 h (dotted lines), 8 h (dashed
lines), and 14 h (continuous lines) are shown. The full time evolution
is illustrated as a movie (SI6) in the Supporting Information. The thin
horizontal dotted lines in the pH plot (top) represent the simulation
input pH values in both reservoirs. The thin horizontal dotted line
intercepting the log activity axis (bottom plot) at −5.26 represent the
CaCO3° critical activity value for precipitation.
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maximized in these conditions, so they proposed that the
activities of CaCO3° in solution and on the crystal surface are
rate limiting for nucleation and growth, respectively. Ruiz-
Agudo et al.26 also suggested that the CaCO3° should play an
important role in crystal growth of calcium carbonate on the
basis of its smaller degree of hydration that would facilitate the
incorporation in the structure by making it faster. Additionally,
it has been experimentally shown that the Ca2+/CO3

2− molar
ratio in solution, affecting the concentrations of CaCO3° and
CaHCO3

+, strongly influences the growth rate of calcite.27,28

Our results indicate that among the two pairs only CaCO3° is
consumed in equilibrium during the precipitation process.
Whether CaCO3° or a larger neutral cluster formed by
aggregation of these discrete species is the relevant growth
unit cannot be derived from our findings, since clustering is not
considered in the calculations.
Our model, based on equilibrium calculations, logically

implies that the ionic activity product of Ca2+ and CO3
2− must

be constant when the activity of the neutral pair is constant, and
this is what we observed (Figure 4). Therefore, we cannot
conclusively determine whether the calcium/carbonate ions or
the neutral pair are the units whose aggregations feeds calcite
nucleation and growth, but both the previous reports on this
subject25,29 and the evolution of the Ca2+ and CO3

2−

concentration after nucleation do support the hypothesis of
CaCO3° being the most likely candidate. The activities of Ca2+

and CO3
2− diverge after the first precipitate forms. At the first

nucleation, their activities are very similar and both increase
with time, but after this event, the activity of Ca2+ keeps
increasing while that of CO3

2− starts to decrease quickly. The
ratio Ca2+/CO3

2 changes from around 1 a few hours before
nucleation to 100 a few hours after nucleation and more than
1000 1 day after.

In this strongly nonstoichiometric situation, an expression for
supersaturation as a function of the activity of the CaCO3°
instead of the lattice ions could be more realistic to define the
rate equations in calcium carbonate precipitation.
From a chemical point of view, calcium binding to HCO3

−

through monodentate interaction or to CO3
2 through a

bidentate interaction modifies the coordination of the hydrated
calcium. The strongest bidentate interaction of carbonate
explains why this anion, rather than bicarbonate, is the one
entering the elemental building brick even though bicarbonate
is the prevailing anion in solution.30

Besides the interest of the plausible role of CaCO3° as the
calcite growth unit, these results can also shed light on the
onset of CaCO3 crystallization process (nucleation). In the
classical view, the nucleation is a stochastic process in which
fluctuations induce the formation of clusters that evolve by
accretion of discrete units. In the case of calcium carbonate, our
results suggest that instead of calcium and carbonate ions, these
units can be CaCO3° following the reaction

° ↔CaCO CaCO (s)3 3 (6)

Gebauer et al.,3 by using titration and ultracentrifugation
techniques, demonstrated the formation of (CaCO3)x pre-
nucleation clusters. According to their model the nucleation
follows a nonclassical pathway and CaCO3 forms by
aggregation of these clusters. Our results suggest the formation
of these neutral clusters could take place by aggregation of
CaCO3° as an intermediate step toward the formation of solid
CaCO3.

° ↔ ↔

=x n

CaCO (CaCO ) CaCO (s)

with 1, 2, 3, ...,
3 3 x 3

(7)

Wallace et al.,5 by using molecular dynamics simulations,
reported that previously formed clusters adopt chain, ring, and
branched structures. They predict the formation of nanoscale
droplets in concentrated solutions by liquid−liquid phase
separation.4 These droplets coalesce and solidify to form the
solid phase, amorphous calcium carbonate.
Neither clustering processes nor liquid−liquid separation are

considered in our calculations. However, the identification of
CaCO3° as a key species involved in CaCO3 precipitation may
reconcile both views, the nonclassical where large neutral
clusters (CaCO3)x form and the classical where both solid
nuclei and CaCO3° in solution do form from the same ions.
The fact that (CaCO3)x or CaCO3° can be the key species in

CaCO3 crystallization has important implications in the
understanding of precipitation phenomena. According to eq
7, and considering x = 1, the supersaturation β of the solution
with respect to the most stable polymorph, calcite, should be
expressed as

β = °
°

= °
°

a

a

a

K K

( )

( )

( )CaCO actual

CaCO equilibrium

CaCO actual

CaCO sp

3

3

3

3 (8)

with Ksp (calcite) = 10−8.48,,24 instead of the usual expression in
terms of the ionic activity product (IAP) and solubility product
(Ksp). Letting β = 1 in eq 7, the equilibrium CaCO3° activity
can be computed to be 10−5.26 This is the critical activity value
that should be overtaken to produce solid CaCO3 (horizontal
dotted line in Figure 3). In macroscopic equilibrium experi-
ments both approaches are obviously equivalent, but the
finding of (CaCO3)x as a relevant species for CaCO3

Figure 4. Time evolution of activity for the ions Ca2+, CO3
2− and the

pairs CaHCO3
+, CaCO3° (bottom). The ionic activity product

a(Ca2+) a(CO3
2−) is shown in the top panel.
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crystallization is expected to have a deeper impact in situations
where the interactions at the molecular scale are relevant as in
molecular dynamics studies; the distribution of solution species
is unsteady, as in counterdiffusion experiments, where the
calcium to carbonate ratio changes over time and along space;
and the ionic strength and type of electrolyte added change or
additives that can modify the speciation equilibria are present.
In these situations a critical reexamination considering the

neutral cluster (CaCO3)x species as the primary building unit
for CaCO3 crystallization can bring new insights into
unexpected or unexplained precipitation behaviors and open
new possibilities for controlling the nucleation and growth of
calcium carbonate.
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(11) Otaĺora, F.; García-Ruiz, J. M. J. Cryst. Growth 1996, 169, 361−
367.
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