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Abstract  20 

Enterococcus faecalis is one of the most controversial species of lactic acid bacteria. 21 

Some strains are used as probiotic, while others are associated with severe and life 22 

threatening nosocomial infections. Their pathogenicity depends on the acquisition of 23 

multi drug resistance and virulence factors. Gelatinase, which is required in the first 24 

steps of biofilm formation, is an important virulence determinant involved in E. faecalis 25 

pathogenesis including endocarditis and peritonitis. The gene that codes for gelatinase 26 

(gelE) is controlled by the Fsr quorum-sensing system, whose encoding genes (fsrA, 27 

fsrB, fsrC, and fsrD) are located immediately upstream of gelE.  28 

The integration of a DNA fragment into the fsr locus of a derived mutant of E. faecalis 29 

V583 suppressed the gelatinase activity and prevented biofilm formation. Sequence 30 

analysis indicated the presence of IS256 integrated into the fsrC gene at nucleotide 31 

position 321. Interestingly, IS256 is also associated with biofilm formation in 32 

Staphylococcus epidermidis and Staphylococcus aureus. This is the first description of 33 

an insertion sequence that prevents biofilm formation in E. faecalis. 34 
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Enterococcus faecalis, a Gram-positive bacterium, is generally thought to be a 38 

commensal of the mammalian gastrointestinal tract. However, its ability to endure a 39 

range of harsh conditions allows it survive in other environments. It is also an 40 

opportunistic pathogen that can cause nosocomial infections, including bacteremia and 41 

biofilm-based pathogeneses such as endocarditis and urinary tract infections (Paulsen et 42 

al. 2003). The problem of hospital-acquired enterococcal infections has been aggravated 43 

in recent decades due to the alarming increase in emergent vancomycin-resistant 44 

enterococci (VRE) (Pan et al. 2012). 45 

Gelatinase, an extracellular protease, is known to be involved in E. faecalis 46 

pathogenesis, and is synthesized by approximately 60% of clinical isolates (Galloway-47 

Pena et al. 2011). It is required in the first steps of biofilm formation (Hancock and 48 

Perego 2004) and contributes towards virulence by hydrolyzing host substrates such as 49 

collagen, fibrinogen, fibrin, endothelin-1, bradykinin, LL-37 and complement 50 

components C3 and C3a (Thurlow et al. 2010). 51 

The genes that code for gelatinase (gelE) and serine protease (sprE) form an 52 

operon controlled by the Fsr quorum-sensing system located immediately upstream of 53 

gelE. The two-component system of enterococcal Fsr includes fsrA (a response 54 

regulator), fsrB (a propeptide processing protein), fsrC (histidine kinase), and fsrD (a 55 

gelatinase biosynthesis activating pheromone [GBAP]) (Nakayama et al. 2006). The Fsr 56 

system of E. faecalis is required for the production of gelatinase (Hancock and Perego 57 

2004), and appears to be involved in the regulation of other genes important in virulence 58 

and metabolism (Bourgogne et al. 2006; Teixeira et al. 2013).  59 

This paper describes the effect of the integration of IS into the fsrC gene in a 60 

laboratory derivative mutant of E. faecalis strain V583. 61 
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E. faecalis V583 was isolated in 1987 from a blood culture of a chronically-62 

infected patient. It was the first clinical VRE isolate reported from the United States 63 

(Sahm et al. 1989) and Shankar et al., (2002) demonstrated that variations within the 64 

structure of the pathogenicity islands modulate the virulence of this stain. During the 65 

construction of an E. faecalis V583 non-tyramine-producing mutant (Perez et al. 2014) 66 

by double-crossover deletion (Jonsson et al. 2009) of the tyrosine decarboxylase (tdc) 67 

gene cluster (Ladero et al. 2012), it was observed that one of the  three independent E. 68 

faecalis V583 ∆tdc mutants obtained did not produce gelatinase. This was confirmed by 69 

streaking single colonies on M17 agar plates containing 30 gL
-1

 of gelatin and 70 

incubating overnight at 37°C (Reviriego et al. 2005). 71 

The primers fsrA1F (5’-GCAGGAAACTACTGAAATCGC-3’) and sprE1R (5’-72 

CTCGAGATTTCCCGTGATTCTGG-3’) were designed based on E. faecalis V583 73 

genome sequence (GenBank accession number: AE016830) to PCR- amplify the 74 

fsrABDC-gelE-sprE locus. The wild type strain and the ∆tdc mutants yielded the 75 

expected 5767 bp fragment. However, the amplification of the strain unable to produce 76 

gelatinase resulted in a 7091 bp amplicon (data not shown). New primers were designed 77 

in order to sequence this unexpected fragment: fsrB1F (5’-78 

GTGCAATACTTGAAGAGGAGGG-3’), fsrC1R (5’-CATATAACAATCC 79 

CCAACCGTGC-3’), fsrC1F (5’-GATAACAAATAGTGTCCAAGCCG-3’), gelE1R 80 

(5’-CATAAGATTATGCCACTCCTTATCC-3’), fsrC2R (5’-TCATCATGTAGGTCC 81 

ATAAGAACGGC-3’) and fsrC2R (5’-CGTAAAGCTGCGCTCATAATAGCC-3’). 82 

Sequence analysis (performed by Macrogen, Korea) indicated the presence of a 1324 bp 83 

DNA fragment integrated into the fsrC gene at nucleotide position 321. The insert 84 

corresponded to IS256. This was orientated in the same transcriptional direction as the 85 
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fsr genes and had a target site duplication of 8 bp in the flanked regions (Figure 1). The 86 

nucleotide sequence of the fsrABCD locus containing IS256 was deposited in the 87 

European Nucleotide Archive under accession number HG794359.  88 

The construction of a fsrC mutant strain and their subsequent complementation 89 

demonstrated that fsrC expression is necessary for gelE expression and biofilm 90 

production (Hancock and Perego 2004), experiments were performed to determine 91 

whether the IS256 in the frsC gene affected the capacity of the strain to form a biofilm 92 

on polystyrene microtiter plates (TC Microwell 96U, Thermo Scientific, Denmark). 93 

Briefly, E. faecalis strains were grown overnight in M17 medium with 14 mM glucose 94 

at 37ºC. The culture was diluted 1;40 in 200 l of the same media in microtiter plate 95 

wells. The microtiter plates were incubated at 37ºC for 24 h in aerobic conditions.  The 96 

cells were washed, stained with crystal violet and the optical density was determined 97 

following a method previously described (Hancock and Perego 2004). The capacity of 98 

the gelatinase-negative strain to form biofilms was much reduced compared to the 99 

parental strain and ∆tdc gelatinase-positive mutants (Figure 2).  100 

These results suggest that the insertion of IS256 into fsrC leads to a truncated 101 

histidine kinase. This would lead to impaired GBAP signalling, therefore preventing the 102 

expression of gelE and biofilm formation.  103 

It has been indicated the high plasticity of the E. faecalis genome in the area of 104 

the Fsr system (Galloway-Pena et al. 2011). The gelatinase-negative phenotype has 105 

been reported for both natural and laboratory E. faecalis strains (Teixeira et al. 2012). It 106 

has a number of genetic causes, mostly involving the fsr locus (Shankar et al. 2012). 107 

However, this is the first report of an IS causing gelE not to be expressed. 108 
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IS256, which encodes a transposase, is widespread in the genomes of multi-109 

resistant staphylococci and enterococci. The sequence appears as multiple free copies as 110 

well as forming the ends of the composite aminoglycoside resistance-mediating 111 

transposon Tn4001 (Hennig and Ziebuhr 2010). E. faecalis V583 has multiple copies of 112 

IS256 in its genome, 6 in the chromosome and 4 spread across 3 plasmids (Paulsen et 113 

al. 2003). 114 

IS256 has been identified as a marker of multidrug resistance and biofilm-115 

formation in clinical isolates of staphylococci (Hennig and Ziebuhr 2010). It is 116 

associated with biofilm formation via its reversible transposition into the ica operon in 117 

S. epidermidis (Ziebuhr et al. 1999) and S. aureus (Valle et al. 2007), and into the agr 118 

operon in S. aureus (Cafiso et al. 2007). Biofilm-associated genes and regulators seem 119 

to be an important hot-spot for IS256 integration in staphylococci. As shown by the 120 

present results, IS256 is also associated with biofilm-forming genes in enterococci.  121 

It has been shown that a temperature of 30ºC favors the transposition of IS256 in 122 

S. aureus (Valle et al. 2007). The present production of E. faecalis mutants by 123 

homologous recombination (Jonsson et al. 2009) involved growth at 28ºC for 124 

approximately 75 generations, which may have similarly favored the transposition 125 

process.  126 

It is difficult to speculate upon the survival/evolutionary benefit that silencing 127 

the Fsr system would bring. In any event, minority subpopulations of E. faecalis GBAP 128 

quorum non-responders - perhaps arising from accumulation of mutations in the fsr 129 

locus - have been reported (Thomas et al. 2009). Thus, the transposition of IS256 might 130 

provide a mechanism for the generation of GBAP non-responders, which might have an 131 

evolutionary advantage under certain conditions. It has been suggested that, in 132 
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staphylococci, the shutdown of biofilm formation by IS256 may help dissemination into 133 

novel habitats (Ziebuhr et al. 1999). 134 

Given the clinical importance of biofilm formation, and of gelatinase as a 135 

promising target for therapeutic intervention against multidrug-resistant and virulent E. 136 

faecalis strains, further investigations should be performed to unravel the complex 137 

regulation of the Fsr system. The genetic causes of phenotypic change in biofilm-138 

forming ability should be determined, taking into account the importance of mobile 139 

elements in genome flexibility, adaptation and evolution.  140 
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Legend of figures  223 

Figure 1.  224 

Diagram showing the IS256 insertion. IS256 was inserted into the fsr locus of the E. 225 

faecalis V583Δtdc gelatinase-negative strain. 226 

Figure 2.  227 

Biofilm formation on polystyrene microtiter plates. 1. E. faecalis V583 parental strain; 228 

2. E. faecalis V583 Δtdc strain; 3. E. faecalis V583 Δtdc gelatinase-negative strain. The 229 

asterisk indicates statistically significant difference (P≤0.001; Student's t-test) in 230 

comparison to the other conditions. 231 
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