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Abstract 

The interaction of the physiological medium and living tissues with the implant surfaces in 

biological environments is regulated by biopotentials that induce changes in the chemical 

composition, structure and thickness of the oxide film. In this work, oxide films grown on CoCr 

alloys at 0.5 Vvs Ag/AgCl and 0.7 Vvs Ag/AgCl have been characterized through overall and 

localized electrochemical techniques in a phosphate buffer solution and 0.3% hyaluronic acid. 

Nanopores of 10-50 nm diameter are homogeneously distributed along the surface in the oxide 

film formed at 0.7 Vvs Ag/AgCl. The distribution of the Constant Phase Element studied by local 

electrochemical impedance spectroscopy showed a three-dimensional (3D) model on the oxide 

films grown at 0.5 Vvs Ag/AgCl and 0.7 Vvs Ag/AgCl. This behaviour is especially noticeable in 

oxide films grown at 0.7 Vvs Ag/AgCl, probably due to surface inhomogeneities, and resistive 

properties generated by the potentiostatic growth of the oxide film. 
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INTRODUCTION 

The kinetics of the dissolution and formation of the passive film on CoCr alloys in the 

physiological fluids are mainly influenced by factors such as the type and chemical composition 

of the alloy [1], long-term exposure to aggressive ions [2,3,4,5,6], pH changes and temperature 

of the biological environment. However, this is not only inherent to the interaction of physiological 

medium with the surface but also to the electrical interactions induced by the living tissues, known 

as biopotentials. In vivo biopotentials control the normal growth and development of cells and 

tissues inducing a continuous stimulation of the metallic surface. 

The insertion of permanent joint replacements activates injury potentials that alter the 

stable potential patterns of intact tissue after trauma and during healing. At this period, currents 

of about 1-100 µA/cm2 can be measured in injured tissues that imply, considering the resistivity 

of soft tissues as 100 Ω, electric fields of 1-10 mV/cm [7]. Bone tissue has a piezoelectric 

behaviour (i.e., electric potential in response to applied forces) that can modify the 

electrochemical potential of the metallic implants. The physiological environment in combination 

with constant cyclic loading on the implants, such as wear-corrosion phenomena and micromotion 

or fretting-corrosion, favours the activation of the passive film as a consequence of the continuous 

activation/repassivation cycles [8]. These continuous and dynamic processes not only weaken 

the surface performance but also lead to an increase in the debris around the implant. To date 

debris produced in in vivo wear-corrosion from articulating surfaces has been identified as one of 

the most important phenomenon causing the failure of the implant. It is interesting not to forget 

that the electrical implications of corrosion and its effect on the surrounding tissue can be strongly 

important on the bone healing. Bone cells are sensitive to electrical signals, stimulating or 

inhibiting the activity of osteoblast or osteoclast cells and, consequently, breaking the balance 

between both [9]. Therefore, from the point of view of the implant, a wide potential range is 

imposed on the surface not only created by the physiological medium (pH, nature and 

concentration of ion, etc.) but also by that generated by the live tissue.  

All these biochemical factors favour several processes on the surface of the metallic 

implants: slow diffusion of metal ions through the passive film; dissolution and/or growing of the 

oxide film under high oxidizing conditions, caused by the debris products from cell metabolism 
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and/or the polarization arising from living tissues; and, local breakdown of passivity, due to pitting 

or crevice corrosion enhanced by the changing pH values and nature of aggressive ions. All of 

them offer a wide electrochemical potential range occurring in the implantation site on the metallic 

biomaterial. 

In this work, overall and localized electrochemical techniques have been used to 

characterize the oxide films grown on the CoCr alloy under potentials whose current densities are 

similar to those reported for injured tissues (1-100 µA/cm2). In an attempt to simulate as closely 

as possible, the real situation of healthy joints [10], the authors have chosen a phosphate buffer 

solution with 0.3% hyaluronic acid as an electrolyte for the tests. In the literature many solutions 

have been used to simulate in vivo conditions and identify their tribological roles on artificial joints. 

The major difference between synovial fluid (SF) and other body fluids derived from plasma is its 

high content of protein and the presence of hyaluronic acid, which is the main component of SF 

and is a known joint lubricant.  

MATERIALS AND METHODS 

Material 

The CoCr alloy with high carbon content supplied by BIOMET Spain Orthopaedics 

(Valencia), following standard ASTM F75 (Table 1), was used. This alloy was supplied as a disk 

38 mm diameter and 4 mm thick, as “double heat-treated” samples, i.e. solution treatment (ST) 

followed by hot isostatically pressing (HIP). The sample preparation consisted of grinding on SiC 

paper from mesh 400 to mesh 1200, followed by mechanical polishing with 3 µm diamond paste, 

ultrasonic cleaning in alcohol and deionized water successively and then air dried. 

Corrosive media  

The aqueous medium used as electrolyte was based on the Phosphate Buffer Solution: 

0.2 g/L KCl, 0.2 g/L KH2PO4, 8 g/L NaCl and 1.150g/L Na2HPO4 (anhydrous) (PBS) adding 0.3% 

hyaluronic acid (hereafter PBS-HA). The concentration of hyaluronic acid for the overall 

electrochemical measurements (DC and AC techniques) was 0.3%, in agreement with the range 

reported for healthy joints [10] simulating the synovial fluid. This solution was diluted 10 times for 

local impedance measurements. The motivation for using a reduced concentration for the local 
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impedance measurements was the decrease of the current resolution at high conductivity values 

of the electrolyte. 

Overall electrochemical techniques 

All electrochemical experiments such as the measurement of the corrosion potential 

(Ecorr), Electrochemical Impedance Spectroscopy (EIS), chronoamperometry and anodic 

polarization curves were conducted in a three-electrode cell connected to a Gamry Instrument 

Potentiostat/Galvanostat/FRA (Reference 600). An Ag/AgCl (NaCl 3M) electrode was used as 

the reference electrode, a platinum wire as the counter electrode and the CoCr alloy (0.78 cm2) 

as the working electrode. Electrochemical tests were performed in triplicate and the Ecorr was 

previously measured for 1 hour to obtain the stabilization before the application of potentials far 

from the stationary state.  

Single sweep potentiodynamic polarization curves were performed at 10 mV/min 

scanning rate from the Ecorr up reaching a potential of 1 V in the noble direction, which is 

considered approximately as the maximum potential that a metallic biomaterial can reach in the 

human body [11]. Then, a reverse scan was applied until reaching the protection potential. The 

passivation currents, Ip, and breakdown potentials, Ebd, were obtained. 

The chronoamperometric test was performed by applying potentials for 3600 s. Two 

different potentials (0.5 Vvs Ag/AgCl and 0.7 Vvs Ag/AgCl) from the anodic polarization curves 

were chosen. 

The EIS tests were performed on the previously polarized samples at the Ecorr by 

applying a sinusoidal wave of 10 mV amplitude at a frequency range from 105 Hz – 10-1 Hz, 

spaced logarithmically (five per decade). The EIS results were analysed by fitting the experimental 

impedance data with the properly electrical equivalent circuit. The parameters of the electrical 

equivalent circuit were calculated by fitting the impedance function to the measured spectra using 

a non-linear least-squares program (NLLS program) with Z-plot/Z-view software. The criteria used 

to estimate the quality of the fitting were the lowest chi-square value (Х2) and estimative errors (in 

%) for all the components. 

Characterization of grown-oxide films 
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The morphology of the grown-oxide films was evaluated with a Scanning Electron 

Microscope equipped with a Field Emission cathode (FE/SEM), Hitachi 6500FEG. The images 

were taken at 7 kV acceleration voltage. 

Photoelectron spectra were recorded using a Fisons MT500 spectrometer equipped with 

a hemispherical electron analyser (CLAM2) and a non-monochromatic Mg Kα X-Ray source 

operated at 300 W. The samples were fixed on small flat discs supported on an XYZ manipulator 

placed in the analysis chamber. The residual pressure in this ion-pumped analysis chamber was 

maintained below 10-9 torr during data acquisition. The spectra were collected at a pass energy 

of 20 eV, which is typical of high-resolution conditions. Spectra were analysed using CasaXPS 

software. The intensities were estimated by calculating the area under each peak after subtraction 

of the S-shaped background and fitting the experimental curve to a combination of Lorentzian and 

Gaussian lines of variable proportions. Although specimen charging was observed, it was 

possible to determine accurate binding energies (BEs) by referencing to the adventitious C1s 

peak at 285.0 eV. The maximum allowed variation of the binding energy was ±0.2 eV relative to 

the value specified for peak centre. The atomic ratios were computed from the peak intensity 

ratios and the reported atomic sensitivity factors [12]. 

Localized techniques 

1. Scanning Kelvin Probe 

Corrosion potential maps of the CoCr surfaces were acquired by means of Scanning Kelvin 

probe (SKP). The measurement system of SKP was developed by GS Frankel, M Stratmann et 

al [13]. The equipment consists of a needle that oscillates at a fixed frequency, an AC backing 

potential, and software analysis and control schemes. This technique can also control the 

distance between the tip and sample, thereby tracking the topography of the sample. The 

technical specifications of the SKP used are reported in [13]. SKP tests were performed at 20 ºC 

and 99.8% relative humidity. The samples were placed in a stainless steel chamber, which was 

purged continuously with humidified air to maintain the relative humidity (RH) at about 99.8%, 

resulting in a final thin film of water on the metallic surface. After the thin layer was formed, a 

plane-ended cylindrical Ni-Cr probe with a diameter of 50 µm was used as needle, and was moved 

over the samples with three stepping motors for x, y and z directions. All areas were performed 

stepwise and fully automated, while the sample/needle distance was maintained along the scan. 
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Measurements were performed over a scanned area of 9000 x 9000 µm2. Before measuring, the 

Kelvin probe was calibrated by using a standard Cu/CuSO4 solution to establish a relation 

between the work function and corrosion potential. SKP potentials are given relative to the 

potential of the Standard Hydrogen Electrode (SHE). 

2. Localized Electrochemical Impedance Spectroscopy 

This technique is based on the pioneering work of Isaac’s group [14,15]. Fundamentals of 

Localized Electrochemical Impedance Spectroscopy (LEIS) measurements are detailed in Refs. 

[16,17,18]. LEIS measurements were performed with a PAR Model 370 Scanning 

Electrochemical Workstation that consisted of a 370 scanning control unit, a Solartron 1250 

frequency response analyser, high impedance input amplifier using a differential electrometer, 

and a probe scanning assembly driven in the x, y, and z directions. 

 For the local electrochemical impedance measurements, a five electrode configuration 

was immersed in the electrolyte (PBS-0.03%HA) of low conductivity ( = 15,03 µScm-1 and pH = 

7,8). The working electrode was the CoCr sample while a graphite bar was used as a counter 

electrode and Ag/AgCl (NaCl 3M) electrode as a reference electrode. The configuration of the 

scanning probe (tip) includes two platinum probes: one of them, a platinum wire which emerges 

from the vertex of a conical plastic holder, and the other one, a platinum ring placed around the 

cone at a distance of 2 mm from the vertex of the cone.  

The tip-surface distance was about 150 µm (between 100-300 µm). The scanning probe 

was moved over the surface of the working electrode.  

The configuration of the scanning probe only allows the measurement of the normal 

component of the AC-current, i.e. the curvature of equipotential surfaces in solution is not 

considered. That means the radial contribution due to the equipotential curves around the centre 

of the electrode, is not taken into account. However, this configuration is valid only if the 

microelectrodes are just above the centre of the working electrode [19], as is our case, so it is 

important to remark that the distance between the scanning probe and the surface is not a critical 

parameter that influences the local impedance measured.  

The local ac-current density, ilocal, resulted from the local ac potential measurement 

between the two platinum probes and was calculated using Ohm’s law:  

ilocal = Δφ κ/d    (1) 
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where Δφ is the ac-potential difference between the two probes, κ is the electrolyte conductivity, 

and d is the distance between the two platinum probes of the scanning probe. 

The local impedance Zlocal is calculated by the relationship: 

Zlocal = ΔVapplied/ilocal   (2) 

where ΔVapplied is the ac-potential difference between the working electrode surface and the 

reference electrode in the bulk solution. 

LEIS was carried out by positioning the scanning probe directly above the electrochemical 

region of interest. The local impedance was recorded by applying 50 mV amplitude sinusoidal 

wave and a frequency range from 40 kHz to 1 Hz. Below this frequency the impedance data were 

inconsistent.  

RESULTS AND DISCUSSION 

1. Overall DC techniques  

Figure 1 shows a representative anodic polarization curve for the CoCr alloy in PBS-HA. 

The polarization test of the CoCr alloy begins in the passivity zone without going through an 

active–passive transition because of the previous presence of the spontaneously formed oxide 

layer in air. Then, the current density abruptly increases at more positive potentials reaching the 

transpassive region. 

 The passive range extends from above the Ecorr (about 0.115 Vvs Ag/AgCl) to 

approximately 0.5 Vvs Ag/AgCl, increasing the current value from 10-9 A to around 10-6 A, while 

the  thickness of the oxide film increases [20]. Then, the current increases with the applied 

potential until a current peak of 10 µA appears at approximately 0.7 Vvs Ag/AgCl, related to the 

transpassive oxidation. From this potential, the current goes up progressively with potential due 

to the establishment of the transpassive region until reaching 1 V, from which the current goes 

down quickly as the polarization decreases. The protection potential achieved (0.7 Vvs Ag/AgCl) 

was higher than the previous Ecorr (about 0.115 Vvs Ag/AgCl) and a limit cathodic current is 

obtained at cathodic polarizations as a consequence of the stability of the grown oxide layer.  

During anodic polarization, the electrochemical oxidation process results in the formation 

of a complex oxide layer whose composition and thickness depend on the applied potential. There 

is significant literature on the identification of the different oxides by spectroscopic techniques 

grown on CoCr surfaces [9, 21, 22, 23]. Raman spectroscopy [24] revealed that the air-formed 
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passive film on CoCr surfaces is composed of molybdenum (IV) oxide and Cr(III) oxide. After 

immersion in chloride aqueous solutions, molybdenum oxide is dissolved, being replaced by 

Co(OH)2, and Cr(III) oxide is partially transformed into Cr(OH)3. Other studies performed by XPS 

[9] revealed a linear ratio between the applied potential and the grown oxide thickness for 

polarizations higher than 0.2 V.  

Regarding the quantification of the passive oxide film, chromium is the main component of 

the oxide film (cationic fraction of about 90%) at all polarizations considered (until 0.75 Vvs 

Ag/AgCl). It is present primarily as Cr(III) oxide and hydroxide, although is also observed as Cr(VI) 

oxide from 0.5 Vvs Ag/AgCl to 0.7 Vvs Ag/AgCl.  

On the other hand, below 0.5 Vvs Ag/AgCl, cobalt concentrations are low (5%) and 

negligible for molybdenum, increasing to 20% and 10%, respectively, at higher potentials. In 

summary, at 0.5 Vvs Ag/AgCl, chromium undergoes the beginning of the transpassive oxidation 

from Cr(III) to Cr(VI) and cobalt is incorporated into the oxide film mainly as Co(II) oxide; while at 

0.7 Vvs Ag/AgCl transpassivity of oxide film occurs, promoting a high concentration of Cr(VI) and 

Mo(VI) as MoO3, in the oxide film. The oxide mixture consists of Cr- and Mo-oxides concentrated 

in the outer part of the layer, whereas Co-oxide is present mainly in the inner part, closer to the 

oxide/metal interface. In this way, it is possible to relate the electrochemical behaviour of these 

passive films to their chemical compositions, due to Cr species playing major roles at low 

polarizations (passive region) and Co species seems to be involved at higher polarizations 

(transpassive region). 

In order to assess the electrochemical properties of the oxide films that can be found on 

CoCr surfaces in the biological medium, different polarizations from the anodic polarization curve 

were chosen to be applied: 0 (at Ecorr), 0.5 Vvs Ag/AgCl and 0.7 Vvs Ag/AgCl, i.e., Cr(III)-oxide 

enrichment, and maximum Co(II)-oxide concentration in the grown oxide and transpassivity of the 

oxide film (formation of Cr(VI)O3 and MoO3), respectively. At low polarizations, the Cr(III) species 

play major roles in the passivation of the alloy, and at higher polarizations the Cr(VI) and Mo(VI) 

oxides take on these roles. It may be argued that a polarizing potential up to 0.7 Vvs Ag/AgCl is 

unrealistically high for any biomedical application of this alloy. However, in view of the potential 

hazards that may arise from an enhanced metal dissolution, the increase of current recorded for 
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the CoCr alloys at high anodic potential, over 0.5 Vvs Ag/AgCl, is of great interest because it 

seems to be the sum of different contributions, among them, water oxidation [21]. 

Figure 2 shows I-t plots on a logarithmic scale for CoCr samples polarized at 0.5 Vvs 

Ag/AgCl and 0.7 Vvs Ag/AgCl for 3600s in PBS-HA. At both potentials, the current follows a linear 

behaviour over time after 10 s, however higher values of current are obtained at 0.7 Vvs Ag/AgCl 

corresponding to the transpassive region. Both polarizations also show similar slopes of - 0.5 s-1 

which indicate that the passive oxide film growth is controlled by diffusion of ionic species through 

the oxide film [25]. However, while this slope remained at 0.7 Vvs Ag/AgCl over the test, it was 

lost at 0.5 Vvs Ag/AgCl after 300 s, from which the current achieved a steady state.  

 At 0.5 Vvs Ag/AgCl, the current decreases over time, indicating that the potential increased 

the resistance offered by the oxide film, probably due to an increase in its thickness. This situation 

continues until 300 s when the current is stabilized until the end of the test. In the case of 0.7 Vvs 

Ag/AgCl, the current remains at a high value from the initial stages, maybe due to the increase in 

chromium (VI) and Mo (VI) in the passive film. All of this promotes changes in the structure and 

the chemical composition of the oxide film. At this point, it is important to remark that at this 

potential, not only the current and the ion release increase but also the concentration of 

hexavalent Cr species, a well-known carcinogen which is highly toxic in vivo environments, into 

the oxide film. 

Figure 3 shows the Ecorr evolution versus time for the CoCr alloy before and after applying 

0.5 Vvs Ag/AgCl in PBS-HA. After applying 0.5 Vvs Ag/AgCl, the Ecorr reached values of around 

300 mV higher than the Ecorr for the air-formed passive film on CoCr alloy. This indicates that 

the potentiostatically grown oxide film is thermodynamically more stable. 

Figure 4 shows potential maps of CoCr surfaces performed by SKP after applying 0.5 Vvs 

Ag/AgCl and 0.7 Vvs Ag/AgCl on the CoCr alloy. Again, more favourable thermodynamic states 

are observed for CoCr surfaces after applying 0.5 Vvs Ag/AgCl and 0.7 Vvs Ag/AgCl compared 

to the air- formed passive film on CoCr alloys. 

Characterization of grown-oxide films 

Figure 5 shows the SEM images of CoCr samples after applying 0.5 Vvs Ag/AgCl (a) and 

0.7 Vvs Ag/AgCl (b). The polarization at 0.5 Vvs Ag/AgCl does not cause significant structural 

changes in the passive film (Figure 5a). However, at 0.7 Vvs Ag/AgCl nanostructural changes in 
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the oxide film can be seen as cylindrical nanopores of about 10-50 nm, homogeneously 

distributed along the surface (Figure 5b). Irregularly-shaped mesopores structures are also found 

in the literature as a consequence of applying a constant potential deposition [26, 27]. 

XPS survey spectra of surfaces of CoCr alloy after polarizations of 0.5 Vvs Ag/AgCl and 

0.7 Vvs Ag/AgCl showed peaks in binding energy regions of Co 2p, Cr 2p, Mo 3d, O 1s, C 1s, 

N1s and P 2p. The high resolution spectrum of each element was analysed to obtain the 

contributions of the different chemical species formed as a consequence of the polarization at 0.5 

Vvs Ag/AgCl and 0.7 Vvs Ag/AgCl. As an example, Figure 6 shows the normalized XPS Cr 2p 

and Co 2p and Mo 3d spectra registered on polished CoCr alloy and after oxidation at 0.5 Vvs 

Ag/AgCl and 0.7 Vvs Ag/AgCl. Anodic polarization promotes a clear decrease in the metallic 

component in all cases and a strong increase in the oxide signal due to the formation of thicker 

oxide films. 

After subtracting background by Shirley’s method, each spectrum was decomposed into 

spectra originating from metallic and oxide states according to binding energy data [22, 28]. 

Figure 7 shows the deconvoluted spectra given for Co and Cr oxidation at 0.7 Vvs Ag/AgCl, after 

0.5 Vvs Ag/AgCl and on polished CoCr alloy, respectively. The cobalt Co 2p3/2 signal consists of 

4 components assigned to: metallic cobalt at 778.0 eV; the oxide part was fitted using only one 

peak located in the range 780.0–781.2 eV that consists primarily of Co2+ species, in which may 

be included the contribution of Co3+ species such as CoO, Co2O3 and Co3O4; and the third and 

fourth components, located at 783.5 eV and 787.0 eV correspond to Co2+ and Co3+ shake-up 

satellites. 

 Initial signals of Cr 2p3/2 of polished CoCr alloy revealed three components: metallic 

chromium at 574.0 eV, chromium (III) oxide (Cr2O3) at 576.3 eV, and chromium (III) hydroxide 

(Cr(OH)3) at 577.2 eV. After oxidation at 0.5 Vvs Ag/AgCl and 0.7 Vvs Ag/AgCl, a new component 

related to chromium (VI) appears at 578.7 eV.  After oxidation at 0.5 Vvs Ag/AgCl a decrease in 

the signal of metallic Cr can be observed. A Cr(OH)3 signal becomes most important and a small 

peak corresponding to Cr(VI) appears. This situation is more pronounced in CoCr surfaces after 

0.7 Vvs Ag/AgCl where the metallic Cr and Cr2O3 signals have almost disappeared and the peaks 

corresponding to Cr(OH)3 and Cr(VI) clearly increase. Co 2p spectra show different behaviour 

from that described for Cr 2p.  In the polished CoCr alloy, the metal component is the most 



Article accepted in Bioelectrochemistry. 2017 
 

11 
 

important species of this element. However, after oxidation, the metallic component diminishes 

and the oxide peak is predominant. The other high resolution spectra which are also 

deconvoluted, nor shown here, are Mo and O. The Mo spectrum is complex because this element 

may be present in different oxidation states. Molybdenum presents a doublet due to the spin-orbit 

coupling, Mo 3d5/2 and Mo 3d3/2, with a binding energy difference of 3.15 eV. The signal of metallic 

molybdenum is observed at 227.7 eV and due to the electrochemical oxidation, the latter peak is 

shifted to higher binding energies, i.e. 232.2 eV. This corresponds to the formation of Mo (VI) 

compounds whose contribution increased at 0.7 Vvs Ag/AgCl. The oxygen O1s spectra registered 

three contributions at: 530.1 eV, assigned to oxygen in oxides; 531.7 eV, assigned to metal-

bonded hydroxide groups and 533.0 eV, related to adsorbed water. 

The atomic percentage of the layers formed on CoCr alloy at 0.5 Vvs Ag/AgCl and 0.7 Vvs 

Ag/AgCl deduced from XPS spectra are given in Table 2. All surfaces contain a high level of 

carbon, due to exposure to air. There is also an enrichment in oxygen and chromium, due to the 

prevalent formation of a chromium oxide layer. The cobalt content clearly decreased with the 

polarization, as can be seen in the decrease of the Co/Cr ratio. Therefore, it can be said that, after 

polarization, preferential dissolution of cobalt occurred whereas chromium is concentrated in the 

surface oxide film. Molybdenum content is very low (≤ 1%). Other components included in the 

oxide layers, after polarization, are N and P coming from the electrolyte. 

From the XPS spectra it can be concluded that the passive film grown at 0.5 Vvs Ag/AgCl 

(into the passive region of the anodic polarization curve) consists predominantly of Cr2O3 and 

Cr(OH)3. However, the oxidation at 0.7 Vvs Ag/AgCl causes the appearance of Cr (VI) and also 

Mo(VI) species into the passive film. These results are in agreement with those described in the 

literature [22, 25]. 

2. Overall AC measurements 

Figure 8 shows the overall impedance data for CoCr samples at the Ecorr and after previous 

polarizations at 0.5 Vvs Ag/AgCl and 0.7 Vvs Ag/AgCl. The Nyquist diagrams (Figure 8a) are 

characterized by capacitive arcs in all frequency ranges whose magnitude depends on the 

characteristics of the oxide film grown on the CoCr surface. In fact, the diameter of the capacitive 

arcs decreased as the polarization previously applied was higher, i.e., the higher the polarization, 
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the smaller its magnitude. The same was also observed from the Bode diagram of impedance 

modulus (Figure 8b). However, phase angle from the Bode diagram (Figure 8c) is a much more 

sensitive indicator that allows better monitoring. At the low frequency range, the phase angle 

values clearly increased with polarization: - 80º (at Ecorr), - 60º (at 0.5 Vvs Ag/AgCl), and 0º (at 

0.7 Vvs Ag/AgCl). After polarization at 0.7 Vvs Ag/AgCl, the CoCr alloy showed the highest phase 

angle and the lowest impedance modulus at low frequencies, together with a depressed 

semicircle with the lowest diameter in the whole frequency range. Therefore, these results indicate 

that the electrochemical modification of the oxide films promotes the formation of defects or less 

resistant films. 

The growth of oxide films by potentiostatic pulses modifies the chemical composition, 

thickness and structure of the oxide film generated with respect to the passive film formed by air 

contact. These modifications can provoke more surface disorder (heterogeneities at the atomic 

scale), geometric irregularities, such as roughness, and a variation of the oxide composition. This 

leads to the time constant dispersion that is attributed to a dispersion of the capacity or to a 

change of the capacity with frequency [29]. In such cases, a constant phase element (CPE) is 

often used in modelling the alternating current response instead of a pure capacitor. 

The CPE behaviour of each surface can be quantified by plotting the imaginary part of the 

impedance as a function of frequency on logarithmic scale. The slope of the straight line gives us 

the exponent alpha, i.e., the variation from the ideal capacitor (α=1) to CPE behaviour (α<1). 

Figure 9a shows the imaginary impedance versus frequency on logarithmic scale obtained at 

Ecorr, and after 0.5 Vvs Ag/AgCl and 0.7 Vvs Ag/AgCl. This plot allows the calculation of α, 

associated with CPE, to be obtained directly without regression of the equivalent circuit. The 

slopes are constant in the whole frequency range, except for the CoCr surface after applying 0.7 

Vvs Ag/AgCl, in which the straight line is lost at frequencies below 1 Hz.  

Slopes of -0.93, -0.85 and -0.72 corresponding to α exponent are obtained for CoCr 

samples at the Ecorr, 0.5 Vvs Ag/AgCl and 0.7 Vvs Ag/AgCl, respectively. These slopes, higher 

than -1, allow us to verify the CPE behaviour of the CoCr surfaces, especially for oxide films 

grown on CoCr surfaces after applying 0.5 Vvs Ag/AgCl and 0.7 Vvs Ag/AgCl.  

The different structure and chemical composition of the respective oxide films formed at 0.5 

Vvs Ag/AgCl and 0.7 Vvs Ag/AgCl induces changes in the electrochemical response of the 



Article accepted in Bioelectrochemistry. 2017 
 

13 
 

surfaces. The potential difference applied through a film with an Ohmic behaviour of 

inhomogeneous thickness generates an electric field that is a function of the length along the 

surface under consideration. The impedance response will be influenced by the properties of the 

grown-film on the surface in terms of distribution of the time constants. The frequency dispersion 

can be particularly evident by plotting, on logarithmic scale, the imaginary part versus the real 

part of the impedance that allows us to distinguish between the types of oxide grown on the 

surface. Figure 9b shows the impedance plots for CoCr samples with the air-grown passive film 

and those grown at 0.5 Vvs Ag/AgCl and 0.7 Vvs Ag/AgCl. In all cases, the shape of the 

impedance curves agree closely with an Ohmic behaviour with graded thickness [30], especially 

for oxide films grown at 0.7 Vvs Ag/AgCl, which is responsible for the most evident time constant 

distribution and so the presence of CPE. 

In the view of these results, Table 3 shows the fitting of the experimental impedance data 

of the grown-oxide on CoCr and the Randles equivalent circuit used, where Rs is the solution 

resistance, CPE is the constant phase element, n is the exponent associated with CPE, Roxide film 

is the oxide film resistance and Х2 is the chi-square value. It can be seen that the resistance of 

oxide films grown on CoCr samples decreases with increasing the potential applied. This 

behaviour is followed by the increase in the CPE values and the decrease of n exponent as 

polarization increases, denoting more defective oxide films with higher frequency dispersion. 

It is also interesting to note the good agreement between α exponents, calculated from the 

experimental impedance data (Figure 9a), and n exponents obtained from fitting by using the 

equivalent circuit (Table 3). 

The protective properties of the oxide film generated at 0.7 Vvs Ag/AgCl are the poorest of 

all surface conditions. This is supported by the lowest value of the exponents, α and n, showing 

a noticeable capacitance distribution on this surface, not only by the graded Ohmic behaviour of 

the oxide films but also by the surface inhomogeneity (associated with nanopores structure seen 

by SEM in Figure 5b), created by the transpassive oxidations from Cr(III) to Cr(VI) and Mo(IV) to 

Mo(VI) species in the oxide film.  

2.1.1. Local AC measurements 

The CPE behaviour can follow two types of distribution of time constants: a two-dimensional 

(2D) distribution from the current and/or potential distributions along the surface, and a three-
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dimensional (3D) distribution from effects in the normal dimension to the surface such as 

roughness or varying the chemical composition through the thickness of the oxide film. For both 

2D and 3D distributions, the overall impedance results from an integration of local impedances 

along the electrode surface. Considering this, some authors have noted the convenience of using 

the local electrochemical impedance spectroscopy in order to distinguish between 2D and 3D 

distributions [23]. In the case of 2D distributions, local impedance would serve to measure a single 

element that does not have CPE behaviour, unlike the result obtained from overall 

electrochemical impedance spectroscopy. On the other hand, in the case of 3D distributions, the 

local element will reveal CPE behaviour with the same exponent as seen in the overall impedance 

measurement. 

Figure 10 shows local impedance diagrams in Nyquist format for CoCr samples at the Ecorr 

and after previous polarizations at 0.5 Vvs Ag/AgCl and 0.7 Vvs Ag/AgCl. A well-defined 

semicircle is observed at high frequencies, in contrast with the EIS overall results (Figure 8). This 

could mean that the local impedance responses are sensitive for detecting the presence of the 

oxide film grown at 0.5 Vvs Ag/AgCl and 0.7 Vvs Ag/AgCl. In fact, the higher polarization the 

better semicircle definition, indicating a higher resistive behaviour for the polarized CoCr samples 

against capacitive character of the oxide film created in air. 

The imaginary part of the impedance as a function of frequency on logarithmic scale is 

shown in Figure 11 in order to analyse the CPE behaviour of the different CoCr samples. The 

diagrams are characterized by straight lines with two different slopes: one at the high frequencies 

related to the oxide film and another at low frequencies. The α value estimated from the local 

impedance measurements at the high frequency range of the passive film on CoCr samples at 

the Ecorr, remains at the same value as those obtained from overall impedance. However, the α 

values estimated from the local impedance measurements of the oxide-grown films of CoCr 

samples applying 0.5 Vvs Ag/AgCl and 0.7 Vvs Ag/AgCl approaches -0.5. This means that the 

oxide grown films at 0.5 Vvs Ag/AgCl and 0.7 Vvs Ag/AgCl follow a three-dimensional (3D) 

distribution, probably due, as mentioned above, to the surface inhomogeneities and resistive 

properties generated by the growth of the oxide films. 
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Summarizing, local impedance techniques are useful tools for revealing the different 

electrochemical properties of the oxide films grown on metallic samples that can appear in vivo 

conditions.   

CONCLUSIONS 

The local techniques are able to supply deep mechanistic information about the 

electrochemical properties of oxide films that can be formed under biological environments on the 

metallic implants. 

Oxide-grown films by potentiostatic pulses are thermodynamically more stable than the air-

generated passive film on CoCr alloys. However, the kinetics behaviour shows the opposite trend, 

i.e., the higher polarization the worse anticorrosive properties. Oxide grown films at 0.5 Vvs 

Ag/AgCl and 0.7 Vvs Ag/AgCl follow a three-dimensional (3D) distribution probably due to the 

surface inhomogeneities and resistive properties generated by the growth of the oxide films. At 

0.7 Vvs Ag/AgCl, the oxide film generated has the poorest anticorrosive properties of all surface 

conditions. This behaviour is accompanied by the low value of the n, showing the capacitance 

distribution on this surface, not only due to the graded Ohmic behaviour of the oxide film but also 

to the surface inhomogeneity.  
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HIGHLIGTHS 

- High potentials in an oxide film on CoCr surfaces induce change in CPE distribution  

- CPE distribution of CoCr surfaces after applying high potentials agrees with 3D model  

- Oxide films grown on CoCr follow a closely Ohmic behaviour with graded thickness 

- Potentials at 0.7 Vvs Ag/AgCl causes nanostructural change in oxide surfaces 

- Nanopores of 10-50 nm diameter are formed along surface at 0.7 Vvs Ag/AgCl 

 

  



TABLES 

 

 

 

 

 C Co Cr Mo Ni S P Al W Mn Fe Si N 

HC 0.22 62 29.4 6.4 0.1 0.004 0.001 0.01 0.03 0.7 0.16 0.7 0.16 

 

Table 1. Chemical composition of high carbon CoCr alloy. 

 

 

 

 
O 

(at%) 

C 

(at%) 

Co 

(at%) 

Cr 

(at%) 

Mo  

(at%) 

N 

(at%) 

P 

(at%) 

polished 28.5 57.3 5.8 7.3 1.1 0.0 0.0 

0.5 Vvs Ag/AgCl 40.6 42.6 3.8 7.9 0.9 2.7 1.5 

0.7 Vvs Ag/AgCl 44.6 38.5 2.8 7.6 0.6 3.4 2.6 

 

Table 2. Atomic percentage (at.%) from high resolution XPS spectra of each element present in 

the layers formed on CoCr alloy in polished, and after 0.5 Vvs Ag/AgCl and 0.7 Vvs Ag/AgCl in 

PBS-HA. 

 

 

 

 

 

 

 

 

 



 

 

 

 

 Rs (Ω) 
CPEoxide 

x 10-6(S sn) 
n 

Roxide film 

x 103 (Ω) 

χ² 

x 10-3 

Ecorr 105.3 10.57 0.935 22370 1.43 

0.5 Vvs Ag/AgCl 162.4 14.42 0.858 226.7 1.41 

0.7 Vvs Ag/AgCl 140.2 37.62 0.757 7.98 3.21 

 

 

Table 3. Fitting and Randles equivalent circuit of experimental overall impedance data for CoCr 

samples on polished (Ecorr) and after 0.5 Vvs Ag/AgCl and 0.7 Vvs Ag/AgCl in PBS-HA. (Rs-

solution resistance; CPE- Phase Constant Element; n-exponent; Roxide film-oxide film Resistance; 

Х2- chi-square value). 

 



FIGURE CAPTIONS 

 

Figure 1. Anodic polarization curve for the CoCr alloy in PBS-HA at 10 mV/min scanning rate. 

Figure 2. I-t plots on logarithmic scale for the CoCr samples after polarization at 0.5 Vvs Ag/AgCl 

( ) and 0.7 Vvs Ag/AgCl ( ) for 3600s in PBS-HA. 

Figure 3. Ecorr evolution versus time for the CoCr alloy before, Ecorr, ( ) and after 

polarization at 0.5 Vvs Ag/AgCl ( ) in PBS-HA. 

Figure 4. Topographical and potential maps (9000 x 9000 mm2) by scanning kelvin probe for the 

CoCr samples after polarization at 0.5 Vvs Ag/AgCl (a), and 0.7 Vvs Ag/AgCl (b)  

Figure 5. SE images of the CoCr surfaces after polarization at 0.5 Vvs Ag/AgCl (a) and 0.7 Vvs 

Ag/AgCl (b). 

Figure 6. Normalized XPS Co 2p, Cr 2p and Mo 3d spectra obtained after polarization at 0.7 Vvs 

Ag/AgCl and 0.5 Vvs Ag/AgCl and on the polished CoCr alloy. 

Figure 7: Deconvoluted XPS Co 2p3/2 and Cr 2p3/2 spectra recorded at the oxide layer formed 

after polarization at 0.7 Vvs Ag/AgCl and 0.5 Vvs Ag/AgCl and on the polished CoCr alloy. 

Figure 8. Overall impedance data for the CoCr samples in PBS-HA at Ecorr ( ) and after 

polarization at 0.5 Vvs Ag/AgCl ( ) and 0.7 Vvs Ag/AgCl ( ). a) Nyquist diagram; b) 

impedance modulus Bode plot; c) phase angle Bode plot.  

Figure 9. Impedance diagrams of the CoCr alloys in PBS-HA at Ecorr ( ) and after 

polarization at 0.5 Vvs Ag/AgCl ( ) and 0.7 Vvs Ag/AgCl ( ): a) Imaginary impedance 

versus frequency; b) imaginary impedance versus real impedance, on logarithmic coordinates.  

Figure 10. Nyquist plot of the local electrochemical impedance response of the CoCr alloy in PBS-

HA at Ecorr ( ) and after polarization at 0.5 Vvs Ag/AgCl ( ) and 0.7 Vvs Ag/AgCl (

). 

Figure 11. Local imaginary impedance versus frequency, on logarithmic coordinates, of the CoCr 

alloy in PBS-HA at Ecorr (  ) and after polarization at 0.5 Vvs Ag/AgCl ( ) and 0.7 Vvs 

Ag/AgCl ( ). 
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