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 2 

Abstract 1 

The evaluation of species distribution models (SDMs) is a crucial step; usually, a 2 

random subsample of data is used to test prediction capacity. This procedure, called 3 

cross-validation, has been recently shown to overestimate SDMs performance due to 4 

spatial autocorrelation. In the case of expanding species, there exists the possibility to 5 

test the predictions with non-random geographically structured data, i.e., a new data set 6 

which corresponds to the last occupied localities. The aim of this study was to evaluate 7 

the capacity of SDMs to predict the range expansion pattern of six free-living deer 8 

species in Great Britain and to assess whether SDMs perform better than a simple 9 

dispersal model - a null model that assumes no environmental control in the expansion 10 

process. Distribution data for the species prior to 1972 were used to train the SDMs 11 

(ENFA, MAXENT, logistic regression and an ensemble model) in order to obtain 12 

suitability maps. Additionally, the geographical distance to the localities occupied in 13 

1972 was considered a proxy of the probability that a certain locality has to be occupied 14 

during an expansion process considering only dispersal (GD model). Subsequently, we 15 

analyzed whether the species increased their ranges between 1972 and 2006 according 16 

to the estimated suitability patterns and whether or not SDMs predictions outperformed 17 

GD predictions. SDMs showed a high discrimination capacity in the training data, with 18 

the ensemble models performing the best and ENFA models the worst. SDMs 19 

predictions also worked better than chance in classifying new occupied localities, 20 

although differences among techniques disappeared and the predictions showed no 21 

difference with respect to GD. Spatial autocorrelation of both the environmental 22 

predictors and the expansion process may explain these results which illustrate that GD 23 

is a much more parsimonious model than any of the SDMs and may thus be preferable 24 
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 3 

both for prediction and explanation. Overestimation of SDMs performance and 1 

usefulness may be a common fact.  2 

Key-words: autocorrelation, deer species, geographic distance, predictive performance, 3 

range expansion, species distribution models 4 

5 
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 4 

1. Introduction 1 

The use of species distribution modelling (SDM) has grown exponentially in the last 2 

two decades and has shown its potential in the fields of biodiversity conservation and 3 

ecosystem management (Franklin, 2009; Peterson et al., 2011). It is usually implicitly 4 

made the assumption that species distributions are in equilibrium with the environment 5 

(Franklin, 2009). However, in nature, equilibrium is the exception rather than the rule 6 

(Gaston, 2009). Paradoxically, it is under such circumstances when species distribution 7 

models (SDMs) are particularly needed. For instance, species in the first stages of an 8 

invasion process is a clear example of such a scenario (Peterson, 2003). Explicitly 9 

recognizing non-equilibrium as a probable working scenario is important because it has 10 

methodological implications in SDM (Jiménez-Valverde et al., 2011). 11 

At present, one of the greatest challenges in SDM is model evaluation (Vaughan and 12 

Ormerod, 2005; Lobo et al., 2008; Hijmans, 2012; Jiménez-Valverde, 2012; Jiménez-13 

Valverde et al., 2013; Smith 2013). Discrimination capacity is the property that obtains 14 

most of the attention, and it is generally accepted that model testing should be 15 

performed on data that have not been used in the training step; otherwise, model 16 

performance would be overestimated. To get this independent testing data, modellers 17 

usually perform the so-called cross-validation, i.e., they randomly divide the data into a 18 

training set and a validation set (Fielding and Bell, 1997). However, Hijmans (2012) 19 

compared the predictive performance (AUC values) of two SDM techniques with that of 20 

a purely distance-based method (the null model) and showed that because training and 21 

testing presences are closer to each other that training presences and testing absences, 22 

cross-validation still overestimated SDMs discrimination capacity. 23 

When working with species that are in the process of expanding their geographic 24 

ranges, model evaluation can be performed using a new data set from the most recent 25 
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time period (Araújo et al., 2005), which will correspond to the observed area of 1 

expansion instead of a random subsample of the data (Jiménez-Valverde et al. 2011). 2 

Usually, this new testing data set will be strongly spatially structured in some way. To 3 

avoid overestimating the distribution of the species, it has been suggested that spatial 4 

and environmental predictors should be considered together when modelling species in 5 

disequilibrium (De Marco et al., 2008; Sullivan et al., 2012). Including spatial variables 6 

in SDMs is desirable when the aim is to predict the most vulnerable localities that 7 

would be occupied in the short term during an expansion course (De Marco et al., 8 

2008). Explicitly including the spatial variables in the modelling framework helps to 9 

maintain range cohesion (De Marco et al., 2008), and may be a way to account for 10 

spatially structured non-environmental factors, such as dispersal behaviour (Sullivan et 11 

al., 2012). These factors may significantly affect species distribution, especially in the 12 

initial phases of a range expansion process (Muñoz and Real, 2006). 13 

The main objective of this study was to compare the predictive performance of four 14 

classic SDM techniques and a method that accounted for dispersal alone as a null model 15 

that assumes no environmental control in the expansion process. Using data about the 16 

recent range expansion of six species of deer in Britain, we attempted to answer the 17 

following two questions: (1) do SDMs provide significantly better-than-chance 18 

predictions of the species’ range expansions? and (2) do SDMs perform better than the 19 

dispersal model? 20 

 21 

2. Materials and methods 22 

2.1 The species 23 

There are six species of deer living wild in Britain: two are native (red deer Cervus 24 

elaphus and roe deer Capreolus capreolus); one is naturalized (introduced by the 25 
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Normans around 1000 years ago; fallow deer Dama dama); and three are non-native 1 

species introduced between 50 and 150 years ago (sika deer Cervus nippon, Reeves’ 2 

Muntjac Muntiacus reevesi and Chinese water deer Hydropotes inermis). It has been 3 

estimated that the six species have expanded their ranges in Britain between 1972 and 4 

2002 (Ward, 2005), a tendency that is still occurring (Ward et al., 2008), and seems to 5 

be happening throughout Europe (Apollonio et al., 2010).  6 

Species distribution data refer to a 10 km × 10 km grid superimposed on a map of 7 

Britain comprising 2800 grid squares. For modelling purposes, the study area was 8 

restricted to 2283 grid squares to avoid potential bias in modelling arising from 9 

including those smaller than 14 ha (coastline). Data on deer species distribution (Fig. 1) 10 

were obtained from Ward (2005) and supplemented with data from Acevedo et al. 11 

(2010). The idea was to replicate a common modelling exercise in which data for a 12 

species in disequilibrium are modelled and the geographic projection is interpreted as a 13 

map of potential ways for future colonization. To do so, the data from 1972 were used 14 

to train the models and to obtain suitability maps for the six species in Great Britain. 15 

Subsequently, we analyzed whether the species increased their ranges between 1972 and 16 

2006 according to the estimated suitability surfaces, i.e., whether they expanded their 17 

ranges occupying preferably those localities with higher suitability values (as estimated 18 

using the data from 1972).  19 

 20 

2.2 Predictors and modelling techniques 21 

Twenty-four environmental predictors, grouped into two main factors (climate and 22 

topography), were chosen on the basis of their potential predictive power (Table 1). 23 

Although land use variables are usually taken into account when modelling the 24 

distribution of wild ungulates (e.g. Acevedo et al., 2010, 2011), they were not 25 
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 7 

considered in this study because, to the best of our knowledge, land use information was 1 

unavailable for the training period. Two models were run with each SDM technique (see 2 

below); one using only the environmental variables as predictors and another one which 3 

also included latitude and longitude (spatial factor; Table 1) to account for spatially 4 

structured non-environmental factors (De Marco et al., 2008; Sullivan et al., 2012).  5 

Four distinct SDM techniques selected to represent different levels of model complexity 6 

and data requirements (see Jiménez-Valverde et al., 2011) were used to model the 7 

occurrence of the species (see details in Appendix A): Ecological Niche Factor Analysis 8 

(ENFA; Hirzel et al., 2002), MAXENT (Phillips et al., 2006; Phillips and Dubík, 2008), 9 

logistic regression (GLM; Hosmer and Lemeshow, 2000) and an ensemble model (EM; 10 

Thuiller et al., 2009) of four techniques (generalized linear models, multivariate 11 

adaptive regression splines, generalized boosted models and random forests).  12 

 13 

2.3 The dispersal model 14 

For each species, the geographical distance from each non-occupied locality in 1972 to 15 

the nearest occupied locality in the same period was calculated. This distance was 16 

considered a simple proxy of the probability that a certain location has to be occupied in 17 

an expansion process, i.e., it is more probable that a species will disperse to those 18 

localities that are closer to the species range limit. Geographic distances were 19 

standardized between 0 and 1 and their inverse was calculated such that a value equal to 20 

1 corresponded to those localities having the highest probability of occupancy. In this 21 

model (GD herein), a grid cell with one occupied neighbour has the same value as one 22 

with 2 or more neighbours. Also, the shortest distance between two points in geographic 23 

space does not necessarily correspond to the shortest distance a deer would have to 24 
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 8 

travel from one point to the other. These two complexities were deliberately avoided to 1 

make GD as simple as possible.  2 

 3 

2.4 Assessment of the predictive capacity and differences between techniques 4 

To assess whether the species tended to occupy the localities with higher suitability 5 

values (estimated by the models trained with the data from 1972), the probability that an 6 

occupied locality chosen at random has of showing a higher estimated suitability value 7 

than an unoccupied locality chosen at random was calculated. Therefore, the area under 8 

the ROC curve (AUC) was computed to assess the predictive capacity of the models.  9 

The predictive performance of each model was assessed on two data sets named T1 and 10 

T2. T1 consisted of the same data used to parameterize the models, i.e., the localities 11 

occupied up to 1972 and the unoccupied ones (note that, in this case, no evaluation 12 

exists for GD). T2 provided the probability of interest, and consisted of the new 13 

localities occupied between 1972 and 2006 and the ones that were still unoccupied. We 14 

assessed differences between techniques in relation to their predictive performance 15 

using general linear mixed models (GLMMX; Zuur et al., 2009). Two GLMMX were 16 

carried out, one for each evaluation data set. The AUC was the dependent variable; 17 

“species” was included as a random factor and “technique” as a fixed factor. In addition, 18 

we included another fixed factor (“approach”) to account for differences between 19 

models with and without spatial variables. Post-hoc Tukey's tests were used to assess 20 

differences between pairs of techniques. 21 

 22 

3. Results 23 

In general, all the techniques yielded a similar spatial pattern; the greatest differences 24 

were those between ENFA and GD and the remaining methods (Appendix B). 25 
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Discrimination was always better than chance (AUC>0.5) in T1; mean AUC values 1 

were higher than 0.8 (mean ± SD: 0.890 ± 0.085; min-max: 0.655-1.000). There were 2 

statistically significant differences in predictive capacity between the techniques but not 3 

between models with and without spatial variables (technique: F3,38=59.925, P<0.01; 4 

approach: F1,38=0.424, P=0.519; random factor: F5,38=8.308, P<0.01). Three groups 5 

were established (Tukey's test; from highest to lowest discrimination power): i) EM, ii) 6 

MAXENT and GLM, iii) ENFA (see Fig. 2). Differences among techniques were 7 

consistent in the two approaches and across most part of the ROC space (Appendix C). 8 

Discrimination capacity in T2 decreased compared to T1, although it was still better 9 

than chance (AUC>0.5) for most of the techniques (mean AUC ± SD: 0.760 ± 0.116; 10 

min-max: 0.492-0.929). There were statistically significant differences in discrimination 11 

capacity between the techniques but not between approaches (technique: F4,40=7.820, 12 

P<0.01; approach: F1,43=0.611, P=0.439; random factor: F5,43=44.521, P<0.01). Two 13 

groups could be established (Tukey's test; from highest to lowest discrimination power): 14 

i) GD, EM, MAXENT and GLM, ii) ENFA (see Fig. 2). Differences among techniques 15 

were consistent in the two approaches and across most part of the ROC space 16 

(Appendix C).     17 

 18 

4. Discussion 19 

In general, deer species distributions were well estimated by the four SDM techniques. 20 

The results in T1 are consistent with the current state of knowledge: EM performed 21 

better than single techniques (Marmion et al., 2009); ENFA showed the lowest 22 

discrimination capacity (Tsoar et al., 2007); and MAXENT and GLM performed similarly 23 

(Wisz et al., 2008). Given that we were able to account for the distribution of the 24 

species with relatively high accuracy using SDMs, we could expect some degree of 25 
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predictive capacity in T2; the localities unoccupied in 1972 with higher suitability 1 

values would be occupied with a higher probability than the localities with lower values 2 

(e.g. Cassinello et al., 2006; Muñoz and Real, 2006; Wilson et al., 2007; Gassó et al., 3 

2012). Although - as expected - discrimination capacity decreased with respect to T1, 4 

the models still predicted the new occupied localities better than chance (with the 5 

exception of ENFA). As a preliminary and likely hasty conclusion, it could be said that 6 

SDM was a useful tool to forecast the range expansion for the focus species. However, 7 

three results are especially relevant: first, the inclusion of spatial variables in SDMs did 8 

not significantly improve the predictions; second, the differences in performance 9 

between SDMs that predicted better than chance in T2 disappeared; third, there were not 10 

significant differences in performance between SDMs and GD. On the one hand, these 11 

results suggest that the distance to the core distribution may have a great relevance in 12 

the expansion process (van den Bosch et al., 1992; Acevedo et al., 2005). For instance, 13 

Sullivan et al. (2012) showed that explicitly including dispersal probabilities into the 14 

models yielded better predictions of the future distribution of the species. On the other 15 

hand, the results highlight that models trained with environmental predictors but 16 

without spatial variables can account for the spatial structure of the distributions and the 17 

expansion processes. Lastly, they call into question the usefulness of SDMs - at least in 18 

the context of our study.  19 

Range expansion is a highly dynamic process not only determined by the interplay of 20 

demographic and dispersal phenomena, but also by biotic interactions and landscape 21 

complexities (Hastings et al., 2005). Also, the distribution of large-bodied endothermic 22 

and ecologically plastic species (such as the studied species; Acevedo et al., 2005; 23 

Aragón et al., 2010) may prove difficult to predict. All this could explain the absence of 24 

a clear superiority of SDMs over GD to predict range expansion, but still a more 25 
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profound reason may underlie these results. Spatial autocorrelation allows any spatial 1 

pattern to be modelled using spatially structured variables (Bahn and McGill, 2007). 2 

This is especially true in geographic domains with environmental variations that show a 3 

marked geographic gradient such as Britain (Metzger et al., 2005). The fact that the 4 

inclusion of latitude and longitude as predictors did not significantly change the results 5 

of SDMs proves the latter. This makes it very difficult if not impossible to obtain a 6 

model that does not provide good performance in the training data. In addition, because 7 

of the spatial autocorrelative nature of both the expansion process and the 8 

environmental variables (Legendre, 1993; Diniz-Filho et al., 2003), SDMs behaved 9 

better than chance in T2; the localities that were occupied in T2 had higher suitability 10 

values than the localities that still remained unoccupied. Those localities with higher 11 

suitability values were also the localities that were closer to the range limit in the first 12 

period. Thus, SDMs were not better than GD, which is a much more parsimonious and 13 

preferable model.   14 

This study shows that caution should be exercised when using SDMs, and in concrete, 15 

when applying them to forecast range expansion of species that are in disequilibrium 16 

with the environment. By no means do we deny the potential usefulness of SDM or 17 

make the naïve suggestion that GD is a satisfactory way to approximate an expansion 18 

process. It is recognized more and more that, ideally, static correlative SDMs should be 19 

hybridized with dynamic process-based models in order to enhance understanding and 20 

prediction (Brook et al., 2009; Sullivan et al., 2012). Also, SDMs may improve by 21 

accounting for autocorrelation (e.g. Václavík et al., 2012) or by relying on ecological 22 

knowledge rather than on automatic procedures to select the predictors (e.g. Rödder et 23 

al., 2009). However, the point that we wanted to raise in this study was that had not GD 24 

been applied, and given that the SDMs worked better than chance, one could have been 25 
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 12 

tempted to derive misleading conclusions. We have shown that a model that performs 1 

better than chance may lack real significance; by this we mean that either if the interest 2 

is on prediction or in explanation, the most parsimonious model is desirable since the 3 

predictions or the explanation it provides will be more general (Anderson, 2008). 4 

Spatial autocorrelation probably makes the overestimation of models performance be a 5 

rule in SDM (see Hijmans, 2012). If this is so, their significance and usefulness may 6 

also be overvalued. As SDM is currently undergoing exponential growth, we simply 7 

wish to draw attention to its potential misunderstanding and misuse when applied in an 8 

uncritical manner.  9 
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Table 1 Variables used to model the distribution of the six wild ungulates.  1 

 2 

Factors Variables 

Climate* 

BIO1: Annual mean temperature (ºC×10) 

BIO2: Mean diurnal range (ºC×10) 

BIO3: Isothermality (BIO2/BIO7)×100 (ºC×10) 

BIO4: Temperature seasonality (standard deviation×100) 

BIO5: Max temperature of warmest month (ºC×10) 

BIO6: Min temperature of coldest month (ºC×10) 

BIO7: Temperature annual range (BIO5‒ BIO6) (ºC×10) 

BIO8: Mean temperature of wettest quarter (ºC×10) 

BIO9: Mean temperature of driest quarter (ºC×10) 

BIO10: Mean temperature of warmest quarter (ºC×10) 

BIO11: Mean temperature of coldest quarter (ºC×10) 

BIO12: Annual precipitation (mm) 

BIO13: Precipitation of wettest month  (mm) 

BIO14: Precipitation of driest month (mm) 

BIO15: Precipitation seasonality (coefficient of variation) 

BIO16: Precipitation of wettest quarter (mm) 

BIO17: Precipitation of driest quarter (mm) 

BIO18: Precipitation of warmest quarter (mm) 

BIO19: Precipitation of coldest quarter (mm) 

Topography
#
 

Range of altitude (m) 

Mean altitude (m above sea level) 

Max altitude (m above sea level) 

Mean slope (º) 

Max slope (º) 

Spatial 
Longitude (m) 

Latitude (m) 

 3 

*Bioclimatic variables were available at ~1 km
2
 pixel width from the Worldclim project 4 

database (details in Hijmans et al., 2005). 
#
Topographic variables were extracted from 5 

the European Digital Elevation Model carried out by the Shuttle Radar Topography 6 

Mission (European Environment Agency, 2000) with a spatial resolution of 100 m. 7 

8 
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Figure 1 Distribution and range expansion of six deer species in Britain between 1972 1 

and 2002. Black circles, observations made up to 1972; open circles, observations made 2 

between 1972 and 2006. (a): roe deer (Capreolus capreolus), (b): red deer (Cervus 3 

elaphus), (c): fallow deer (Dama dama), (d): sika deer (Cervus nippon), (e): Reeves’ 4 

Muntjac (Muntiacus reevesi) and (f): Chinese water deer (Hydropotes inermis). Adapted 5 

from Ward (2005) and Acevedo et al. (2010). 6 
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Figure 2 Discrimination capacity (AUC) of the modelling techniques. Techniques were 1 

assessed i) on the localities occupied up to 1972 and the unoccupied ones (training data, 2 

T1; in grey), and ii) on the new localities occupied between 1972 and 2006 and the still 3 

unoccupied ones (T2; in white). Values represent the estimated marginal means (95% 4 

confidence intervals) obtained from general linear mixed models. Bars sharing the same 5 

letters (T1, capital; T2, lowercase) indicate techniques that did not significantly differ 6 

(p>0.05) according to a post-hoc Tukey's test. 7 

 8 
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