
1 
 

Point defect engineering of high temperature piezoelectric BiScO3-PbTiO3  

for high power operation 

 

E. Berganza, C. Pascual-González+, H. Amorín, A. Castro, M. Algueró* 

Instituto de Ciencia de Materiales de Madrid, CSIC. Cantoblanco, 28049 Madrid, Spain 

 

*Corresponding author: Miguel Algueró (E-mail address: malguero@icmm.csic.es) 

  

                                                           
+
 Current address: Materials Engineering and Research Institute, Sheffield Hallam University. Howard 

Street, Sheffield, S1 1WB, UK 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital.CSIC

https://core.ac.uk/display/80863498?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 
 

ABSTRACT 

 

BiScO3-PbTiO3 is used as a model system of BiMO3-PbTiO3 perovskite solid solutions with 

enhanced electromechanical response at ferroelectric morphotropic phase boundaries, and high 

Curie temperature to demonstrate specific point defect engineering for high power operation. The 

objective is to obtain a range of piezoelectric ceramics comparable to hard Pb(Zr,Ti)O3 materials, 

optimized for the different applications. In this work, a comprehensive study of Mn substitution for 

Sc is provided. Care is taken to isolate the effects of the point defects from those of concomitant 

structural and microstructural changes that have been previously described after MnO2 addition. 

Results strongly suggest that Mn substitution results in the formation of (MnSc'-VO
••) dipolar 

complexes that effectively clamp domain walls. This is the same mechanism responsible of 

hardening in Pb(Zr,Ti)O3. Indeed, Bi0.36Pb0.64Sc0.36-x MnxTi0.64O3 with x=0.02 is shown to be a high 

sensitivity piezoelectric with strongly reduced losses, suitable for high power operation between 

200 and 400 ºC.  

 

Keywords: Electroceramics; Perovskites; Piezoelectricity; Morphotropic Phase Boundary; Point 

defects 
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1. Introduction 

 

BiScO3-PbTiO3 is the most promising system among perovskite solid solutions with general 

formula BiMO3-PbTiO3 (where M is a trivalent cation in octahedral coordination) and enhanced 

electromechanical response at ferroelectric morphotropic phase boundaries (MPBs), which show 

high Curie temperatures [1-6]. These compounds are being investigated extensively as 

alternative to state-of-the-art Pb(Zr,Ti)O3 (PZT) for expanding the operation temperature of high 

sensitivity piezoelectric ceramics beyond 200 ºC, up to 400 ºC [7-9]. 

The binary system (1-x)BiScO3-xPbTiO3 presents a MPB between ferroelectric polymorphs of 

rhombohedral R3m and tetragonal P4mm symmetry at x0.64, composition for which the Curie 

temperature TC is  450 ºC, while piezoelectric coefficients d33 of 450 pC N-1 are typically 

achieved after poling [1,2]. This TC is 100 ºC above that of Pb(Zr,Ti)O3. Likewise d33 significantly 

exceeds the figure of 245 pC N-1 obtained for ceramics of the latter material at its MPB [10]. 

Moreover, the charge piezoelectric coefficient is comparable to those of available commercial 

high sensitivity piezoelectric ceramics of chemically engineered PZT [11]. 

The very high piezoelectric response of the Pb(Zr,Ti)O3 perovskite solid solution at the MPB is 

known to result from the presence of an intermediate monoclinic phase with Cm space group, 

which provides a structural bridge between the rhombohedral and tetragonal polymorphs [12], 

and the occurrence of lattice transverse softening at the monoclinic-tetragonal boundary [13]. 

This results in very high transverse polarizability and thus, in large shear piezoelectricity that is 

ultimately responsible of the high effective piezoelectric coefficients obtained. The same 

mechanism must be operative in BiScO3-PbTiO3, for an analogous monoclinic phase has been 

described [14,15]. However, this single crystal contribution only account for 1/3 of the total 

piezoelectric coefficient of PZT ceramics [10]. 
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The additional, actually major contribution to the piezoelectric response is originated from 

ferroelectric/ferroelastic domain wall movements [10,16]. Indeed, the tailoring of this contribution 

by point defect (or chemical) engineering of Pb(Zr,Ti)O3 has been key to the success of this 

material technology, and has enabled the available wide family of high sensitivity piezoelectric 

ceramics optimized for a range of applications. It is currently acknowledged that the viability of 

novel materials alternative to PZT, either environmentally friendly ones or piezoelectrics for harsh 

environments, requires the development of analogous point defect engineering for the different 

oxide compounds. This has not systematically been addressed for any of the BiMO3-PbTiO3 

systems up to now, and it is done here for model BiScO3-PbTiO3. 

Roughly speaking, there are two main families of Pb(Zr,Ti)O3 based materials, referred as 

hard and soft PZTs. The former is characterized by reduced domain wall activity and thus, small 

dielectric and mechanical losses. Low losses are required for high power applications like 

ultrasound generation or ultrasonic motors, where heating under operation is an issue [11,16]. 

Hardening is currently achieved by substitution of trivalent species, such a Fe3+ for Ti/Zr4+ at the 

B-site. Oxygen vacancies are created for charge compensation, which associate with the 

acceptor species forming dipolar defects that electrostatically interact with the spontaneous 

polarization, effectively clamping the domain walls [17,18]. A similar hardening has been reported 

for BiScO3-PbTiO3 after MnO2 addition [19,20]. 

As a matter of fact, the MnO2 additive was initially used as an effective means of increasing 

the resistivity of BiScO3-PbTiO3 ceramics at the targeted operation temperatures, from 108 and 

105 up to 1010 and 107  cm at 300 and 450 ºC, respectively [19]. Piezoelectric high sensitivity 

materials with stable functionality up to temperatures above 400 ºC were obtained by this 

procedure [7]. The actual mechanism for the enhanced resistivity was later studied [21]. In this 

report, Mn was shown to incorporate into the perovskite structure as Mn3+ substituting for Sc3+ 

(MnSc
x in the Kröger-Vink notation). A twofold effect was described: firstly, Mn2+ was formed after 
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trapping of the conduction electrons excited from existing oxygen vacancies; and secondly, this 

Mn2+ associated with oxygen vacancies forming (MnSc'-VO
••) dipolar defects, whose presence 

was confirmed by electron paramagnetic resonance (EPR) spectroscopy in reduced samples. As 

a result, both the electronic and ionic conductivities were decreased. However, hardening was not 

observed in this study in contradiction with ref. 19 and 20. It is worth noting that these 

discrepancies may be attributed to a number of parameters that were not well controlled in the 

previous studies, such as composition. MnO2 was used as an additive, and assumed to replace 

for Ti4+ in most of these cases. Segregation of TiO2 must take place then, but this was not 

discussed [20]. The location of the specific compositions in the phase diagram was not fixed 

either, and indeed either a shift towards the rhombohedral side of the MPB [19], or fully tetragonal 

phases [20] have been reported. Additionally, microstructure was not considered, and materials 

with very different grain size, actually resulting from contradictory Mn effects, were compared. 

In this paper, we report a comprehensive study of the effect of Mn substitution for Sc, rather 

than using it as an additive, into BiScO3-PbTiO3. Processing was carefully tailored to obtain 

ceramic materials with comparable microstructure and phases; that is, always at the core of the 

MPB, with increasing levels of Mn substitution. This allowed the effect of point defects to be 

isolated from those of grain size and position within the MPB region. 

 

2. Experimental 

 

Dense, highly homogenous ceramic materials were processed from nanocrystalline powders 

obtained by mechanochemical activation of precursors in a high energy planetary mill. This is a 

powerful technique for the synthesis of nanocrystalline functional oxides, which allows most 

known, technologically relevant low tolerance factor perovskite compounds like ferroelectric 
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Pb(Zn1/3Nb2/3)O3 [22], multiferroic BiFeO3 [23], and the ferromagnetic insulator BiMnO3 [24], along 

with their solid solutions with PbTiO3 [23,25-27] to be obtained at ambient pressure and 

temperature. 

Specifically, perovskite single phase nanocrystalline powders of Bi0.36Pb0.64Sc0.36-xMnxTi0.64O3 

with x=0, 0.02 and 0.05 were synthesized by mechanochemical activation of stoichiometric 

mixtures of analytical grade Bi2O3 (Aldrich, 99.9% pure), Sc2O3 (Aldrich, 99.9% pure), PbO 

(Merck, 99% pure), TiO2 (anatase, Cerac, 99% pure) and Mn2O3 (Aldrich, 99% pure) with a 

Pulverisette 6 model Fritsch planetary mill. In all cases, about 10 g of the mixture of the precursor 

oxides was initially homogenized by hand in an agate mortar, and placed in a tungsten carbide 

(WC) jar of 250 ml with seven, 2 cm diameter, 63 g mass each WC balls for activation at 300 

r.p.m., for 20 h. These conditions have been shown to provide perovskite single phase fully 

crystalline powders with nanometer-scale chemical homogeneity for the unmodified composition 

(x=0) [28,29], and were found here to  lead to analogous results for the two materials that 

included an increasing level of Mn substitution. This is illustrated in Fig. 1, where X-ray diffraction 

(XRD) patterns for the three mechanosynthesized powders are shown. A Bruker D8 Advance 

diffractometer and Cu K radiation (=1.5418 Å) were used for the measurements, for which a 

0.1º (2) step and 1.5 s counting rate were selected. Crystallite size was obtained from the XRD 

data by using the Scherrer equation [30], and ranged between 12 and 16 nm with no systematic 

trend with Mn level. The powder nanocrystalline nature was confirmed by transmission electron 

microscopy (JEM 2000FXII microscope working at 200 keV). TEM images of the sample with 

x=0.02 are also included in the Figure as an example.  

Ceramic processing was carried out by conventional means. About 1 g of nanocrystalline 

powder was uniaxially pressed into 12 mm diameter pellets, which were then sintered in a closed 

Al2O3 crucible inside a furnace. A temperature of 1100 ºC, a soaking time of 1 h and 

heating/cooling rates of ± 3 ºC min-1 were selected. Note that significant PbO or Bi2O3 losses did 
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not take place under these conditions, as checked by monitoring weight changes during sintering. 

This is thought to be a characteristic of the perovskite nanocrystalline powders obtained by 

mechanosynthesis, which are fully crystallized after the mechanical treatment, and do not require 

any subsequent calcination step. Note that traces of PbO contamination on the crucible inner 

walls were not found at the sintering temperature used. Negligible losses allowed the use of initial 

precursor excesses or of sacrificial powder; that is, to bury the green bodies in powder during the 

thermal treatment, to be avoided. This highly facilitates composition and phase coexistence 

control, a crucial factor in this work. Densification values above 95% were consistently achieved. 

Samples for phase and microstructural characterizations were prepared by thinning of 

ceramics to remove a surface layer (100 m), followed by polishing to a mirror finish. The 

thinning step was introduced to get rid of any hypothetical surface layer with slightly deviated 

composition, caused by unnoticed PbO or Bi2O3 losses (involving weight changes below the 

sensitivity of the mass measurement). A final thermal treatment at 600 ºC for 2 h with ± 0.5 ºC 

min-1 was carried out to remove the damage introduced, and to restore the equilibrium 

polymorphic phase coexistence and domain configurations, which are modified by the shear 

stresses involved in polishing [31].  

Perovskite phase stability during sintering was controlled by XRD with a Siemens D500 

powder diffractometer and Cu K radiation. Patterns were recorded between 20 and 50º (2) with 

0.05º (2) step and 5 s counting rate. Slow scans; 0.02º (2) step and 10 s counting rate, were 

carried out between 43 and 47º (2) across the perovskite parent cubic phase 200 diffraction 

peak, for the analysis of the ferroelectric distortion and the evaluation of the phase percentages 

within the phase coexistence region. 
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Microstructure was studied with a FEI NovaTM NanoSEM 230 field emission gun scanning 

electron microscope equipped with an Oxford INCA 250 electron dispersive X-ray spectrometer 

for chemical analysis. 

Ceramic capacitor for electrical and electromechanical characterizations were prepared by 

thinning discs down 0.5 mm, painting Ag electrodes on the major faces, and sintering them at  

700 ºC. 

Electrical characterization started by evaluating the total dc conductivity, along with its bulk 

and grain boundary components by impedance spectroscopy analysis. Data were recorded in 

static conditions, from 250 to 550 ºC, at 20 ºC intervals, in the 20 Hz - 1 MHz range with a 

HP4284A precision LCR meter. The Z-view2 commercial software was used for the analysis. 

Dielectric permittivity and ferroelectric hysteresis loops were characterized in a second stage. 

Dependences of the dielectric permittivity and losses on temperature were measured between 

room temperature (RT) and 550 ºC with the same HP4284A precision LCR meter. Measurements 

in this case were dynamically carried out during a heating/cooling cycle with 1.5 ºC min-1 rate at 

several frequencies between 100 Hz and 1 MHz. RT ferroelectric hysteresis loops were recorded 

under voltage sine waves of increasing amplitude up to 10 kV with a 0.1 Hz frequency, obtained 

by the combination of a synthesizer/function generator (HP 3325B) and a high voltage amplifier 

(TREK model 10/40), while charge was measured with a homebuilt charge-to-voltage converter 

and software for loop acquisition and analysis. 

Finally, the ceramic discs were poled for electromechanical characterization. A field of 4 kV 

mm-1 was applied at 100 ºC for 15 min, and maintained during cooling down to 40 ºC. These are 

standard conditions for the poling of BiScO3-PbTiO3 ceramics [1,2,5]. The longitudinal 

piezoelectric coefficient d33 was then measured 24 h after the poling step with a Berlincourt type 

meter. Also, the transverse piezoelectric coefficient was obtained by complex analysis of 
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piezoelectric radial resonances of the discs by an automatic iterative method described 

elsewhere [32]. This procedure also provides the s11
E and s12

E compliances and 33
 permittivity 

of the poled material all in complex form and thus, all mechanical, electrical and 

electromechanical losses. 

 

3. Results and discussion 

 

XRD patterns for Bi0.36Pb0.64Sc0.36-xMnxTi0.64O3 with x=0, 0.02 and 0.05 are shown in Fig. 2. No 

secondary phases in addition to the perovskite one are found in any of the ceramics processed 

with increasing levels of Mn substitution, suggesting that the targeted incorporation of the new 

atomic species into the structure has been achieved. 

Patterns with improved statistics across the perovskite parent cubic phase 200 diffraction 

peak, along with their deconvolution by using three pseudo-Vöigt functions are given in Fig. 3. 

The coexistence of rhombohedral and tetragonal phases is assumed for simplicity, even though 

the former polymorph is likely to be monoclinic, according to previous reports. However, an 

analysis with four peaks is beyond the capabilities of the lab-scale XRD equipment and out of the 

scope of this work. Even with this limitation, results clearly indicate all materials with increasing 

amount of Mn to remain within the morphotropic phase boundary region. Indeed, the percentage 

of rhombohedral and tetragonal phases does not change significantly after substitution with 

x=0.02, the only effect being a small shift of all peaks towards higher angles. This indicates some 

cell shrinkage, which was expected from the ionic radii differences for sixfold coordination of Sc3+ 

and Mn3+ that are 0.745 Å and 0.58/0.645 Å (low/high spin configurations), respectively [33]. 

Larger shifts are found after substitution with x=0.05, which also results in a slight increase of the 
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amount of rhombohedral phase, yet still in coexistence with the tetragonal phase, which shows a 

decreased tetragonal distortion. 

Scanning electron microscopy (SEM) images of the polished surfaces of the three ceramics 

with increasing amounts of Mn are shown in Fig. 4. Homogenous microstructures with average 

grain sizes of 2.4, 1.7 and 2.3 m for x=0, 0.02 and 0.05, respectively, were obtained. No 

significant microstructural changes are thus induced by the Mn substitution. 

The preliminary characterization confirms that this series of materials is ideally suited to study 

the effect of the introduction of MnSc
x point defects on properties, avoiding ambiguities arising 

from concomitant phase or microstructural effects. Indeed, it is somehow surprising that Mn 

substitution for Sc did not modify microstructure or phase coexistence, unlike in previous reports 

where MnO2 was used as an additive during sintering. In those works, all starting from powders 

obtained by conventional solid state synthesis, the manganese oxide addition caused grain 

coarsening, with average values that increased from 1.3 to 8.9 m [21], or from 3 to 8-10 m 

[20]. It must be noted though that a grain size of 7.5 m has also been reported for ceramics 

processed without MnO2 additive with the same sintering temperature of 1100 ºC (increased up to 

15 m for 1150 ºC) [1]. 

In order to investigate the origin of these discrepancies, we tailored the processing to obtain 

ceramics with increased grain size. This was achieved by using powders arrested at an 

intermediate stage of the mechanosynthesis (15 h), and by processing the ceramics at 1125 ºC 

(1150 ºC was also tested but resulted in poor dielectric strength). A SEM image of such ceramic 

with x=0.02 is shown in Fig. 5, along with its XRD pattern. No secondary phases are found in 

XRD, though a liquid phase is clearly observed at triple points and grain boundaries in SEM (see 

arrow). This suggests the occurrence of exaggerated grain growth, and indeed an average grain 

size of 9 m resulted. Note also the clear shift of the phase coexistence towards the tetragonal 
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side of the MPB region, in agreement with [20], but not with [19]. Similar phase deviation during 

liquid phase sintering has been described for Pb(Mg1/3Nb2/3)O3-PbTiO3 [34], illustrating the 

difficulties in controlling the sample characteristics once this grain growth mode is triggered. 

Nevertheless, this sample was also fully characterized along with the series of ceramics with fine 

grained microstructure to facilitate comparison with the mentioned previous reports. 

A key issue in this study is the effective incorporation of Mn into the perovskite, avoiding the 

segregation of manganese oxides at the grain boundaries. This incorporation is clearly indicated 

by changes in conductivity after Mn substitution. Fig. 6 shows the Arrhenius plots for the total dc 

conductivity of the series of ceramics with an increasing level of Mn. All materials show a 

common high temperature regime characterized by an activation energy ranging from 1.1 to 1.2 

eV. This figure is typical of the electromigration of mobile doubly ionized oxygen vacancies VO
•• 

and thus, one can assume ionic conductivity to dominate the electrical response above 400 ºC 

[35]. A distinctive decrease of conductivity takes place in this regime after Mn substitution. This 

effect has already been described, and associated with the formation of MnSc', and its association 

with oxygen vacancies to form (MnSc'-VO
••) dipolar complexes that effectively pin the ionic charge 

carriers [21]. 

Additionally, novel conduction phenomena are found below 400 ºC that have not been 

discussed before. In the case of the ceramic materials without Mn substitution (x=0), the 

temperature dependence of conductivity shows a distinctive change of slope at 450 ºC, below 

which the activation energy increases up to 1.6 eV. This temperature corresponds to the 

ferroelectric transition, at which ferroelectric domains develop. Assuming oxygen vacancies to be 

still the charge carriers, it is suggested that the increase of activation energy might be associated 

with domain walls being an obstacle to the movement of the oxygen vacancies. 
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A very different behavior is found for the materials with Mn substitution (x=0.02 and 0.05). A 

change of slope is also observed, but indicating in this case a decrease of activation energy down 

to 0.65 eV. This figure is typical of electronic conduction rather than ionic, and it is proposed to be 

associated with hole conduction within the valence band, specifically with electron hopping 

between Mn2+ and Mn3+ at the B-site. Indeed, a similar conduction process has been described 

for BiScO3-PbTiO3 ceramics processed from powder synthesized by mechanochemical activation 

in stainless steel media [36], for which presence of Fe substituting for Sc has been described [5]. 

Impedance spectroscopy analysis was used to isolate bulk (or grain bulk) and grain boundary 

contributions to the total electrical response, and to confirm that Mn effects on conductivity were 

truly bulk effects, and not grain boundary ones. Data were initially analyzed using the electric 

modulus formalism, which allowed two Debye-like relaxation processes to be readily identified for 

all materials with increasing content of Mn. This indicates the presence of two electroactive 

regions that are associated with the grain bulk (low frequency process) and the grain boundaries 

(high frequency process). A similar result has been shown for closely related BiScO3-PbTiO3 

materials [36]. The contributions of the two regions were separated by using an equivalent 

electric circuit to model the experimental data. A series connection of two parallel (RQC) and 

(RQ) elements for the bulk and grain boundary components, respectively, was used that has 

been previously shown to correctly model the response of BiScO3-PbTiO3 ceramics [36]. Results 

for samples with x=0.02 are given in the Figure. Note that the low temperature electronic process 

associated with hopping between Mn2+ - Mn3+ species at the B-site of the perovskite is observed 

in the bulk component. This confirms the correct incorporation of Mn into the perovskite. 

Results for the ceramic with a coarsened microstructure and phase coexistence shifted 

towards the tetragonal side are also included. The main features of conductivity behaviour 

discussed above are reproduced, indicating that exaggerated grain growth does not result in Mn 

segregating at grain boundaries. 
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The presence of oxygen vacancies for all samples was also indicated by the high temperature 

dielectric response. Temperature dependences of the relative permittivity and loss tangent for the 

three ceramic materials with an increasing level of Mn substitution are shown in Figs. 7 and 8 at 

several frequencies between 100 kHz and 1 MHz. Only the cooling half-cycle is given for clarity. 

Strong low-frequency dispersion was found across the temperature range where the ferroelectric 

transition takes place in all cases. This type of high temperature Debye type relaxation processes 

are usually attributed to point defects like the oxygen vacancies already revealed by the 

conductivity results [35].  

High temperature dielectric relaxations complicate the accurate determination of the 

ferroelectric transition temperatures from the associated dielectric anomalies. This was done by 

using the curves at 1 MHz, for which relaxations have already shifted well above the temperature 

range of interest (see Figure 8). Mn incorporation into the bulk perovskite resulted in the gradual 

decrease of the ferroelectric transition temperature. This shift is illustrated in Fig. 9, where the 

temperature dependence of permittivity is shown for the three ceramics during a full 

heating/cooling cycle from RT up to 550 ºC. The dielectric anomaly associated with the transition 

is observed at a temperature of 450, 435 and 420 ºC for x=0, 0.02 and 0.05, respectively. 

Besides, a distinctive decrease of the RT dielectric permittivity and losses of the unpoled 

ceramics is also found with increasing Mn content. Exaggerated grain growth does not modify the 

position of the ferroelectric transition (see Figure), but results in an increased permittivity, so as 

the ceramic material with x=0.02 and a grain size of 9 m has a permittivity larger than the fine 

grained material with x=0. Values are given in Table 1, along with the TCs. This phenomenology 

nicely illustrates the necessity of controlling microstructure when studying the effect of point 

defects. 

Ferroelectric hysteresis loops for all materials are shown in Fig. 10. Note the distinctive 

increase of coercive field, from 2.5 up to 3.5 kV mm-1, when a Mn content of x=0.02 is introduced. 



14 
 

This takes place in two ceramics with very similar grain size and phase coexistence, so it is a 

direct evidence of domain wall mobility being reduced after Mn substitution. Exaggerated grain 

growth in this case decreases the coercive field down to 2.6 kV mm-1, which is the value obtained 

for the fine grained unmodified material. There is thus a strong effect of grain size on coercive 

field, which reflects changes in the domain configuration and an increasing influence of low 

permittivity grain boundaries [36]. Whatever the cause is, grain size effects may hide the effect of 

point defects. This is most probably the reason why several previous reports on Mn substituted 

BiScO3-PbTiO3 concluded that hardening was absent. 

It is surprising the strong depletion of the ferroelectric switching characteristics for the ceramic 

with x=0.05, which has a low remnant polarization of 13 C cm-2, as compared with 40 and 36 

C cm-2 for those with x=0 and 0.02, respectively. Its lean character is typical of materials with 

frozen strain or/and compositional gradients, which might be also responsible of the smaller 

tetragonal distortion found. Besides, this could explain why conductivity values hardly change 

from x=0.02 to 0.05. The material with x=0.05 is thus assumed to be inhomogeneous; most 

probably regarding Mn substitution, and for that reason the following discussion on the effects of 

point defects is mostly focused in x=0.02. 

Charge longitudinal piezoelectric coefficient d33 values after poling are given in Table 1. There 

is a continuous decrease with x, from 440 down to 250 and 210 pC N-1 for x=0, 0.02 and 0.05, 

respectively. Piezoelectric radial resonances are shown in Fig. 11 for the materials with x=0 and 

0.02. Note the significant narrowing of the resonances after Mn addition (also observed for 

x=0.05, not shown, and related to an increase of the mechanical quality factors Qs and Qp from 

20 and 45 to 235 and 400). Complex material coefficients obtained from the analysis of these 

resonances are given in Table 1. All the d31 piezoelectric coefficient, s11
E and s12

E compliances, 

and 33
 permittivity decrease with x, along with all losses, either dielectric, mechanical or 
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electromechanical from values of 0.096, 0.05 and 0.1 down to 0.014, 0.009 and 0.01, 

respectively, when a Mn level of x=0.02 is substituted, while microstructure remains similar. A 

slight broadening of the piezoelectric resonance takes place after exaggerated grain growth for 

x=0.02, though the mechanical quality factor does not return to the values of the unmodified 

material, like do not all coefficient and losses. 

These results unambiguously demonstrate that the introduction of Mn substituting for Sc in 

high temperature piezoelectric BiScO3-PbTiO3 is an effective means of reducing domain wall 

mobility. The previously reported decrease of high temperature ionic conductivity is confirmed, 

though an additional electronic component appears after Mn substitution that dominates the 

response below 350 ºC. Therefore, conductivity is not effectively reduced below this temperature, 

though conductivity values are never an issue for operation. Indeed, the Mn substituted BiScO3-

PbTiO3 fine grained ceramics are high sensitivity piezoelectrics with strongly reduced losses and 

high Curie temperature. 

 

4. Summary and conclusions  

 

We have succeeded in processing, using chemically homogenous nanocrystalline powders 

obtained by mechanosynthesis, a series of fine grained piezoelectric ceramics of BScO3-PbTiO3 

with increasing levels of Mn substituting for Sc, and controlled grain size and phase coexistence, 

ideally suited to establish the effect of the introduced point defects in properties. The correct 

incorporation of Mn into the B-site of the perovskite structure is indicated by the results. 

Conductivity changes strongly suggest the formation of MnSc', and its association with existing 

oxygen vacancies to form (MnSc'-VO
••) dipolar complexes. The ferroelectric hysteresis loops and 

the linear coefficients; permittivity, compliances and piezoelectric coefficients, along with their 
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associated losses, all reflect a distinctive decrease of the ferroelectric domain wall activity with 

Mn substitution. This is consistent with the presence of the mentioned dipolar complexes, which 

has been experimentally proved by EPR in ref. 21. Overall, Mn substituted BiScO3-PbTiO3 is a 

hard material with a Curie temperature of 435 ºC, and a d33 coefficient of 250 pC N-1 that  can be 

enhanced up to  310 pC N-1 by microstructure coarsening, while maintaining strongly reduced 

losses. This is thus a first step towards the development of specific point defect engineering for 

BMO3-PbTiO3 systems comparable to that of PZT. 
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Table 1   Curie temperatures and material coefficients for the Bi0.36Pb0.64Sc0.36-xMnxTi0.64O3 ceramics with x=0, 0.02 and 0.05. 

 33
 (xo) 

Unpoled 

Tan  

Unpoled 

TC (ºC) d33 

(pC N-1) 

d31 

(pC N-1) 

33
 (xo) 

Poled 

s11
E 

(x10-12 m2 N-1) 

s12
E 

(x10-12 m2 N-1) 

x=0 835 0.095 450 440 -144+15i 1486-143i 13.8-0.7i -3.6+0.2i 

x=0.02 820 0.055 435 250 -83+i 1153-16i 11.3-0.1i -3.4 

x=0.05 730 0.025 420 210 -76+i 935-12i 10.6 -3.0 

x=0.02 EGG 1045 0.050 435 310 -83+3i 978-27i 12.1-0.1i -4.0 
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Fig. 1. (a) XRD patterns of the nanocrystalline Bi0.36Pb0.64Sc0.36-xMnxTi0.64O3 powders with x=0, 

0.02 and 0.05, obtained by mechanosynthesis, and (b,c) TEM images of that with x=0.02. 
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Fig. 2. XRD patterns of Bi0.36Pb0.64Sc0.36-xMnxTi0.64O3 ceramics with x=0, 0.02 and 0.05, showing 

the absence of second phases other than perovskite. 
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Fig. 3. XRD patterns with improved statistics across the perovskite parent cubic phase 200 

diffraction peak of Bi0.36Pb0.64Sc0.36-xMnxTi0.64O3 ceramics with x=0, 0.02 and 0.05, showing 

polymorphic phase coexistence and thus, location of materials at the MPB. T and R in Miller 

indices stand for the tetragonal and rhombohedral symmetries, respectively. 
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Fig. 4. SEM images of Bi0.36Pb0.64Sc0.36-xMnxTi0.64O3 ceramics with x=0, 0.02 and 0.05, showing 

the dense and homogenous fine-grained microstructures. 
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Fig. 5. SEM images and XRD pattern of a Bi0.36Pb0.64Sc0.36-xMnxTi0.64O3 ceramic with x=0.02 and 

coarsened (EGG) microstructure, showing the shift of the phase coexistence towards the 

tetragonal side of the MPB. The arrow indicates the presence of liquid phases at treble points. 
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Fig. 6. Arrhenius plots of the total dc conductivity for Bi0.36Pb0.64Sc0.36-xMnxTi0.64O3 ceramics with 

x=0, 0.02 and 0.05 (a) fine-grained and (b) after microstructure coarsening (EGG), (c) along with 

its bulk and grain boundary components, demonstrating the correct incorporation of the point 

defects (by the appearance of the low temperature electronic conduction mechanism with Ea  

0.65 eV). 
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Fig. 7. Temperature dependence of the relative permittivity for the series of                  

Bi0.36Pb0.64Sc0.36-xMnxTi0.64O3 fine grained ceramics with x=0, 0.02 and 0.05 at several 

frequencies, measured on cooling. 
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Fig. 8. Temperature dependence of the loss tangent for the series of Bi0.36Pb0.64Sc0.36-xMnxTi0.64O3 

fine grained ceramics with x=0, 0.02 and 0.05 at several frequencies, measured on cooling. 
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Fig. 9. Temperature dependence of the relative permittivity of Bi0.36Pb0.64Sc0.36-xMnxTi0.64O3 

ceramics with x=0, 0.02 and 0.05 (a) fine-grained and (b) after microstructure coarsening (EGG), 

showing the decrease of the ferroelectric transition temperature with increasing Mn. 
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Fig. 10. Ferroelectric hysteresis loops for Bi0.36Pb0.64Sc0.36-xMnxTi0.64O3 ceramics with x=0, 0.02 

and 0.05 (a) fine-grained and (b) after microstructure coarsening (EGG), showing the effect of the 

point defect engineering in increasing the coercive field (and thus decreasing the domain wall 

mobility). 
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Fig. 11. Piezoelectric radial resonances for Bi0.36Pb0.64Sc0.36-xMnxTi0.64O3 ceramics with x=0 (fine 

grained) and 0.02 (both fine grained and after microstructure coarsening), showing the effect of 

the point defect engineering in increasing the mechanical quality factor (and thus decreasing 

losses). 
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