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ABSTRACT 

High surface area graphene electrodes were prepared by simultaneous electrodeposition and 

electroreduction of graphene oxide. The electrodeposition process was optimized in terms of pH 

and conductivity of the solution and the obtained graphene electrodes were characterized by X-

ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, scanning electron 

microscopy and electrochemical methods (cyclic voltammetry and impedance spectroscopy). 

Electrodeposited electrodes were further functionalized to carry out covalent immobilization of 

two oxygen-reducing multicopper oxidases: laccase and bilirubin oxidase. The enzymatic 

electrodes were tested as direct electron transfer based biocathodes and catalytic currents as high 

as 1 mA/cm2 were obtained. Finally, the mechanism of the enzymatic oxygen reduction reaction 

was studied for both enzymes calculating the Tafel slopes and transfer coefficients. 
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1. Introduction 

The fabrication of stable and reproducible electrodes is a key issue for the development of 

electrochemical devices and their implementation in our society. The scientific community has 

developed electroactive materials and electrode fabrication protocols aiming to tailor them for 

each electrochemical application. Devices such as fuel cells [1], supercapacitors [2] and batteries 

[3] need high surface area electrodes, high electrical conductivity and controllable porosity 

among other properties. High surface area carbonaceous materials, such as carbon nanotubes 

(CNT) [4,5], carbon nanofibers (CNF) [6,7] or graphene [8,9], have attracted great interest due to 

their excellent electrical conductivity and mechanical properties. Graphene has been intensively 

studied in the latter years, focusing on its physicochemical and electrochemical properties to 

utilize it as a catalytic support on the electrode surface [10,11].  

Graphene can be produced following many strategies: mechanical exfoliation of highly 

oriented pyrolytic graphite (HOPG), thermal decomposition of SiC wafers, chemical vapour 

deposition (CVD) on metal substrates, substrate-free CVD or reduction of graphene oxide (GO) 

by chemical, thermal or electrochemical means [12]. Each of these strategies provides graphene 

with different characteristics. Manufacturing graphene-based electrodes has to overcome the low 

reproducibility of the current fabrication methods, i.e. drop-casting, brushing or spraying [13-

15]. Recently, the electrodeposition of graphene oxide and its simultaneous electrochemical 

reduction on the electrode surface has been proposed as a reproducible method for the fabrication 

of stable and high surface area electrodes [16-18]. 
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Graphene-based electrodes have been used for several applications, such as biosensing or as 

support for further immobilization of enzymes [9,10]. Multi-copper oxidases (MCOs) have been 

widely used in the preparation of biosensors and/or biocathodes due to their capability of 

catalyzing the oxidation of different organic and inorganic substrates with the concomitant 

reduction of oxygen to water directly to water without production of highly reactive oxygen 

species. MCOs typically contain four redox-active Cu ions classified according to their 

spectroscopic signal as T1 copper and the trinuclear cluster (TNC), which consists on a T2 

copper ion and two T3 copper ions [19]. It is generally accepted that the T1 site is the primary 

electron acceptor from the substrate and then the electrons are transferred to the TNC cluster site 

which converts oxygen to water through a four electron reduction reaction. These enzymes 

attracted a great interest as they show fast direct electron transfer (DET) reactions [20]. 

In the present work the GO electrodeposition method has been optimized to produce a high 

surface area electrode that includes oxygen-based functional groups (-OH, -O-, -C=O, -COOH). 

Such functional groups allow the oriented immobilization of multi-copper oxidases (MCOs) to 

achieve DET (Figure 1).  Myrothretium verrucaria bilirubin oxidase (BOx) and Trametes hirsuta 

laccase (Lac) have been selected as biocatalysts on the biocathodes, which could be used in 

enzymatic fuel cells [21]. However, this fabrication method of nanostructured electrodes can be 

extended to any electrochemical application where high surface area and high electrical 

conductivity are needed, and where oxygen functionalities can be used for the immobilization of 

different biogenic and non-biogenic catalysts. 

2. Materials and methods 

2.1 Materials 
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 All chemicals used were analytical grade and were used as purchased. Graphene oxide (GO) 

from Nanoinnova Technologies SL (Spain) was used in powder form with no further 

purification. Nanoinnova’s GO is produced by oxidation of graphite following Hummer´s 

method [22]. 

4-nitrobenzene diazonium perchlorate, n-tetrabutyl ammonium fluoroborate, sodium nitrite,1-

(3-dimethylamino-propyl)-3-ethylcarbodiimide (ECD), morpholino-ethanesulphonic acid (MES), 

2,2’-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), NaClO4, D2O, 

6-amino-2-naphtoic acid (NA), N-hydroxysuccinimide (NHS) and potassium ferrocyanide were 

purchased from Sigma-Aldrich (USA). Hydrochloric acid 37%, acetic acid 96%, KOH, NaIO4, 

sodium chloride, di-sodium hydrogen phosphate, sodium di-hydrogen phosphate and acetonitrile 

HPLC grade were purchased from Panreac (Spain). All aqueous solutions were prepared in 

deionized water using a Milli-Q system from Millipore (USA). 

2.2 Enzymes 

Lac from basidiomycete Trametes hirsuta from basidiomycete (strain T. hirsuta 56), was 

obtained from the laboratory collection of the Moscow State University of Engineering Ecology 

following the purification procedure previously reported [23]. Purified samples of Myrothecium 

verrucaria BOx, expressed recombinantly in Aspergillus oryzae, have been provided by 

Novozymes A/S (Denmark).  

The specific activity of both enzymes was measured spectrophotometrically at 414 nm using 1 

mM ABTS as substrate, using a Shimadzu UV-2401 PC spectrophotometer [24]. The measured 

values were 20 and 553 UABTS/mgenzyme for BOx and Lac respectively. 

2.3 Electrochemical measurements  
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Electrochemical experiments were carried out in a standard three-electrode cell, with Pt wire 

as a counter electrode and a Ag/AgCl/3 M KCl reference electrode from Bioanalytical Systems 

(USA), using a µAutolab Type II/FRA2 potentiostat/galvanostat from Metrohm Autolab B.V. 

(The Netherlands). All electrode potentials reported in this work are given vs. Ag/AgCl, 3M KCl 

(0.210 V vs. SHE) unless otherwise stated. Electrochemical impedance spectroscopy (EIS) 

experiments were recorded applying 10 mV amplitude potential over a frequency range of 100 

kHz to 0.1 Hz. 10 mM K3[Fe(CN)6] in 0.1 M KCl was used as an electrochemical probe. 

Impedance spectra were fitted using electrical equivalent circuits with ZView3.1c software from 

Scribner Associates Inc. (USA). All electrochemical measurements were performed using 

NOVA 1.9 software from Metrohm Autolab B.V. 

Electrodeposition (ED) was performed on glassy carbon (GC) rotating disk electrodes of 5 

mm diameter from Pine Instrument Co. (USA) and on gold-coated substrates (1 × 1 cm2) from 

Metallhandler Schroer GmbH (Germany). The geometric area of the electrodes was considered 

for determining current densities. Prior to their use the electrodes were carefully cleaned as 

follows: GC electrodes were polished against 0.05 µm alumina slurry (Buehler, USA) and then 

immersed into a 2:1 EtOH/H2O solution and sonicated for 15 min. The gold-coated substrates 

were cleaned using the previously reported procedure [25]. First of all an aqueous solution 

containing 150 mM NaCl and 0.5 mg mL-1 GO was sonicated for 30 min, and neutralized with 

0.5 M KOH. The exfoliated GO dispersion served as electrolyte for the ED of GO, which 

consisted on 30 cyclic voltammetry (CV) scans ranging from 0.8 to -1.5 V at 10 mV/s scan rate. 

The same process was used to modify both GC and gold electrodes. All electrodeposition 

experiments were carried out at room temperature, under deoxygenated conditions and with 

magnetic stirring. 
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Electrocatalytic oxygen reduction experiments were carried out in 100 mM phosphate buffer 

solution pH 7.4 or 50 mM acetate buffer pH 4.2 with 100 mM NaClO4 at room temperature. 

Buffers were purged with N2 (99,999% purity) from Air Liquide-Spain prior to experiments for 

deoxygenated conditions, and purged with O2 (99,999% purity, Air Liquide) in the case of ORR 

catalytic measurements. Mediated electron transfer (MET) measurements were carried out in 

presence of 0.1 mM ABTS.  

2.4 Enzyme immobilization on graphene electrodes 

The electrochemically reduced graphene oxide–glassy carbon (erGO-GC) electrodes were 

functionalized with aryl diazonium derivatives to covalently immobilize the enzymes. For BOx 

immobilization the erGO-GC electrodes were functionalized with 2-carboxy-6-naphtoyl 

diazonium salt (NA-erGO-GC), which was synthesized in situ following a known procedure that 

furnishes naphtoic acid functionalized electrodes [26]. NA-erGO-GC electrodes were incubated 

in 20 µL of 4 mg mL-1 BOx solution in 10 mM, pH 6.0 MES buffer for 1h, followed by the 

deposition of 10 µL of the buffer solution containing 36 mM EDC and 17 mM NHS on the 

electrode surface for 2h. For Lac immobilization the erGO-GC electrodes were functionalized 

with 4-aminoaryl diazonium salt (AP-erGO-GC) following a reported procedure that provides 

aminoaryl functionalized electrodes [27]. In parallel 5 µL of 7.5 mg/ml Lac solution in 0.1 M, 

pH 6.5 phosphate buffer were placed into 55 µL of 10 mg mL-1 NaIO4 solution for 30 minutes 

under daylight conditions. In order to increase the pH to about 7, 90 µL of 100 mM Na2HPO4 

were added to the solution. AP-erGO-GC electrodes were incubated in the treated Lac solution 

for 90 minutes. Finally, 10 µL of 10 mM MES buffer solution (pH 6.0) containing 36 mM EDC 

and 17 mM NHS were deposited on the electrode surface for 2h. 

2.5. X-ray photoelectron spectroscopy characterisation 
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X-ray photoelectron spectroscopy (XPS) measurements were performed using a PHOIBOS 

150 9MCD analyser UHV system from PECS GmbH (Germany). Spectra with Mg (group 2) and 

Al (group 4) at 200 W and 12 kV were recorded. Peak fitting and deconvolution was carried out 

using a CASAXPS 2.3.16Dev52 software with Shirley background, calibrating the spectra to 

284.8 eV peak of C1s, and also using a Gaussian/Lorentzian fit of G/L=30.  

2.6. Scanning electron microscopy characterisation 

Scanning electron microscopopy (SEM) images were obtained using a TM-1000 Tabletop 

microscope from Hitachi (Japan). 

2.7. Fourier transform infrared spectroscopy characterisation 

Fourier transform infrared (FTIR) spectroscopy was performed in a Tensor 27 spectrometer 

from Bruker (Germany) equipped with a globar IR source, a MCT detector cooled by liquid N2, 

as well as a Whatman purge gas generator for removal of CO2 and H2O. A FTIR 

spectroelectrochemical cell [28] was used to study the electrochemical reduction of a GO 

suspension (0.5 mg/mL) in D2O. 1024 scans with resolution of 2 cm-1 were recorded after 

applying a potential of -1.5 V for 5, 30 and 60 minutes. Background subtraction and baseline-

correction of the FTIR spectra were done using OPUS software from Bruker. 

3. Results and discussion 

3.1. Fabrication and characterisation of graphene electrodes 

The oxidation, and subsequent exfoliation, of graphite to graphene oxide (GO) by Hummer’s 

method provides a material with high degree of oxygen functionalities (i.e. carboxyl, hydroxyl 

and epoxy groups), good dispersibility in aqueous solutions and negative zeta potential over 

almost the whole pH range (between -20 and -40 mV) [14,29,30]. These properties allow the 

electrophoresis of GO sheets dispersed in an aqueous solution upon application of an electric 
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field; therefore developing a method to simultaneously deposit and reduce GO by 

electrochemical means. Glassy carbon and gold substrates were modified with GO by its 

electrodeposition, providing high surface area and electrically conductive electrodes in the 

absence of binders or other additives. 

 The electrodeposited electrodes were fabricated by cyclic voltammetry, as shown in Figure 

2A. The optimization of ED parameters was carried out by modifying the scan rate, number of 

cycles and electrolyte concentration. Successful ED was obtained by maintaining the scan rate 

between 10-50 mVs-1, and applying a number of cycles between 10 and 40 to ensure an 

appropriate cover. In all experiments reported ED was performed at 10 mVs-1 for 30 cycles. The 

salt concentration in solution ranged from 100 to 250 mM to provide enough ionic strength and 

conductivity to the electrolyte solution [16]. These conditions allow the formation of a stable GO 

dispersion in terms of charge and size, also allowing optimum transfer of GO particles to the 

electrode and their subsequent electrochemical reduction. It could be noticed that increasing the 

number of scans lead to a direct enhancement of the capacitive area of the electrode. Cyclic 

voltammogramms (CVs) exhibited two well-defined anodic and two cathodic waves. The 

cathodic wave starting at -1.0 V is attributed to the irreversible electrochemical reduction of GO 

[18], whereas the anodic and cathodic processes at -0.4 and -0.1 respectively may be attributed to 

electrochemically active oxygen functionalities present on the GO surface, as reported in 

literature [17]. The peak currents and capacitance increased with the number of scans, indicating 

that the deposition of GO and its concomitant reduction on the electrode surface indeed took 

place (Figure 2A). 

Figure 2B shows the CVs of the erGO-GC electrodes before and after 30 min rotation at 1,500 

rpm in the presence of 5 mM K3[Fe(CN)6] in 0.1 M KCl. The capacitive current, which is 
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directly related to the surface area of the electrode, remained almost the same indicating that 

there is no material segregation. Therefore, the electroreduction process created a stable modified 

electrode due to the strong bonds between the electrode and the GO. 

The erGO was characterized by SEM and XPS. For these measurements the electrodeposition 

of GO was done on Au-plated substrates (Figure S1, Supplementary Data). Gold is preferred as 

support for XPS measurements to avoid the interference of a carbon-based supporting material in 

the spectra. Furthermore, the Au plates fitted perfectly in the sample compartments of both SEM 

and XPS instruments, whereas the rotating GC electrodes did not. Figure 3 shows the 

morphology of a graphene-modified gold substrate obtained previously by cyclic voltammetry. 

In Figure 3A, a non-homogenous deposition is appreciated, suggesting that electrodeposition of 

GO followed a particle nucleation mechanism and subsequent growth of electroreduced GO 

aggregates. Aggregates with sizes as large as 200 µm were generated in the electrodeposition 

method, creating ca. 100 µm channels in between (Figure 3A). Additionally, pores of 10-20 µm 

diameters within the aggregates can be observed at higher magnification (Figure 3B). The high 

dispersion and porosity of graphene is expected to provide high surface area and good diffusion 

properties to the electrodes, which would enhance the overall performance in electrocatalytic 

applications in terms of catalyst coverage and mass transport, respectively. 

During the electrodeposition process GO is reduced to graphene, referred here as 

electroreduced graphene oxide (erGO). Some oxygen functionalities are eliminated during this 

process, recovering the electrical conductivity (by sp2 configuration) of the graphene structure 

while partially maintaining oxygen functional groups. This is confirmed by XPS studies 

performed on GO and erGO (Figure 4). By this technique the oxygen-carbon ratio for both 

materials was calculated as 0.45 and 0.37 for GO and erGO, respectively. The analysis of the 



10	
	

C1s binding energy region by deconvolution of the peak exhibited three different components in 

the case of GO (Figure 4A), which are assigned to aromatic sp2 structures at 284.3 eV (40.77%), 

single C-O bonds (in hydroxyl and epoxy groups) at 286.3 eV (48.54%) and carbon doubly 

bonded to oxygen at 287.6 eV (10.69%) [31]. In the O1s region (Figure 4B), deconvolution 

exhibited three different components, corresponding to doubly bonded oxygen (in carboxylic 

groups) at 530.6 eV (4.10%), singly bonded oxygen (in hydroxyl, ether, epoxy and peroxy 

groups) at 532.4 eV (95.38%) and singly bonded oxygen in peroxy acid and peroxy ester groups 

at 534.6 eV (0.52%) [32]. 

Once the electrodeposition, and subsequent electroreduction of GO was achieved, the XPS 

spectrum differs notably due to the elimination of some oxygen functionalities during the 

process. In the case of C1s region of erGO (Figure 4C), the component at 284.3 eV exhibited an 

increase in the signal (47.05%) and a new component at 285.2 eV (3.86%) appeared 

corresponding to carbon-carbon double bonds (C=C, sp2) and carbon-carbon single bonds (C-C, 

sp3), respectively. This confirms the restoration of the graphitic structure of graphene oxide after 

electrodeposition. Furthermore, the component at 286.3 eV corresponding to oxygen-carbon 

single bonds, C-O, decreased (45.22%) suggesting a loss in hydroxyl and/or ether/epoxy groups. 

The signal corresponding to double bonded C=O groups at 287.6 eV disappeared, indicating the 

elimination of carboxylic groups. A small contribution of a new component at 290.4 eV (3.87%) 

is attributed to π→π* shake up satellite of graphitic carbons.33 The O1s region of erGO (Figure 

4D) exhibited a decrease in the component at 532.4 eV (86.9%), in good agreement with data 

obtained in the C1s binding region, corroborating partial loss of hydroxyl and/or epoxy/ether 

groups. The appearance of a new peak at 533.1 eV (%13.1) attributed to singly bonded oxygen in 
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acids, esters and hydroperoxides suggested the formation of these groups from the reduction of 

other oxygenated groups, i.e carboxylic acids.  

In order to obtain further chemical information of the changes imposed on GO upon 

electrodeposition, FTIR spectro-electrochemical measurements were carried out for a GO 

suspension after applying a reductive potential (-1.5V) for 5, 30 and 60 minutes. As shown in 

Figure 5, the spectrum of GO before applying any reduction potential illustrates a broad and 

intense peak around 3500-3300 cm-1 attributed to O-H stretching, a peak at ̴ 1720 cm-1 assigned 

to C=O stretching of carboxyl and/or carbonyl groups, peaks corresponding to aromatic rings, 

C=C and C-C in the region between 1620-1450 cm-1, a peak around 1210 cm-1 attributed to aryl 

O-C stretching, and at around 1100 cm-1 a peak assigned to alkoxy or epoxy C-O stretching 

vibrations. The peaks immediately below 3000 cm-1 are generally ascribed to symmetric 

stretching vibrations for –CH2 groups [34-36]. Upon electrochemical reduction the relative 

intensity of the peaks attributed to oxygen functionalities, such as O-H at 3500-3330 and C=O at 

1720 cm-1, decrease significantly, as expected. Meanwhile the intensity of the bands typical of 

aromatic region in general has increased, suggesting the restoration of the aromatic sp2 carbon 

structure. Also the intensity of the peak at ̴ 1100 cm-1 increase, probably due to the formation of 

new C-O bonds from the reduction of carboxylic groups. From all this data it can be concluded 

that during the electrochemical reduction process the aromatic sp2 carbon structure is restored 

and although oxygen functionalities are indeed eliminated, some still remain in the material after 

the process, mainly as hydroxyl and epoxy groups. 

Electrochemical characterization of the modified electrodes was carried out by impedance 

spectroscopy and cyclic voltammetry in presence of K3[Fe(CN)6] as a redox probe. A 

satisfactory approximation (χ2 about 10-3, where χ2 represents how accurate the fitting is respect 



12	
	

to the experimental data) of EIS data (Figure 6A) was obtained using the fitting corresponding to 

the equivalent circuit (EC) reported in Figure 6B. These are in good agreement with the ECs 

reported in literature for similar systems [37]. In the circuit, Rs is the cell resistance, Rct 

represents the charge transfer resistance at the solid-liquid interface and Zw is the Warburg 

impedance resulting from the diffusion of the redox couple towards the electrode surface. CPEdl 

and CPEpol are constant phase elements modeling a non-ideal capacitor representing the charge 

separation of the double layer and the polarization of the erGO material, respectively. The CPE 

exponent α (Table 1) represents the roughness and non-uniformity of the electrode surface, with 

values ranging from 1 to 0.5. CPEs were used to correctly fit the depressed semi-circle character 

of the response. The Warburg element is characterized by a diffusional time constant, a 

diffusional capacitance and a diffusional resistance. In the case of the erGO-GC electrode, 

without significant errors it was only possible to fit the spectra at the low frequency region with 

the addition of an extra capacitance in series with the Warburg element [38]. As seen in Figure 

6A, the spectra exhibit a well-defined semicircle at the high frequency region with a larger 

diameter for bare GC, thus determining a Rct value two orders of magnitude greater than that of 

erGO-GC (Table 1). Capacitive lines appear in the low frequency region of the erGO-GC 

spectrum, typical behavior of a restricted diffusion within the graphene material [38,39]. 

Table 1.  Values of the parameters obtained by fitting the impedance spectra with the equivalent circuits 
shown in Figure 6B for bare GC and erGO-GC electrodes. 

	 Rs (Ω) Rct (Ω cm2) CPEdl (F cm-2 s α-1) αdl Zw (Ω cm-2 sα-1) τ α CPEpol (F cm-2 s α-1) αpol 

Bare GC 
 

69.6 

 

 

151 

 

 

2.84E-05 

 

0.88 

 

19230 

 

0.8 0.22 - - 

erGO-GC 
 

51.9 

 

 

1.4 

 

 

0.0018 

 

0.75 

 

2335 

 

9 0.65 

 

0.46 

 

0.55 
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The fact that erGO-GC exhibited smaller Rct and Zw values and higher CPEdl values compared 

to those of bare glassy carbon confirms improved electron transfer at the electrode-electrolyte 

interface, which is attributed to some extent to a more conductive character of the graphene 

material. The αdl value is lower in the case of erGO-GC, a sign of a higher porosity and non- 

uniformity of the graphene-electrode interface. 

CVs of bare GC and erGO-GC electrodes were recorded in the presence of the electroactive 

redox probe 10 mM K3[Fe(CN)6] in  0.1 M KCl at different scan rates (5 to 200 mV s-1).  The 

effect of the scan rate on the redox couple signal for the electrodes is shown in Figure 7. Well 

defined oxidation and reduction peaks are observed, as well as a significant increase in the 

capacitive area for the graphene-based electrode (Figure 7, A-B). The peak-to-peak separation 

(ΔEp) is 65 mV at 10 mVs-1 for the erGO-GC electrode. As this value is related to the 

heterogeneous electron transfer rate constant, a low ΔEp close to the ideal value of 59 mV 

indicates a fast ET for a single-electron electrochemical reaction [10]. A slight peak potential 

shift with increasing scan rate was observed indicating a level of quasi-reversibility in the 

system. However, the linear relationship of peak intensity vs. the square root of the scan rate, 

following Randles-Sevcik relationship [40], indicates that the process is predominantly 

diffusion-controlled (Figure 7, C-D). This diffusion limitation is also suggested by a modest 

three-fold increase in the peak currents of the erGO-GC electrode compared to the bare GC one, 

despite the tenfold increase of the double layer capacitance of the modified electrode. This is in 

good agreement with the result obtained by impedance spectroscopy where the presence of the 

Warburg element confirms a diffusion-controlled behavior.  

3.2. Electrocatalytic performance of enzymatic electrodes  
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The robust, stable and high surface area electrode of erGO-CG may be used as support for 

different electrochemical applications, such as the immobilization of enzymes and it was thus 

tested as a biosensor or a biocathode/bioanode. Indeed, the remaining oxygen functionalities of 

erGO provide reactive groups where further functionalization can be performed in order to carry 

out covalent immobilization of enzymes. In this work two redox enzymes from the multicopper 

oxidase family were used: Lac and BOx. Both of them catalyze O2 reduction to H2O and have 

been frequently studied for biocathode development [41-43].  

The surface of erGO was functionalized with an amino-aryl nanolayer in order to anchor Lac, 

which was done in two steps. First, Schiff’s bases were formed between the amino groups of the 

electrode surface and aldehyde groups that had be obtained previously by oxidation of the 

laccase´s sugar residues with periodate, and after by establishing amide bonds by carbodiimide 

coupling [27]. BOx was immobilized on naphtoic acid-functionalized electrodes by amide bonds 

between the lysine residues of the enzyme and the carboxylic groups of the electrode surface 

[26]. These methods provide robust and oriented immobilization of the enzymes on the electrode 

allowing fast DET [26,27]. 

The electrocatalytic response to O2 reduction of the Lac-erGO-GC and BOx-erGO-GC 

electrodes was tested by cyclic voltammetry (Figure 8). The electrochemical results showed that 

in both cases the capacitive area of the electrode is enhanced in comparison with bare GC. 

Additionally a strong electrocatalytic effect is detected, reaching a current density plateau (after 

subtraction of the capacitive current) of ca. 1 mA/cm2 and 0.4 mA/cm2 for Lac and BOx modified 

electrodes, respectively, at 1500 rpm. All results are consistenly reproducible. O2 reduction 

control experiments were performed by immobilizing BOx on a GC electrode following the 

same strategies but in absence of erGO. In this case no catalytic response was observed (Figure 
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S2, Supplementary Data).The same negative results have been previously obtained by our group 

also for Lac immobilized on GC electrode [44]. The absence of bioelectrocatalytic response is 

attributed to the lower electroactive area of bare GC compared to that of erGO-GC and to smaller 

pore dimensions, which do not facilitate an adequate immobilization of the enzymes for DET 

[44]. Therefore the presence of graphitic carbon is crucial for obtaining electroenzymatic 

reduction of O2 by DET. Figure 8 shows a clear mass transport limitation under stationary 

conditions due to the thickness of the catalytic layer; this limitation is reduced upon rotation of 

the erGO-GC electrode at 500 rpm. However, further increase in the rotational speed rate only 

marginally improved the response. Addition of 0.1 mM ABTS as redox mediator increased the 

current density by 20% and 24% for Lac-erGO-GC and BOx-erGO-GC electrodes respectively, 

indicating that some enzyme molecules are not adequately oriented for a DET reaction. The 

current density was measured at 100 mV from the onset potential, where a purely kinetic regime 

is expected. 

In order to study the purely kinetic contribution of the electrodes towards ORR [45], 

polarization curves of the Lac-erGO-GC and BOx-erGO-GC electrodes were obtained by 

subtracting the blank cathodic scans measured under N2 to the ones measured under O2, thus 

eliminating the capacitive currents of the electrodes (Figure 9A). Tafel plots were obtained from 

the polarization curves after correction of the ohmic drop caused by the resistances of the system 

(mainly by ionic resistance of the electrolyte) and of the mass transport limitations of oxygen 

from the solution to the electrode (Figure 9B) [45]. The iR drop was corrected using the Rs value 

obtained from the intersection of the semicircle at the high frequency region of Nyquist plot, 

whereas the mass transport corrected current density was calculated using equation (1) [45], 

derived from the Koutecky-Levich equation for a first order reaction: 
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𝑗! =
!∗!!
!!!!

          (1) 

where jk is the calculated kinetic current density and jL the limiting current density under mass 

transport control. The jL value at 500 rpm rotation speed was theoretically calculated as 3.5 

mA/cm2 from the Levich equation (2) [40]: 

  𝑗! = 0.62𝑛𝐹𝐷!
!
!𝑣!! !𝐶!ω

!
!        (2) 

where n is the number of electrons involved in the ORR process (4), F is the Faraday constant 

(96486 C/mol), D0 is the diffusion constant of O2 (2.4 × 10-5 cm2/s), v is the kinematic viscosity 

(9.2 × 10-3 cm2/s) and C0 is the bulk concentration of O2 in a saturated water solution (1.1 × 10-6 

mol/cm3) at the experimental conditions of 25ºC, 705 mmHg and 0.1 M salt [46], and ω is the 

electrode rotation speed in rad/s. 

From the polarization curves an onset potential of 0.64 V and 0.49 V was observed for Lac-

erGO-GC and BOx-erGO-GC, respectively (Figure 9A). The ca. 150 mV difference in onset 

potential is attributed to the difference in the redox potential of the copper T1 site of each 

enzyme [20], as the different proton activity of the electrolytes (2.8 pH units) is not considered to 

have an effect due to the thermodynamic potential given by the Nernst relationship [47]. In order 

to propose an oxygen reduction reaction mechanism for the enzymatic electrodes, multistep and 

multi-electron reactions are considered with both an α transfer coefficient (a) and Tafel (b) 

expressions as follows [45]: 

𝛼 = !
!
+ 𝑟𝛽   (a)       !"

!"#$%
= !.!!"

!"
  (b)                              (2) 

where γ stands for the number of electrons transferred in the step prior to the rate determining 

step, v is the number of times the step occurs per cycle (stoichiometric number), r is the number 

of electron transferred in the rate determining step, β stands for the symmetry factor and R is the 

ideal gas constant, T the temperature and F the Faraday constant.  
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Tafel plots exhibited a linear region where slopes of 84 mV dec-1 and 129 mV dec-1 were 

obtained for BOx-erGO-GC and Lac-erGO-GC respectively (Figure 9B). This difference in Tafel 

slope, and thus transfer coefficient, suggests that despite both enzymes carried out the same 

electrochemical reaction, the reaction mechanism, or more likely, the rate determining step is 

different [48]. Solomon et al. proposed the following ORR mechanism for multicopper oxidases, 

where a ping-pong type mechanism is considered with four substrate molecules undergoing a 

single electron oxidation step at the T1 site for the four-electron reduction of oxygen to water at 

the TNC site [49]. Thorum et al. implemented this mechanism for Laccase-modified Au 

electrodes [45]: 

1. CuT1
2+ + e-à CuT1

+ 

2. CuT1
+ + CuT2/T3

2+à CuT1
2+ + CuT2/T3

+ 

3. O2 + CuT3
+àPI 

4. PI à NI 

5. NI + 4H+à 2H2O + 4Cu2+ 

where PI and NI are the peroxy and native intermediates, respectively [49]. Considering the 

expressions in equations 2a and 2b, the rate determining step for each process can be proposed 

[45]. In the case of Lac-erGO-GC electrode, an α transfer coefficient close to 1/2 is obtained 

from the Tafel slope value of 129 mV dec-1, which is the expected value for an ideal one electron 

transfer process at ambient temperature [50]. If we consider the first step of the reaction 

mechanism as the rate limiting step, where α=β [45], a symmetry factor (β) of 0.5 is obtained, 

which is the typical value considered in this kind of systems. Therefore, the Tafel plot suggests 

that DET to the T1 site of the immobilised Lac is the rate determining step of the overall 

bioelectrocatalysis, in good agreement with previous work by other authors on Lac electrodes 
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[45,50,51]. However, in the case of our BOx-based electrode, α~2/3 is obtained from the Tafel 

slope value of 84 mV dec-1. Considering the same ORR mechanism for this electrode, α lays 

between the value for the first step being the rate limiting one (α=1/2) and the second step being 

rate limiting (where γ=4, v=3 and thus, α=4/3). Therefore, this α value could be attributed to a 

mechanism where both first (outer electron transfer from the electrode) and second 

(intramolecular electron transfer) are rate-limiting [45]. On the one hand, these results are in 

excellent agreement with previously published data concerning possible changes of the rate 

limiting step during bioelectrocatalytic reduction of oxygen by BOx due to pH changes of the 

electrolyte, i.e., from heterogeneous to intramolecular ET in acidic and basic media, respectively 

[41, 52]. On the other hand, we cannot rule out an effect of heterogeneous current density 

distribution due to the high surface area provided by graphene on the electrode surface [53].  

 

4. Conclusions 

Graphene has been used to enhance the properties of glassy carbon as electroactive platform 

for bioelectrocatalytic reduction of O2. The electrodeposition of graphene oxide on the glassy 

carbon supports results in a more uniform coverage than previously reported methods [13-15] 

with additional advantages, such as avoiding extra polymer layers. The electrochemical 

reduction of GO yielded a highly porous conductive surface that still has oxygen based 

functional groups (mainly hydroxyl or epoxy), which were used to immobilize two biocatalysts: 

Lac and BOx. In both cases high capacitive area and high current density (up to 1 mA cm-2) were 

obtained. Mechanistic studies of BOx and Lac- based electrodes showed that they exhibit 

different Tafel slopes, suggesting a different rate limiting step during bioelectrocatalysis if the 

same ORR mechanism is considered. 
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All these results highlight that this kind of electrodes could be used in the design of 

biocathodes or other electrochemical applications. 
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Figure 1. Scheme of graphene-based electrodes preparation and their modification with 

multicopper oxidases. 

Figure 2. (A) Electrodeposition of GO on a GC electrode at 10 mV s-1 scan rate (1st, 5th, 10th, 

15th, 20th, 25th and 30th scans are shown).(B) CVs of erGO-GC electrode at a scan rate of 50 

mVs-1 in the presence of 5 mM [Fe(CN)6]3+ before (a) and after (b) 30 min of rotation at 1,500 

rpm. All CVs were done at room temperature. 
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B 

Figure 3. SEM micrographs at different magnifications, (A) x100 and (B) x1000 of 

electrodeposited GO by cyclic voltammetry (30 cycles) on a Au electrode. 

Figure 4. XPS spectra of C 1s (A, C) and O 1s (B, D) bands of (A, B) GO and (C, D) er-GO. In 

all spectra the continuous black and grey lines are the experimental curve and the baseline 

correction, respectively; the hatched black lines are the different components obtained by the 

deconvolution process and the red ones are the total curves obtained from the sum of each 

component, exhibiting an optimum fit of the experimental data. The whole XPS spectra are 

shown in Figure S2. 

A
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Figure 5. FTIR spectra of GO suspension in D2O before (black curve) and after applying a 

potential of -1.5 V for 5 (red), 30 (blue) and 60 (green) minutes. Baseline correction and 

background subtraction (D2O) were made for all spectra.  

 

 

 

 

 

Figure 6. (A) EIS experimental spectra at room temperature for bare GC (black) and erGO-GC 

(red); the lines represent equivalent circuit fitting, whereas the dots represent the experimental 

data. Inset plot: magnification of the high frequency region of the complex plane plot. (B) 

Equivalent circuit of a) bare GC and b) erGO-GC electrode. 
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Figure 7. CVs  recorded at room temperature in the presence of 10 mM K3[Fe(CN)6] for erGO-

GC (A) and bare GC  (B) electrodes at 5, 10, 20, 50, 100. 200 mVs-1. Peak intensity vs. the 

square root of the scan rate for erGO-GC (C) and bare GC (D) electrodes. 
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Figure 8. Electrocatalytic oxygen reduction at room temperature with (A) Lac-erGO-GC and (B) 

BOx-erGO-GC electrodes. Curves (a) and (b) represent CVs in a N2 (a) or O2 (b) saturated 

atmosphere at 0 rpm. Curves (c), (d) and (e) were recorded at 500, 1000 and 1500 rpm 

respectively in an O2 saturated atmosphere. CVs were performed at 10 mVs-1 in 50 mM acetate 

buffer pH 4.2 containing 100 mM NaClO4 (A)  or 100 mM phosphate buffer pH 7.4 (B). 

 

Figure 9. (A) Background-corrected polarisation curves for (a) BOx-erGO-GC and (b) Lac-

erGO-GC electrodes at 500 rpm rotation speed, room temperature and 10 mVs-1 scan rate and 

(B) Tafel plots of Box-erGO-GC (black dots) and Lac-erGO-GC (white dots) electrodes obtained 

after correcting the ohmic drop and the mass transport limited current.  

 

 


