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Abstract 24 
 25 
Aim. When faced with dichotomous events, such as the presence or absence of a 26 

species, discrimination capacity (the ability to separate the instances of presence from 27 

the instances of absence) is usually the only characteristic that is assessed in the 28 

evaluation of the performance of predictive models. Although neglected, calibration or 29 

reliability (how well the estimated probability of presence represents the observed 30 

proportion of presences) is another side of model predictive performance that provides 31 

important information. In this study, we explore how changes in the distribution of the 32 

probability of presence make discrimination capacity to be a context-dependent 33 

characteristic of models. For the first time, we explain the implications that ignoring the 34 

context-dependence of discrimination can have in the interpretation of species 35 

distribution models. 36 

Innovation. In this manuscript we corroborate that, under a uniform distribution of the 37 

estimated probability of presence, a well-calibrated model will not attain high 38 

discrimination power and the AUC value will be 0.83. Under non-uniform distributions 39 

of the probability of presence, simulations show that a well-calibrated model can attain 40 

a broad range of discrimination values. These results illustrate that discrimination is a 41 

context-dependent property, i.e., it informs about the performance of a certain algorithm 42 

in a certain data population.  43 

Main conclusions. In species distribution modelling, the discrimination capacity of a 44 

model is only meaningful for a certain species in a given geographic area and temporal 45 

snapshot. This is because the representativeness of the environmental domain changes 46 

with the geographical and temporal context, which unavoidably entails changes in the 47 

distribution of the probability of presence. Comparative studies that intend to generalize 48 

their results only based on the discrimination capacity of models may not be broadly 49 
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extrapolated. Assessment of calibration is especially recommended when the models are 50 

intended to be transferred in time or space.   51 

 52 

Keywords: area under the ROC curve, calibration, classification, contingency matrix, 53 

discrimination, probability, reliability, species distribution modelling, uncertainty. 54 

55 
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INTRODUCTION 56 

Models, as simple representations of a complex world, make possible the quantification 57 

and understanding of natural phenomena and the generation of predictions (Soetaert & 58 

Herman, 2009). Predicting dichotomous events is necessary in a variety of every-day 59 

situations ranging from wine quality assessment to diagnostic medicine (Swets et al., 60 

2000). In the fields of ecology, biogeography, and evolution, predicting species´ 61 

occurrence (species distribution modelling, herein SDM; see Franklin, 2009 and 62 

Peterson et al., 2011 for recent reviews) has become an important approach in 63 

overcoming what has been called the Wallacean shortfall, i.e., the general lack of 64 

knowledge about the distribution of the species (Whittaker et al., 2005).  65 

 66 

For models to be considered useful, they need to be evaluated (Rykiel, 1996). Usually, 67 

predictive performance is the only facet on which researchers focus their attention on, 68 

and it is desirable that the predictions match the observations as close as possible. When 69 

faced with a dichotomous event, the most common practice is to assess discrimination 70 

capacity, i.e., the effectiveness of the scoring rule (S; usually called suitability in SDM) 71 

for separating the positive (instances of presence of the species, Y = 1) from the 72 

negative (instances of absence of the species, Y = 0) outcomes (Harrell et al., 1984). The 73 

area under the receiver operating characteristic (ROC) curve (AUC) has been a widely 74 

adopted statistic in measuring discrimination power (Hilden, 1991; Swets et al., 2000; 75 

Lobo et al., 2008; see Krzanowski & Hand, 2009 for extensive details on the ROC 76 

analysis). The AUC can be interpreted as the probability p(S|Y = 1>S|Y = 0), i.e., the 77 

probability that a positive case chosen at random will be assigned a higher S than a 78 

negative case chosen at random. Therefore, what is important for the AUC is the 79 

ranking of the S values, not their absolute difference. This simple interpretation has 80 
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probably contributed to its widespread use, though not exempt from criticisms (Hilden, 81 

1991; Lobo et al., 2008; Peterson et al., 2008; Jiménez-Valverde, 2012). In this study, 82 

the AUC will be used to account for discrimination as it is a common statistic and 83 

because our results do not depend on the used metric, but are relevant for any 84 

discrimination measure.       85 

 86 

If S is expressed as probability of presence, then the calibration of the model is an 87 

additional aspect of predictive performance that should be assessed (note that 88 

transformations of S can be used to recalibrate any kind of scoring rule; see Thomas et 89 

al., 2001). Calibration has different meanings; in statistics, the most widely used refers 90 

to the model fitting process. In this study, we understand calibration (or reliability) as 91 

the degree to which the observed proportion of positive cases (empirically estimated 92 

probabilities) equates to the model estimated probabilities in any given testing data set 93 

(Harrell et al., 1984; Hosmer, & Lemeshow, 2000). In a well-calibrated model, p(Y = 94 

1|S) = S. For instance, in an SDM context, one would want 80% of the locations 95 

predicted with a probability of 0.8 to be occupied by the focus species. The calibration 96 

graph, in which p(Y = 1|S) is plotted as a function of S, is an easy way to assess 97 

calibration (Harrell et al., 1996); the graph of a perfectly calibrated model will match 98 

the identity (45º) diagonal (for further details see Sanders, 1963 and Pearce & Ferrier, 99 

2000). Calibration and discrimination are two aspects of a multisided general concept, 100 

that is, prediction performance (Sanders, 1963; Miller et al., 1991; Pearce & Ferrier, 101 

2000). Although they refer to different qualities of the models, a priori, some constraints 102 

and trade-offs exist, and calibration and discrimination are not entirely independent 103 

from each other (Murphy & Winkler, 1992). For instance, the reader may have already 104 
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realized that, at first glance, a perfectly calibrated model cannot achieve perfect 105 

discrimination (Diamond, 1992).   106 

 107 

Pearce & Ferrier (2000) were the first to formally introduce the calibration concept in 108 

the SDM field. These authors discussed the differences between discrimination and 109 

calibration, explained how to measure and interpret the calibration of models, and 110 

illustrated how the two concepts tell us different things about the performance of 111 

models. Recently, Phillips & Elith (2010), inspired by Hirzel et al. (2006), have 112 

suggested a way to approximate a calibration curve when no absence records are 113 

available, a common situation in biodiversity studies. Under this scenario of lack of 114 

absence data, the empirical probabilities cannot be estimated, so the calibration plot 115 

cannot be built. Under certain strong assumptions, the presence-only calibration (POC) 116 

plot devised by Phillips & Elith (2010) may be a way to deal with this shortcoming. 117 

Unfortunately, aside from these commendable efforts and contrary to what happens in 118 

other scientific domains, few authors in SDM have paid attention to calibration, while 119 

most of them have focused just on discrimination. 120 

  121 

In this study, we describe the basic relationships that exist between calibration and 122 

discrimination and show, using easy-to-understand simulations, that for these 123 

relationships to hold, uniformity in the distribution of S is a necessary assumption. We 124 

explore in depth how non-uniformity in the distribution of S indicates that 125 

discrimination capacity is a context-dependent characteristic of models. For the first 126 

time, we fully explain the dramatic implications that ignoring the context-dependence of 127 

discrimination can have in the interpretation of species distribution models.  128 

 129 
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CALIBRATION AND DISCRIMINATION: BASIC PATTERNS AND TRADE-130 

OFFS 131 

Two points need to be emphasized before proceeding. First, throughout this article, it is 132 

assumed that there is reliable information about the positive as well as the negative 133 

cases, at least for model evaluation. As said before, because of the increasing 134 

availability of presence data in digital biodiversity databases, in the last few years there 135 

has been a notable interest in developing ways of predicting species’ distributions 136 

without using absence data. Instead, pseudo-absences (a sample of locations with no 137 

information about the presence or absence of the species) or background data (a sample 138 

of locations representing the environmental variation of the study area) are often used 139 

together with presence data for model training and evaluation (see Peterson et al., 2011; 140 

but see Royle et al., 2012). However, without absence data for model testing, the 141 

application of discrimination measures such as the AUC is questionable (Jiménez-142 

Valverde, 2012). In addition, calibration can only be properly assessed if reliable 143 

absence data allow the estimation of the observed probability p(Y = 1|S). Second, the 144 

evaluation of models can be performed at different levels. On one extreme, the accuracy 145 

of models can be assessed only on the training data, i.e., using entirely non-independent 146 

data. On the other, the interest may lie in testing the model under completely different 147 

circumstances using independent data (for example, from a different region or time). In 148 

between, there is a continuum in the degree of independence of the testing data set and 149 

the researcher has to choose the level of independence according to the intended 150 

application of the models. Thus, throughout this article, and unless stated explicitly, we 151 

will not refer to the degree of independence of the testing data and we will assume that 152 

it has been chosen properly according to the aim of the research; the revealed patterns 153 

and main conclusions are valid for any degree of independence. 154 
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 155 

That a perfectly calibrated model cannot attain perfect discrimination can be proved 156 

with a simple simulation exercise (see Appendix S1 in Supporting Information). Being j 157 

the iteration number, a vector js
r

 of S values was generated by picking a sample of n = 158 

10,000 random numbers from a uniform distribution. A second vector jw
r

, of the same 159 

length as js
r

, was generated in the same way. To create vector jy
r

 with the information 160 

about the outcomes of the binary event (e.g., the presence or absence of the focal 161 

species in SDM) the following condition was set:  162 

if ijw < ijs  then ijy = 1, else ijy  = 0, 163 

where i denotes the cases (in SDM, the spatial locations) and ranges from 1 to 10,000. 164 

In this way, js
r
 is a well-calibrated scoring rule with respect to jy

r
. The prevalence 165 

(i.e., the proportion of positive outcomes in the sample) equals 0.5 because, given a 166 

perfectly calibrated model, 167 

2

1
)()1()1( ==== ∫

∞

∞−
dSSfSYpYp , 168 

where )(Sf  is the probability density function of S. 169 

 170 

The AUC was computed using the ROCR (Sing et al., 2009) package for R (R 171 

Development Core Team, 2009). The procedure was repeated 100 times (j = {1, …, 172 

100}) and the mean AUC was calculated (the simulation can be repeated by the readers 173 

by copying and pasting the code of Appendix S1 in the R console). In Fig. 1 the results 174 

of the simulation are shown. The calibration plot shows that s
r

 is an almost perfectly 175 

calibrated prediction (it is not perfect because of the random sampling variation). To 176 
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generate this plot, js
r

 was divided into 10 intervals (bins, t = {1, …, 10}) of fixed 177 

cutpoints (following Lemeshow & Hosmer, 1982) so nt ≈ 1000. Mean p(Y = 1|St) was 178 

plotted as a function of mean ts  for the 100 iterations (note that in the R script 179 

provided in Appendix S1 only the last iteration is plotted as an example). A mean AUC 180 

value of 0.83 (SD ±0.004) was obtained. Our simulation thus corroborates the result of 181 

Diamond (1992), who obtained the same AUC value for a perfectly calibrated model via 182 

formal mathematical demonstration. It is worth noting that a value of 0.83 does not 183 

represent “outstanding” or “very good” discrimination according to Hosmer & 184 

Lemeshow (2000) and Pearce & Ferrier (2000), respectively. 185 

 186 

Extreme cases – note that these are not simulations but theoretical constructs – are 187 

idealized in Fig. 2. When the calibration departs from perfection and the model 188 

overestimates p(Y = 1| St) for the bins below certain t and underestimates p(Y = 1| St) for 189 

the bins above that t (Fig. 2A), then discrimination capacity increases and the AUC 190 

exceeds the base 0.83 value (0.83<AUC<1). In the reverse situation, when the model 191 

underestimates p(Y = 1|St) for the bins below certain t and overestimates p(Y = 1| St) for 192 

the bins above that t (Fig. 2B), discrimination capacity decreases and the AUC falls 193 

behind the base 0.83 value (0.5<AUC<0.83). Note that a global calibration index based 194 

on squared errors would yield the same value for both scenarios depicted in Figs. 2A 195 

and 2B. If p(Y = 1|St) = 1 for every bin above certain t and p(Y = 1| St) = 0 for every bin 196 

below that t (Fig. 2C), then discrimination is perfect and AUC = 1. In the reverse 197 

situation, when p(Y = 1| St) = 0 for every bin above certain t and p(Y = 1| St) = 1 for 198 

every bin below that t (Fig. 2D), then AUC = 0. Note that AUC values below 0.5 mean 199 

that the model is useful for discrimination but not for ranking, i.e., it is using the 200 

information in the inverse way (Fawcett, 2006), so an AUC of 0 also means perfect 201 
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discrimination. If p(Y = 1| St) is constant for every t (Fig. 2E), then discrimination is no 202 

better than chance and AUC = 0.5. The last situation refers to the scenario in which p(Y 203 

= 1| St) = 1 for some bins and p(Y = 1| St) = 0 for the others but, contrary to the cases 204 

shown in Figs. 2C and 2D, the bins show an alternating pattern (Fig. 2F). In this case, 205 

the AUC can have any value between 0 and 1. For instance, in a forecast with a 206 

calibration plot like the one shown in Fig. 2F, where p(Y = 1|St) = 0 and p(Y = 1|St) = 1 207 

alternate one at a time and p(Y = 1| S1) = 0, the AUC equals 0.6. The interesting point to 208 

highlight here is that, although the AUC is always lower than 1 (i.e., ranking is not 209 

perfect), this sort of scoring rules perfectly resolves the classification task of separating 210 

the positive from the negative outcomes (Hilden, 1991; Flach, 2010). Although these 211 

scenarios may not be common (especially in cases in which S has a natural order such as 212 

probabilistic models), spotting them may help to detect and understand the effect of new 213 

interactive factors that condition the outcome of the event (see Appendix S2). 214 

 215 

BREAKING DOWN THE TRADE-OFFS: DISCRIMINATION DEPENDS ON 216 

THE DISTRIBUTION OF S 217 

The AUC value equals 0.83 in a perfectly calibrated model if and only if nt is constant 218 

for every bin. To show the implications of the violation of this condition, we ran 219 

simulations (see pseudocode in Appendix S3) in which, starting from an almost 220 

perfectly calibrated scoring rule (n = 10,000), nt was progressively reduced (see Fig. 3). 221 

First, js
r

 and jy
r

 were created as outlined in the previous section. Second, nt was 222 

decreased in certain bins to n ≈ 15 (nt was maintained [nt ≈ 1000] in the remaining bins), 223 

as 15 seems to be the minimum sample size necessary to estimate p(Y = 1) with 224 

admissible accuracy (Jovani & Tella, 2006). A first set A of simulations was run in 225 

which the bins that were reduced followed the scheme: t =  5 and t = 6 (level 1); t =  4, t 226 
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=  5, t =  6, and t = 7 (level 2); t = 3, t = 4, t = 5, t = 6, t = 7, and t = 8 (level 3); t = 2, t = 227 

3, t = 4, t = 5, t = 6, t = 7, t = 8, and t = 9 (level 4). In a second set B, the reduction 228 

pattern was as follows: t = 1 and t = 10 (level 1); t = 1, t = 2, t = 9, and t = 10 (level 2); t 229 

= 1, t = 2, t = 3, t = 8, t = 9, and t = 10 (level 3); t = 1, t = 2, t = 3, t = 4, t = 7, t = 8, t = 230 

9, and t = 10 (level 4). In total, 800 simulations were run (100 iterations × 2 sets × 4 231 

levels). The AUC was computed for each iteration and a mean AUC value was obtained 232 

for each level on each set. To assess calibration, the Hosmer and Lemeshow goodness-233 

of-fit statistic (H-L; Lemeshow & Hosmer, 1982) was calculated for each iteration and a 234 

mean H-L was obtained for each level on each set. 235 

 236 

The results showed that, although calibration did not change (Fig. 4A), the AUC 237 

significantly varied from level to level (Fig. 4B), ranging from 0.59 (±0.012) to 0.96 238 

(±0.005). The AUC increased as sample size was reduced in the intermediate bins (set 239 

A); in contrast, it decreased as sample size was reduced in the outermost bins (set B).     240 

 241 

GENERAL DISCUSSION  242 

The existence of a trade-off between calibration and discrimination is not a new point 243 

(Murphy & Winkler, 1992). Under ideal conditions, increasing calibration compromises 244 

discrimination in the sense that it is impossible to achieve perfect calibration and perfect 245 

discrimination if the sample size is constant for every bin (Diamond, 1992). Thus, under 246 

a uniform distribution of S, a perfectly calibrated model will yield an AUC of 0.83. 247 

Considering this base discrimination value, multiple discrimination-calibration 248 

combinations are possible and only deviations from perfect calibration will yield AUC 249 

values closer to 1. However, as we have shown in this study, the relationship between 250 

calibration and discrimination becomes complicated if the sample size differs among 251 
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probability intervals (i.e., non-uniform distributions of S), which is commonly the case. 252 

In fact, if S = 0 for every negative case and S = 1 for every positive case, then the 253 

scoring rule will be perfectly calibrated and will have a perfect discrimination capacity 254 

(AUC = 1). However, the predictions of such a model would be highly uncertain 255 

(Murphy & Winkler, 1992) aside from the fact that this is a very unlikely situation in 256 

real-world SDM scenarios. Complete separation of the outcomes is a well-known 257 

problem in statistical model fitting, as it avoids the correct estimation of the parameters 258 

(Lesaffre & Albert, 1989), producing uninformative models. 259 

 260 

In the second edition of their seminal work on logistic regression, Hosmer & Lemeshow 261 

(2000) already noted that discrimination depends on the distribution of the probabilities, 262 

and warned that discrimination measures coming from a 2×2 contingency matrix (e.g., 263 

sensitivity, commission rate and others; see Fielding & Bell, 1997 for a review) cannot 264 

be used to compare models performance (Hosmer & Lemeshow, 2000, pp. 158-160). 265 

Here, using simulations and the AUC as a threshold-independent measure, we have 266 

demonstrated this point, a fact that is far from trivial. The same model can be unsoundly 267 

qualified as “bad”, “good” or “excellent” -from a discrimination capacity point of view- 268 

depending on the distribution of the S values. Discrimination is thus context-specific, 269 

i.e., it depends on the configuration of the testing data set. This will happen even if the 270 

model is equally well (or badly) calibrated in the different contexts. In the field of SDM 271 

this has two very important implications, which we discuss below.  272 

 273 

First, it explains the devilish effect of the geographic extent (or geographic background) 274 

raised by Lobo et al. (2008) and Jiménez-Valverde et al. (2008), which results in a 275 

negative relationship between the relative occurrence area (the extent of the area 276 
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occupied by the species relative to the total extent of the study area) and discrimination 277 

capacity. For the same total geographic extent, and due to the frequent spatial 278 

autocorrelation among environmental variables (Legendre, 1993), the size of the 279 

species´ occurrence area conditions the distribution of the S values in such a way that 280 

small areas bias S towards extreme values. This is the main reason why rare species 281 

usually yield higher discrimination values than widespread species, even though the 282 

models may be equally well (or ill) calibrated for both types of species. Precisely 283 

because discrimination is a context-dependent property, Jiménez-Valverde et al. (2008) 284 

concluded that the AUC should not be the only performance indicator used to compare 285 

distribution models between species, as the results may just be trivial (note that the 286 

same applies to any other discrimination measure). Most importantly, these authors 287 

stressed that higher discrimination values can be obtained simply by increasing the 288 

geographic extent of analysis (see also Barve et al., 2011 and Acevedo et al., in press), a 289 

fact that compromises the robustness of many SDM studies.  290 

 291 

A second and less apparent consequence is that discrimination may not be used to 292 

compare different modelling techniques for the same data population and to draw 293 

general conclusions beyond that population. Different techniques will be parameterized 294 

in different ways, yielding different distributions of S and, therefore, different 295 

discrimination values. A priori, there is no reason to assume that these differences in the 296 

distributions of S between techniques will be consistent among case studies/data 297 

populations. Discrimination capacity is an entirely context-dependent property; 298 

therefore, generalizations based on any discrimination statistic are unfounded. A “good” 299 

or “bad” model – from a discrimination point of view – can be qualified as “good” or 300 

“bad” only in the specific situation in which it was evaluated. In SDM, this means that 301 
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discrimination is only informative in a concrete spatial, temporal and taxonomic 302 

context. This happens because the representativeness of the environmental domain 303 

changes with the geographical and temporal context, which unavoidably entails changes 304 

in the distribution of S.  Broad comparisons of models based only on discrimination 305 

statistics that aim to find the “best” algorithm for every situation and taxon are flawed 306 

(see also Terribile et al., 2010). Statisticians know that no classification method can be 307 

universally advocated, and that the improved performance of new complex techniques 308 

may not be as relevant or useful as it may seem at first (Hand, 2006 and references 309 

therein). So, the weight given to the modelling technique in SDM may be, on most 310 

occasions, unjustified. As pointed out by some authors, data quality is probably the 311 

most important factor influencing general model performance, an aspect to which much 312 

more effort and resources should be devoted to (Lobo, 2008; Jiménez-Valverde et al., 313 

2010; Feeley & Silman, 2011; Rocchini et al., 2011).  314 

 315 

The relevance of discrimination or calibration will depend on the intended application 316 

of the model (Pearce & Ferrier, 2000; Vaughan & Ormerod, 2005). If the ranking or the 317 

classification of the cases in a specific context (i.e., in a concrete data population) is the 318 

main interest, then discrimination capacity is important and may be an appropriate 319 

criterion to select the best model. But if the quantitative value of S is of interest, then 320 

calibration should be preferred. The probability values contain information about the 321 

uncertainty of the predictions (Keren, 1991; Murphy & Winkler, 1992). A well-322 

calibrated model will give the probability that a certain case has to show the event – i.e., 323 

in an SDM study, it will tell us the probability of a location to contain the focal species. 324 

It has been argued that, for some applications in SDM, it could be useful to convert 325 

probability maps into categorical (presence/absence) maps (Jiménez-Valverde & Lobo, 326 
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2007). Whether this is useful or not, this conversion implies the loss of information 327 

about the uncertainty of the predictions; this fact suggests the adequacy of publishing 328 

the probability maps at least as online supplementary material. Given a case with the 329 

event and another case without the event, the AUC will tell us the probability that both 330 

cases have of being correctly classified, but it will say nothing about the concrete cases 331 

or about the uncertainty of their predicted values (Hilden, 1991; Matheny et al., 2005). 332 

For two pair of cases (0, 1), one with S values (0.49, 0.51) and the other with S values 333 

(0.2, 0.8), discrimination is perfect in both instances (for a threshold value of 0.5); yet, 334 

the uncertainty in the classification of these cases is not the same and the information 335 

that the S values contain is of much more worth than the one yielded by the binary 336 

classification. Following this line of thinking, some authors have questioned the 337 

expediency of discrimination to evaluate models in a decision making context (e.g., 338 

Coppus et al., 2009). In environmental management and assessment, ignoring the 339 

uncertainty in the predictions may compromise decision processes, with potentially 340 

negative consequences for both the focus species and the optimization of managing 341 

resources. In temporal and/or spatial transference situations (e.g., under a climate 342 

change scenario), and because discrimination is context-specific, calibration may 343 

provide more information about the potential performance of the models.    344 

 345 

CONCLUSIONS 346 

Model discrimination capacity depends on the distribution of the scoring values. 347 

Therefore, it is a context-dependent characteristic and must be interpreted as such. 348 

Although we have focused on scoring values of probabilistic nature, it is important to 349 

realize that this context-dependence is also true for non-probabilistic S values. This 350 

means that first, discrimination capacity says little about the general performance of the 351 
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models, and second, the comparison of models based on discrimination capacity cannot 352 

be extended beyond a particular data population. Discrimination may be a property of 353 

interest if the modeller is interested in maximizing the capacity to separate the instances 354 

of presence form the instances of absence in a certain spatio-temporal context and data 355 

population. Calibration may be of more interest if the researcher is interested in 356 

transferring the model and producing more general conclusions.  357 

 358 

Relying on a single summary discrimination measure to assess model performance may 359 

result in a loss of valuable information and lead to misleading conclusions. 360 

Discrimination measures should not be reported alone, but should always be 361 

accompanied with information about the distribution of the scoring values. Ideally, the 362 

ROC curve as well as the model calibration plots should be shown, explicitly indicating 363 

the sample size of each bin in the plot. Relatively small or large sample sizes in certain 364 

bins could explain the discrimination values obtained, and very low sample sizes could 365 

pinpoint uncertainty in the calibration assessment. Instead of using bins, smooth non-366 

parametric calibration curves might be a better screening option (Harrell et al., 1996; 367 

Phillips & Elith, 2010). In this study we have used the H-L statistic to quantitatively 368 

assess calibration because it is a classical test and because our results do not depend on 369 

which statistic is applied. However, this statistic has well-known drawbacks (see, for 370 

instance, Lemeshow & Hosmer, 1982; Hosmer et al., 1997; Kramer & Zimmerman, 371 

2007) that may discourage its use to assess calibration. Other measures such as the 372 

unweighted-sum-of-squares statistic (Copas, 1989), Miller’s calibration statistics (Miller 373 

et al., 1991; Pearce & Ferrier, 2000), or the coefficient of determination R2 using the 374 

unity line (intercept = 0 and slope = 1) instead of the regression line (Poole, 1974, cited 375 

by Romdal et al., 2005, p. 238) may be preferred.  376 
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 377 

Finally, we would like to emphasize that our position is not to deny nor demonize the 378 

use of discrimination measures for the assessment of model performance, but just to 379 

bring awareness of their limitations. The results presented here are of broad interest for 380 

any research(er) dealing with classification of dichotomous events. Taking into account 381 

the significance of the areas of research in which SDM is applied (see Peterson et al., 382 

2011) and the widespread use of discrimination as the only way to assess model quality, 383 

the implications of our simulation study are noteworthy.  384 
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FIGURE CAPTIONS 548 
 549 
Figure 1.- Calibration plot of the simulations showing the mean model estimated 550 
probability (x-axis) against the mean observed proportion of positive cases (y-axis) for 551 
ten equal-size probability intervals (bins) and 100 iterations (see text for details). The 552 
graph shows that the simulated scoring rules are almost perfectly calibrated, whereas the 553 
mean area under the ROC curve (AUC) is 0.83 (SD ±0.004). Solid line: identity line 554 
indicating perfect calibration; whiskers: standard deviation. 555 
 556 
Figure 2.- Different idealized calibration plots of scoring rules that deviate from perfect 557 
calibration, and their relationship with discrimination (the sample size is the same for 558 
every bin). (A) Better discrimination than a perfectly calibrated model (AUC higher 559 
than the base value of 0.83); (B) Worse discrimination than a perfectly calibrated model 560 
(AUC lower than the base value of 0.83); (C) Perfect discrimination (AUC = 1); (D) 561 
Perfect discrimination, but the scoring rule is using the information in the wrong way 562 
(low values correspond to positive outcomes and high values correspond to negative 563 
outcomes, AUC = 0); (E) Discrimination is no better than chance (AUC = 0.5); (F) 564 
Perfect discrimination, but the AUC is lower than 1. 565 
 566 
Figure 3.- Scheme of the simulations performed to show the dependence of 567 
discrimination on the distribution of the probabilities. A first set A of simulations was 568 
run in which the bins that were reduced followed the scheme: ● (level 1); ● and ■ (level 569 
2); ●, ■ and ○ (level 3); ●, ■, ○ and □ (level 4). In a second set B, the reduction pattern 570 
was as follows: ▲ (level 1); ▲, □ (level 2); ▲, □, ○ (level 3); ▲, □, ○, ■ (level 4).  571 
 572 
Figure 4.- (A) Mean Hosmer and Lemeshow goodness-of-fit statistic (H-L) values and 573 
(B) mean area under the ROC curve (AUC) values of the simulated scoring rules. Set A, 574 
sample size is reduced from the midmost to the outermost probability intervals (bins); 575 
set B, sample size is reduced from the outermost to the midmost bins. Sample size is 576 
progressively reduced in four increasing depletion levels (see Fig. 3). Grey solid lines, 577 
mean value of the H-L statistic (A) and the AUC (B) for an almost perfectly calibrated 578 
scoring rule; grey dashed lines and whiskers: standard deviations. 579 
  580 
  581 

582 
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