
1 

In-vitro toxicity of carbon nanotube/polylysine colloids to colon cancer 

cells 

A. Ansón-Casaos,1,* L. Grasa,2,3 D. Pereboom,4,5 J.E. Mesonero,2,3 A. Casanova,4 M.D. 

Murillo,2 M.T. Martínez1

1Instituto de Carboquímica, ICB-CSIC, Miguel Luesma Castán 4, 50018 Zaragoza, 

Spain 

2Departamento de Farmacología y Fisiología, Facultad de Veterinaria, Instituto de 

Investigación Sanitaria de Aragón (IIS), Universidad de Zaragoza, Miguel Servet 177, 

50013 Zaragoza, Spain 

3Instituto Agroalimentario de Aragón (IA2) (Universidad de Zaragoza – CITA), 

Zaragoza, Spain 

4Departamento de Farmacología y Fisiología, Facultad de Medicina, Universidad de 

Zaragoza, Domingo Miral s/n, 50009 Zaragoza, Spain 

5Servicio de Citómica, Universidad de Zaragoza, Domingo Miral s/n, 50009 Zaragoza, 

Spain 

* Corresponding author. Tel.: 34 976 733977. E-mail address: alanson@icb.csic.es 

This paper is a postprint of a paper published in IET Nanobiotechnology 2016, 10 (6), 374-381, and is subject to 
Institution of Engineering and Technology Copyright. The copy of record is available at IET Digital. Library 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital.CSIC

https://core.ac.uk/display/80863309?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:alanson@icb.csic.es


2 

Abstract 

Single-walled carbon nanotubes (SWCNTs) are thoroughly purified and dispersed in an 

aqueous solution of high molecular weight poly-L-lysine (pLlys). Human intestinal 

epithelial Caco-2/TC7 cells are incubated with the SWCNT dispersions in pLlys, and 

their effects on cell viability are studied by image flow cytometry. No significant 

changes are observed in the cell culture wells up to pLlys concentrations of 10 μg mL-1. 

However, high mortality is detected at pLlys concentrations of 100 μg mL-1. The 

presence of oxygen-free SWCNTs does not modify the effects of pLlys on cell cultures 

at any of the tested concentrations (≤ 1 μg mL-1). In addition, SWCNTs having an 8 

wt.% of surface oxygen are tested with identical results. Thus, purified SWCNTs, even 

bearing oxygen functional groups, act as inert particles in the cell culture medium. This 

result supports the applicability of SWCNTs as carriers in pharmacological formulations 

against digestive tract diseases. 

Keywords: carbon nanomaterial; polypeptide; centrifugation; purification; cell culture

1. Introduction 

Poly-L-lysine (pLlys) is a polypeptide made of the essential amino acid L-lysine. The 

natural form of pLlys (ε-pLlys) contains 25-35 L-lysine residues, and is produced by 

certain microorganisms by the linkage between α-carboxyl groups and ε-amino groups 

[1]. Applications of ε-pLlys range from food industry to biomedicine and biosensors [1, 

2]. Artificial methods for pLlys synthesis typically yield α-pLlys, since the 

polymerization occurs through the α-amino group, and can reach much higher 

molecular weights than natural ε-pLlys. Synthetic pLlys is utilized as an adhesion 
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promoter in cell cultures, and it is being investigated for its antineoplastic activity, anti-

prion activity, and gene delivery properties [3-5].  

Single-walled carbon nanotubes (SWCNTs) have been proposed for several applications 

in biomedicine, including their potential as nanocarriers for therapeutic and probe 

molecules [6]. The adsorption interactions and chemical reaction paths provided by 

SWCNT surfaces are expected to be excellent tools for the design of multipurpose 

supramolecular biostructures. However, important toxicity issues need to be understood 

and controlled before the application of SWCNTs to biological systems [7]. 

It has been previously confirmed that arc-discharge SWCNTs can induce oxidative 

stress in intestinal epithelial cells, and affect the contractility of ileum [8, 9]. Possible 

reasons for those adverse effects are not necessarily given by the SWCNTs themselves, 

but could be associated to metal catalyst impurities (Ni, Y), or to functional groups 

produced during SWCNT preparation [7]. Quite recently, we have reported the 

possibility of purifying and dispersing pristine or functionalized arc-discharge SWCNTs 

by ultracentrifugation in different aqueous media [10]. Interestingly for biomedical 

applications, metal catalyst impurities can be totally eliminated by that method, and the 

dispersion medium can be chosen among a range of surfactants, polymers, and 

biomolecules [10]. Long polymer chains are preferred for the stabilization of carbon 

nanotubes in water suspensions through excluded volume interactions [11]. Previously, 

SWCNTs have been covalently functionalized with pLlys as a method for further 

derivatization [12]. In addition, non-covalent functionalization with pLlys has been 

proposed as a way for the preparation of water-stable dispersions of carbon nanotubes 

[13, 14]. 

In this work, arc-discharge SWCNTs are purified and dispersed in a high molecular 

weight pLlys solution. Metal impurities, as well as amorphous carbon and graphitic 
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particles are totally eliminated from SWCNTs by the purification treatment. Toxicity of 

SWCNT/pLlys dispersions is studied by flow cytometry in the human intestinal 

epithelial Caco-2/TC7 cell line. To our knowledge, the effects of high molecular weight 

pLlys on colon cancer cells have not been reported so far. Since the presence of 

oxygenated functional groups on carbon nanotube surfaces could modify their 

toxicology [15], two SWCNT materials are compared, one containing a certain amount 

of functional groups while the other bearing no surface oxygen. The roles of pLlys and 

SWCNTs are clarified, at least from a chemical viewpoint, towards the preparation of 

pharmacological complexes against colorectal cancer. 

2. Materials and methods 

2.1. Preparation of SWCNT powder materials 

The pristine SWCNT material was purchased from Carbon Solutions Inc., Riverside, 

California (AP-SWNT grade). This SWCNT material is synthesized by the arc 

discharge method using Ni/Y catalysts, and contains approximately 30 wt% metal 

catalyst residue. The average SWCNT diameter is in the range of 1.4-1.6 nm, calculated 

from optical absorption and Raman spectroscopy. The average SWCNT length in 

centrifuged dispersions is of 400-800 nm, according to atomic force microscopy 

measurements [16].

The pristine SWCNT powder material was air-oxidized in an oven at 350 ºC for 1h, 

with a process yield of 85 wt%. Air oxidation was performed for breaking the carbon 

shells that initially can protect metal catalyst impurities. Then, the material was refluxed 

in 150 mL of 3 M HCl at 150 ºC for 4 h, filtered through a 3 μm polycarbonate 

membrane, washed with 300 mL of water, and dried at 70 ºC for 20 h. The cumulative 
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yield after the acid treatment was of 56 wt%. Metal content strongly decreases with the 

acid treatment, and also many oxygen functional groups previously created by the air-

oxidation treatment evolve as CO2. For the total removal of surface oxygen, a fraction 

of the acid treated material (SWCNT-HCl) was heated at 10 ºC min-1 and treated at 700 

ºC for 5 min under a N2 flow in a horizontal tubular reactor. The thermal treatment yield 

was of 92 wt%, and the resulting powder material is hereafter called SWCNT-700. 

2.2. Characterization of SWCNT powder materials 

Oxygen content determination was performed in a Thermo Flash 1112 elemental 

analyzer by sample pyrolysis at 1080 ºC. Thermogravimetric analysis (TGA) 

experiments were performed in a Setaram Setsys Evolution balance. Metal contents 

were calculated after combustion of the samples in an air flow at 1000 ºC. The TGA 

residue after combustion mainly consists of metal oxides. The initial metal content can 

be approximated by assuming an oxygen content of 25 wt% in the TGA residue [17]. 

For the determination of extinction coefficients, the SWCNT-HCl and SWCNT-700 

materials were dispersed in a sodium deoxycholate (DOC, Acros Organics 218591000) 

aqueous solution, since DOC is considered one of the best surfactants for the dispersion 

of SWCNTs [18], and the extinction coefficient does not depend on the surfactant [10]. 

In a typical experiment, 10 mL of 1 wt/vol% DOC was added to 1 mg of the SWCNT 

powders, and the mixture was tip-sonicated (Hielscher UP400S at 24 kHz) in an ice 

bath for approximately 1h. Absorbance of the resulting dispersions was measured in a 

Shimadzu UV-2401PC spectrometer. Extinction coefficients (ε) were calculated 

applying the Lambert-Beer law: Aλ = εlC, where Aλ is the absorbance at a given 

wavelength excitation (λ), C is the SWCNT dispersion concentration (mg mL-1) and l is 
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the optical pathway, which is given by the length of the quartz cuvette (1 cm). 

Extinction coefficients were calculated at 600 and 850 nm. 

2.3. Preparation and characterization of SWCNT dispersions in pLlys 

A pLlys aqueous solution with a concentration of 0.1 wt/vol% was purchased from 

Sigma-Aldrich (Ref. P8920, Mw = 150,000-300,000). The solution (10 mL) was added 

to 10 or 30 mg of the SWCNT-HCl or the SWCNT-700 powder materials respectively. 

The mixtures were tip-sonicated (Hielscher UP400S at 24 kHz) in an ice bath for 

approximately 1h. The dispersions were centrifuged at 120,000 xg for 1h in a Beckman 

Coulter L-100 XP ultracentrifuge provided with a SW55Ti 3671 rotor and Beckman 

centrifugation tubes (Ref. 326819). The supernatant was carefully decanted and the 

sediment was discarded. Depending on the original powder material, SWCNT-HCl or 

SWCNT-700, the resulting purified SWCNTs are hereafter called SWCNT-P or 

SWCNT-P700 respectively. 

Visible-near-infrared (Vis-NIR) spectra of the dispersions were measured in 2 mL 

quartz cuvettes using Shimadzu UV-2401PC and Bruker VERTEX 70 spectrometers. 

SWCNT relative purity in the pLlys dispersions can be analyzed by means of the purity 

index. Purity indexes were calculated from spectral data in the window of 7750-11750 

cm-1, where the S22 band transition can be found for all the SWCNT samples studied 

[19]. The total area below the S22 curve is called at, while the baseline subtracted peak 

area is called as. According to Itkis et al. [19], SWCNT purity should be a function of 

the ratio as:at, which is called the purity index. 

Conductivity (σ), electrophoretic mobility (μ), and zeta potential (ζ) were determined in 

a Malvern Zetasizer Nano device. The zeta potential is calculated by the Henry 
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equation, assuming the dielectric constant and viscosity to be those of pure water. A 

Crison GLP21 pH-meter was utilized for pH determinations. 

Transmission electron microscopy (TEM) images were taken in a Tecnai T20 (FEI) 

microscope working at 200 kV and provided with a CCD Veleta (Olympus) camera. 

Samples were prepared by vitrification with liquid ethane in a Vitrobot (FEI). The 

sample supports (holey carbon grids) were previously ionized in a plasma cleaner (20% 

O2 / 80% Ar) for 7 seconds. The vitrified samples were transferred to a low-temperature 

sample-holder, and kept at the liquid nitrogen temperature during the observation. 

The purity evaluation of the purified SWCNT dispersions was completed by energy 

dispersive X-ray spectroscopy (EDX, Hitachi S3400N), which allows the qualitative 

determination of metals and other impurities with an accuracy of better than 0.1 wt.%. 

The SWCNT dispersions in pLlys were filtered through 0.3 μm polycarbonate 

membranes, and the residue was dried and analyzed directly on the filters. 

2.4. Cell culture 

This study was carried out in the human enterocyte-like cell line Caco-2/TC [20], kindly 

provided by Dr. Edith Brot-Laroche (INSERM, UMR S 872, Centre de Recherches de 

Cordeliers, Paris). Caco-2/TC7 cells have been used in the present study since they are 

an excellent human enterocyte-like model to study intestinal epithelial physiology [20, 

21]. The cells were cultured at 37 ºC in an atmosphere of 5% CO2 and maintained in 

high glucose DMEM supplemented with 2 mM glutamine, 100 U mL-1 penicillin, 100 

µg mL-1 streptomycin, 1% non-essential amino acids, and 20% heat inactivated fetal 

bovine serum (Life Technologies, Carlsbad, CA, USA). The cells were passaged 

enzymatically (0.25% trypsin–1 mM EDTA) and subcultured in 25 cm2 plastic culture 
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flasks (Sarstedt, Nuembrecht, Germany). The medium was changed 48 h after seeding 

and daily thereafter. 

For cell viability experiments, cells were seeded in 6-well plates at a density of 2 x 105

cells/well, and measurements were carried out 14 days after seeding (9 days after 

confluence). 

Caco-2 cells were incubated for 24 h with pLlys and the purified SWCNTs dispersed in 

pLlys. In the experiments, stock solutions of 1 mg mL-1 pLlys, 8 µg mL-1 SWCNT-P + 

1 mg mL-1 pLlys, and 9 µg mL-1 SWCNT-P700 + 1 mg mL-1 pLlys were added to the 

culture medium. Five concentrations of SWCNT-P (0.08, 0.8, 8, 80 and 800 ng mL-1) 

and SWCNT-P700 (0.09, 0.9, 9, 90 and 900 ng mL-1) dispersed in their corresponding 

concentrations of pLlys (0.01, 0.1, 1, 10 and 100 µg mL-1) were assayed. In control 

experiments, cells were incubated in culture medium without adding any substance.

After the incubations with the different substances, cells were detached enzymatically 

(0.25% trypsin - 1 mM EDTA, for 30 min) and separated using a micropipette. 

Individualized cells were collected by centrifugation at 900 xg for 5 min at room 

temperature, and the cell pellet was washed twice in PBS. Finally, cells (4-5 x 106

cells/sample) were resuspended in 400 µl of cold PBS and kept on ice until flow 

cytometry determinations.  

2.5. Viability studies by image flow cytometry 

The Image Stream X (ISX Amnis Corporation, Seattle, WA, USA) flow cytometer was 

used.  Images were collected using two cameras obtaining brightfield, side scatter (SSC 

for cells complexity using 785 nm lasers), and signals with different band-pass filters. 

The channel signals were measured as intensity and location of fluorescence. The 

analyzed events were selected from the focused cells. The results were obtained in 
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biparametric graphs, representing the normalized frequency of the events and the 

intensity of fluorescence in all samples.  

Propidium iodide staining was used to assess cellular damage induced by SWCNTs and 

pLlys [21, 22]. Single-cell suspensions of Caco-2/TC7 cells in PBS (2 × 106

cells/sample) were incubated with 1.87 μM propidium iodide for 3 min in the dark at 

room temperature. Immediately after incubation with propidium iodide, signals from 

cells (104 cells/sample) were taken using a 660 to 745 nm bandpass filter for red 

fluorescence. Data were analyzed using the IDEAS 5.0.252 software (Amnis 

Corporation). 

2.6. Statistical analysis

Results of viable cells were measured as the percentage of the control (100%) in the 

same experiment and expressed as means ± SEM (standard error of the mean) of at least 

four independent experiments with consecutive passages. Differences between the 

concentrations for each treatment and between treatments for each concentration were 

analyzed using one-way ANOVA followed by Bonferroni’s post-hoc group comparison 

test. Data were analyzed with GraphPad Prism5 software (GraphPad Prism, San Diego, 

CA), and the differences with P-values < 0.05 were considered statistically significant. 

3. Results and discussion 

3.1. Characterization of the modified SWCNT solids 

Metal and oxygen contents in the modified SWCNTs are included in Table 1. Metal 

content in both the SWCNT-HCl and SWCNT-700 materials is lower than 10 wt.%, 

indicating that acid treatment decreases the metal content to approximately 1/3 of the 
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starting level in pristine SWCNTs. We will see that metals are finally eliminated after 

the subsequent step of ultracentrifugation. 

According to elemental analysis results, oxygen content in the SWCNT-HCl solid is 

approximately 8 wt.%, which is lower than typical values for carbon nanotubes treated 

with oxidant acids such as HNO3 or H2SO4 [10]. However, it must be considered that 

there is still a substantial amount of oxygen functional groups on the SWCNT-HCl 

solid. Therefore, a thermal treatment at 700 ºC is applied that removes most of the 

remaining surface oxygen. In fact, the SWCNT-700 material contains less than 1 wt.% 

oxygen. Direct oxygen determination was confirmed by TGA experiments under inert 

atmosphere (Supplementary Information). 

Table 1 includes the extinction coefficients (ε) determined for the SWCNT-HCl and 

SWCNT-700 dispersions at 600 and 850 nm (ε600 and ε850) respectively. These 

parameters are subsequently utilized to calculate the concentrations of the purified 

SWCNT-P and SWCNT-P700 dispersions in pLlys after ultracentrifugation. The 

extinction coefficients measured in the present work are somewhat lower than others 

previously published for similar SWCNT materials [16]. The difference could be 

associated to several causes: i) carbon impurities that are still present in the SWCNT-

HCl and SWCNT-700 samples, and are later eliminated with ultracentrifugation; ii) 

effects of air oxidation and acid treatments on the SWCNT response to light; and iii) 

SWCNT bundling, even though no material aggregation was apparent during the 

measurements. In any case, the possible deviations do not substantially affect the 

conclusions of this work. 
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3.2. Characterization of the purified SWCNT dispersions 

It has been shown above that the SWCNT-HCl solid contains a substantial amount of 

oxygen functional groups, while most of the surface oxygen was removed from the 

SWCNT-700 material. Oxygen functional groups contribute to the stabilization of 

SWCNTs in the colloidal dispersion, since they promote specific adhesion interactions 

with pLlys [23]. Therefore, different stabilities are observed in the SWCNT-HCl and 

SWCNT-700 dispersions in pLlys, particularly when they are purified by 

ultracentrifugation. In both cases, centrifugation yields are low, in agreement with 

previous observations regarding the stability of pLlys/SWCNT complexes in aqueous 

dispersions [13]. A purified SWCNT-P supernatant can be obtained from a starting 

SWCNT-HCl concentration of 10 mg mL-1. However, the starting concentration must 

be increased to 30 mg mL-1 for the preparation of the SWCNT-P700 sample from the 

SWCNT-700 solid. For lower starting concentrations, all the solid falls to the sediment 

fraction, and no supernatant is collected. Likewise, it is expected that purified SWCNT 

dispersions with higher concentrations would be obtained by increasing the initial load. 

Table 2 includes physical properties of the purified SWCNT-P and SWCNT-P700 

dispersions in pLlys, which are utilized for our viability experiments. The SWCNT-

P700 dispersion was diluted with fresh pLlys in order to have a nearly identical 

absorbance to the SWCNT-P dispersion, facilitating a direct comparison between both 

purified dispersions. Applying the previously determined extinction coefficients (Table 

1), the SWCNT concentration in the purified dispersions was calculated to be nearly 10 

μg mL-1. 

The natural pH value of the SWCNT dispersions in pLlys is nearly neutral, and the zeta 

potential (ζ) is positive, typical of cationic surfactants. The zeta potential of the 

SWCNT-P dispersion is higher than that of the SWCNT-P700 dispersion, probably due 
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to the different oxygen content in the original SWCNT solids. This fact confirms that 

SWCNTs in the SWCNT-P dispersion still bear some oxygen functional groups after 

centrifugation, which can interact with the positively charged amino groups of pLlys. 

The zeta potential of both purified dispersions is higher than 40 mV, thus above the 

classical criterion to be considered stable colloids. 

The purity of the SWCNT-P and SWCNT-P700 dispersions was first assessed by 

vis/NIR spectroscopy (Figure 1). The SWCNT resonant bands (M11, S22, and S33) in the 

purified dispersions are clearly more intense than in a dispersion containing pristine 

SWCNTs. The intensity increment can be quantified in a relative way by means of the 

purity index, which is here calculated from the S22 band transition. The purity indexes of 

the purified dispersions are 0.25 and 0.28, while it is approximately 0.10 for pristine 

SWCNTs. Specifically, the increase in the purity index can be associated to the removal 

of graphitic particles and amorphous carbon impurities during ultracentrifugation [10].

Cryo-TEM images are a powerful tool for the study of SWCNT bundling in liquid 

dispersions, avoiding aggregation effects due to filtration and classical TEM sample 

preparation [24]. In the purified dispersions, SWCNTs are mostly individualized or 

forming very thin bundles (Figure 1). Cryo-TEM images also show that SWCNTs are 

several hundreds of nanometers long. 

It has been previously demonstrated that metal impurities are eliminated by 

ultracentrifugation in a surfactant [10]. In order to confirm metal removal from the 

SWCNT-P and SWCNT-P700 dispersions in pLlys, a fraction of both dispersions was 

filtered through polycarbonate membranes and characterized by EDX spectroscopy. In 

fact, metal contents in the purified materials are below the EDX detection limit (≤ 0.5 

wt%). 
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3.3. Toxicity on Caco-2/TC7 cells 

The toxicity of pLlys and both the purified SWCNT-P and SWCNT-P700 dispersions in 

pLlys was tested. The pLlys concentration is assumed to be identical to that of the 

original solution (0.1 wt./vol.%), and stock SWCNT concentrations are 8 and 9 μg mL-1

respectively for the SWCNT-P and SWCNT-P700 dispersions. Different aliquots of the 

reference pLlys solution or the purified dispersions are added to cell incubation wells, 

resulting in final concentrations in the range of 0.01-100 μg mL-1 for pLlys, 0.08-800 ng 

mL-1 for SWCNT-P, and 0.09-900 ng mL-1 for SWCNT-P700. Therefore, Caco-2/TC7 

cells were incubated for 24 h with 0.01-100 µg mL-1 pLlys, 0.08-800 ng mL-1 SWCNT-

P + 0.01-100 µg mL-1 pLlys, and 0.09-900 ng mL-1 SWCNT-P700 + 0.01-100 µg mL-1

pLlys. The percentages of viable cells, expressed as the percentage of control (100%) 

and determined by image flow cytometry with propidium iodide, are summarized in 

Figure 2. 

Incubation of intestinal epithelial Caco-2/TC7 cells with pLlys up to 10 µg mL-1, 

SWCNT-P up to 80 ng mL-1, or SWCNT-P700 up to 90 ng mL-1, revealed similar 

percentages of cell viability to control experiments (Figure 2). However, the incubation 

with 100 µg mL-1 pLlys resulted in a significant reduction of viable cells compared to 

all the other concentrations tested (Figures 2 and 3; n ≥ 4; one way ANOVA p < 0.01 

for pLlys and p < 0.001 for SWCNT-P and SWCNT-P700). In the biparametric graphs 

(Figure 3), Caco-2/TC7 cells were selected and distributed in two populations according 

to their propidium iodide fluorescence intensity. The cells with low fluorescence 

intensity are live cells (control population), while high fluorescence levels show dead 

cells. The down images in Figure 3 show the morphology and propidium iodide staining 

of dead cells captured by the microscope in brightfield, propidium iodide, or combined 

brightfield/propidium iodide channels. 
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The results indicate that pLlys at a concentration of 100 µg mL-1 has a cytotoxic effect 

on Caco-2/TC7 cells. Only pLlys concentrations below 10 µg mL-1 have no significant 

effect on the viability of these cells, in good agreement with previous observations for 

other cancer cells types [3]. There were no significant differences between pLlys, 

SWCNT-P or SWCNT-P700 treatments at any concentration in the assayed ranges 

(Figure 2). Incubation with SWCNT-P up to 80 ng mL-1 or SWCNT-P700 up to 90 ng 

mL-1 does not modify the viability of Caco-2/TC7 cells, indicating that both types of 

SWCNTs do not have cytotoxic effects at the tested concentrations. Moreover, the 

cytotoxic effects observed at SWCNT concentrations higher than 100 ng mL-1 are 

caused by pLlys, and do not indicate SWCNT toxicity. Previous works have already 

suggested the necessity of evaluating the effects of the dispersion medium when 

SWCNT toxicity is measured [25-27].  

It has to be remarked that the presence of oxygen functional groups in the SWCNT-P 

sample does not produce any effect at the tested concentrations, since no differences are 

observed from the oxygen-free SWCNT-P700 sample. Highly purified SWCNTs, at 

least up to concentrations of nearly 1 µg mL-1, act as inert particles in the cell culture 

medium. While pLlys maintains its activity against colon cancer cells, SWCNTs could 

be utilized as carriers for other active principles or excipients in a hypothetical 

pharmacological complex. 

4. Conclusions 

Stable dispersions of highly purified arc-discharge SWCNTs in a high molecular weight 

pLlys aqueous solution are prepared by subsequent stages of air oxidation, acid 

treatment, and ultracentrifugation in the pLlys solution. Neat pLlys strongly decreases 

the viability of intestinal Caco-2 cells at concentrations of higher than 10 μg mL-1, as 
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observed by image flow cytometry. However, highly purified SWCNTs, even 

containing a certain amount of oxygen functional groups, do not cause any effect on 

Caco-2 cells at the tested concentrations. Previously reported interferences of SWCNT 

samples on cell cultures are avoided after a careful purification process. This result 

supports the utilization of SWCNTs as a chemically inert drug vehicle for the treatment 

of intestinal tract diseases. 
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Figure captions 

Figure 1. Characterization of SWCNT dispersions: visible-NIR spectra of pristine 

SWCNT (a), SWCNT-P (b), and SWCNT-P700 (c), and a cryo-TEM image taken from 

the SWCNT-P. 

Figure 2. Effects of poly-L-lysine (pLlys), SWCNT-P + pLlys, and SWCNT-P700 + 

pLlys on Caco-2/TC7 cell viability. Values are means ± SEM of ≥ 4 independent 

experiments. 

Figure 3. Representative biparametric graphs (up) and images (down) of Caco-2 cells 

obtained by image flow cytometry after propidium iodide staining. Caco-2/TC7 cells 

were incubated with 10 or 100 µg mL-1 pLlys (A and B, respectively), 80 or 800 ng mL-

1 SWCNT-P + 10 or 100 µg mL-1 pLlys (C and D, respectively), and 90 or 900 ng mL-1

SWCNT-P700 + 10 or 100 µg mL-1 pLlys (E and F, respectively). 

Table titles 

Table 1. Characterization of the modified SWCNT powder materials: Oxygen content, 

metal content, and extinction coefficient (ελ). 

Table 2. Properties of the purified SWCNT dispersions in pLlys: Absorbance (Aλ), 

concentration (C), zeta potential (ζ), electrophoretic mobility (μ), conductivity (σ), pH, 

purity index, and metal content in the filtered solid. 
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Figure 1
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Figure 2
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Figure 3
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Table 1

SWCNT-HCl SWCNT-700 
O [wt%] 7.63 0.80 
TGA metal residue [wt%] 11.3 12.7 
Metal content [wt%] 8.5 9.5 
ε600 [mL mg-1 cm-1]a 23.9±1.4 20.4±1.1 
ε850 [mL mg-1 cm-1]a 18.9±0.9 16.4±0.9 

aThe extinction coefficient was calculated for 0.1 mg mL-1 of SWCNTs dispersions in a 1 wt/vol% DOC 
aqueous solution 

Table 2

SWCNT-P SWCNT-P700 
A600 0.191 0.184 
A850 0.144 0.144 
C [μg mL-1] 8 9 
ζ [mV] 45.8±0.3 43.5±0.7 
μ [μm cm V-1 s-1] 3.59±0.02 3.41±0.06 
σ [mS cm-1] 0.451±0.004 0.439±0.004 
pHa 7.3 7.3 
Purity Index 0.25 0.28 
Metal content [wt%] ≤ 0.05 ≤ 0.05 

aThe pH of a 0.1 wt/vol% poly-L-lysine solution is of 6.9 
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Supplementary Material 

Figure S1. TGA profiles (N2, 10 ºC min-1) of the modified SWCNT powder materials: 

SWCNT-HCl (a) and SWCNT-700 (b). 

Weight losses up to approximately 100 ºC are associated to adsorbed water moisture. 

Moisture content in the SWCNT-700 is lower than in the SWCNT-HCl material, since 

the treatment at 700 ºC eliminates most of the oxygen functional groups, which are 

centers for water adsorption. Therefore, the thermal treatment increases surface 

hydrophobicity. 

TGA weight losses at temperatures higher than 100 ºC are mostly related to the 

evolution of oxygen functional groups as CO and CO2. Weight losses for the SWCNT-

HCl material occur steadily during the whole heating ramp. This TGA profile is 

indicative of chemically heterogeneous surfaces containing different types of oxygen 

functional groups (carboxylic acids, anhydrides, hydroxyl,…) with different thermal 

stabilities. The SWCNT-700 powder material does not experience weight losses until 
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approximately 700 ºC, since the oxygen functional groups with lower thermal stabilities 

were removed by the previous treatment at 700 ºC. However, certain weight losses still 

occur at temperatures higher than 700 ºC, in good agreement with a total oxygen 

content lower than 1 wt%. In any case, functional groups with high thermal stabilities 

also have low chemical reactivities. 


