
 

Spatio-temporal variability of bovine tuberculosis eradication in Spain 

(2006-2011) 

Garcia-Saenz A1*., Saez M2., Napp S1., Casal J1,3., Saez J L4., Acevedo P1,5., Guta S1,6., 

Allepuz A1,3. 

 

(1) Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la 

Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain 

(2) Research Group on Statistics, Applied Economics and Health (GRECS), University 

of Girona, 17004 Girona, Spain 

(3) Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, 

08193 Bellaterra, Barcelona, Spain 

(4) Subdirección General de Sanidad de la Producción Primaria, Dirección General de 

Recursos Agrícolas y Ganaderos, Ministerio de Medio Ambiente, y Medio Rural y 

Marino, 28071 Madrid, Spain 

(5) CIBIO, Centro de Investigacao em Biodiversidade e Recursos Geneticos, 

Universidade do Porto Campus Agrario de Vairao, 4485-661 Vairao, Portugal 

(6) National animal health diagnostic and investigation center (NAHDIC), P.O. Box 04, 

Sebeta, Ethiopia  

 

*Corresponding author. Tel.: +34 93581047; fax: +34 935812006. 

E-mail address: ariadna.garcia@cresa.uab.cat 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital.CSIC

https://core.ac.uk/display/80863238?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Summary 

In this study we analyzed the space-time variation of the risk of bovine tuberculosis 

(bTB) in cattle between 2006 and 2011, and identified factors related with the 

variability of the risk of infection.    

The results indicated that at country level, there was no significant temporal trend 

between consecutive years in the risk of being positive or newly positive. However, at 

county level bTB evolution was more heterogeneous, and some counties presented in a 

specific year a significant increase or decrease in the risk of being infected or newly 

infected indicating, and it is related with the presence of short-latency underlying 

factors. 

The analysis of potential risk factors indicated that both, a large number of 

movements from counties with high incidence (>1%) and presence of bullfighting cattle 

herds, had a positive relation with the risks of a county being positive or new positive. 

However, these results should be interpreted with care, and the correlations found at 

aggregated-level need to be confirmed at farm-level by other types of epidemiological 

studies. 
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Introduction 

Bovine tuberculosis (bTB) is a chronic infectious disease caused by Mycobacterium 

bovis, a gram positive bacillus that belongs to the M. tuberculosis complex (MTBC) (de 

la Rua-Domenech et al., 2006). The disease can affect a wide range of domestic and 

wild animals (Phillips et al., 2003; Humblet et al., 2009; Gortázar et al., 2012), and due 

to its zoonotic nature and the high economic impact in livestock production, most of the 

developed countries where the disease is endemic have established bTB eradication 

programs (Reviriego Gordejo & Vermeersch, 2006). 

In Spain, the first bTB testing was performed in 1950 in a dairy herd in the north of 

Spain, but it was not until 1993 when all dairy and beef herds were included in the 

control program. During the application of this program, mainly based on intradermal 

tuberculin testing (IDT) and culling of reactor animals, the cattle herd prevalence has 

decreased from 5.9% in 1993 to 1.3% by the end of 2011 (Anon, 2012a). Despite that 

important progress, during the last 12 years, the herd prevalence in Spain has only 

declined from 2.5% in 2000 to 1.3% in 2011, and the herd incidence has been 

fluctuating between 0.8 and 1.0%.  

Spatio-temporal disease mapping models are a useful tool to describe the pattern of 

diseases and to identify regions with unusual levels of disease, time trends or both 

(Meliker et al., 2011; Schrödle and Held, 2009). Moreover, space-time models can 

contribute to the assessment of the stability of the estimated spatial patterns of disease, 

which cannot be evaluated just by spatial models (Abellan et al., 2008). Following 

Lawson et al. (2009), when analyzing the observed counts of disease within different 

areas for a sequence of time periods (i.e. space-time analysis), three groups of 

components can be considered:  i) the spatial dimension: area-specific risk factors such 

as contact with infected wildlife or characteristics of the farms within the county (e.g. 



herd size or livestock rearing practices), ii) the space-time dimension: time-area specific 

risk factors, such as changes between years in the county due to new personnel, 

diagnostic procedures or movements of animals, and finally, iii) the temporal dimension: 

time risk factors such as global changes in the national eradication program. Moreover, 

the decomposition of the risk variability by using different (and appropriate) random 

effects allows the formulation of hypotheses about the role of factors potentially related 

to the risk of infection. The different levels of variability in the observed cases of a 

disease can be accounted for by the use of multilevel (i.e., hierarchical) models (Beale 

et al., 2008).  

In a previous analysis about the geographical risk of bTB infection across Spain, the 

spatial bTB risk heterogeneity across the country was quantified and it was evidenced 

that counties located in the central and south of Spain had a risk more than three times 

bigger than the rest of the country (Allepuz et al., 2011). However, in that study the 

temporal evolution of the disease across areas was not assessed. Furthermore, specific 

covariates were not included in the model so their relationship with the risk of bTB 

could not be assessed.  

The objective of the present work was to analyze the space-time variation in the risk 

of bTB in cattle between 2006 and 2011, and to identify factors related with the 

variability of the risk of infection.    

Materials and Methods 

1. Data collection and management 

For the period 2006–2011, annual data on the total number of herds, bTB positive 

herds and new positive herds (i.e., herds that became positive within a given year) at 

county level were provided by the Spanish Ministry of Agriculture, Food and 

Environment (MAGRAMA). The information about some explanatory covariates 



included in the model: number of herds in the county by type (dairy, beef or fighting 

bulls), number of cattle-goat mixed herds, number of goat farms and animal movements 

between counties from 2006 to 2011, was also provided by MAGRAMA.  

The abundance of red deer in Spain was obtained at UTM 10x10 km2 grid cells from 

Acevedo et al. (2010). The abundance of red deer was aggregated at county level by 

calculating the average abundance of the different cells that intersected with the county. 

This data aggregation was carried out through Quantum GIS vs. 1.8.0 by joining the 

attributes based on their spatial location.  

For each year, three variables related to animal movement were created: i) in-degree, 

i.e., the number of counties from which a given county received animals, which was 

calculated using the statnet package (Handcock et al., 2003); ii) number of animal 

movements to a given county (including intra-county movements), and iii) the number 

of animals moved to a given county (including animals from intra-county movements). 

Besides, a differentiation was made between high risk movements (i.e., from counties 

with an incidence >1%), and low risk movements (i.e., from counties with an incidence 

≤1%), resulting in six explanatory covariates. Figures 1 and 2 show the distribution of 

the categories for each of the variables included in the model.  

All the explanatory variables were included in the model as categorical variables in 

order to avoid problems derived from non-linear relationships with the dependent 

variable, and the possible concurvity between explanatory covariates and random 

factors (ref Marc). For this purpose, the covariates were reclassified into four categories 

following the quartile distribution. In the case of red deer abundance and number of 

mixed cattle-goat farms, as their first quartile was zero, they were also divided into four 

categories, but the first one included all the zeroes, and the remaining values were 



divided into terciles. Moreover, as half of the values of bullfighting cattle were zeroes, 

this variable was included as dichotomous (absence and presence).  

3. Model specification 

We assumed that the total and the new bTB positive herds at county level followed a 

Poisson distribution centered on ij and γij, respectively, being i the county (i.e., i=1 to 

483) and j the year (i.e., j=2006 to 2011):   

ij= Pij x Hij 

γij = Iij x Hij 

Where, Pij and Iij are the prevalence and incidence respectively, and Hij the total 

number of herds, in each county and year.  

Due to the hierarchical structure of the data (i.e., space, time and space-time), a 

generalized linear mixed model (GLMM) approach was implemented (Zuur et al. 2009). 

Within the Poisson regression and GLMM context, 
^

ijP  and 
^

ijI  were parameterized as a 

function of random and fixed effects:  

^

ijP  or 
^

ijI = exp (β0 + Si + etai + gj + psii,j + Zβ + ∈) 

Where, β0 represents the intercept, Si is the structured spatial random effect for the 

spatial dependence between counties, which was defined by a stochastic partial 

differential equation (SPDE), and etai is the unstructured spatial component. The 

temporal component gj and the space-time interaction psii,j random effects were defined 

by an autoregressive model of order 1. Finally, Zβ represented the explanatory 

covariates, and ∈  was the residual term (assumed to be approximately normally 

distributed). 

The SPDE was calculated from a matrix of Euclidean distances between centroids of 

each county using Delaunay triangulation (Simpson et al., 2011; Cameletti et al., 2011).   



The spatial variation of the relative risk of the prevalence (RRP) and incidence (RRI) 

across the country was calculated dividing the estimated prevalence (
^

ijP ) or incidence 

(
^

ijI ) in a given county and year, by the global prevalence or global incidence in that 

year, respectively. 

The covariates were included into the model by the following procedure: in a first 

step, all possible combinations of the model with random effects and just one covariate 

were evaluated. The model with the lowest Deviance Information Criterion (DIC) value 

was selected.  Then, all possible model combinations of the first selected model plus a 

new covariate were analyzed, and the model with the lowest DIC value was selected. 

These processes were repeated by adding new covariates until the final model, the 

model combination with the lowest DIC value, was selected (Held et al., 2010; 

Spiegelhalter et al., 2003).  

 To determine the statistical significance of the variables in the model, 95% credible 

intervals (CR) were obtained from the posterior probability distribution. If the 95% CR 

was greater than 1, the variable would be considered significantly positively correlated 

with the dependent variable. If the 95% CR was lower than 1, the variable would be 

considered significantly negatively correlated with the dependent variable. 

All statistical analyses were performed using R software 2.14.1 (R Core Team 2012), 

and the models were fitted using the R-INLA package to avoid the algorithm problems 

of convergence and mixing of the Markov Chain Monte Carlo (MCMC)-based sampling 

methods (Bizancio et al., 2011; Schrödle and Held, 2010).  

 

Results 

1. Descriptive results 



The number of positive and new positive herds by year and type of herd are 

presented in Tables 1 and 2. For all the years of study, dairy cattle had the lowest 

percentage of positive and new positive herds, while fighting bulls had the highest 

proportion. Approximately 50% of the positive herds each year were new positives. 

 

Table 1. Bovine tuberculosis (bTB) positive herds (Pos), number of herds (Herds) 

and percentage of bTB positive herds (%), between 2006 and 2011. 

Year   Positive herds                   Total 

  Beef      Dairy      Bullfighting       

    Pos Herds %   Pos Herds %   Pos Herds %  Pos Herds % 

2006  2108 105,164 2.0  203 30,568 0.7  98 1184 8.3  2411 136,916 1.8 

2007  1809 99,236 1.8  199 29,012 0.7  120 1815 6.6  2128 130,063 1.6 

2008  1703 97,067 1.8  173 26,454 0.7  108 1220 8.9  1984 124,741 1.6 

2009  1683 92,684 1.8  159 25,767 0.6  128 1211 10.6  1971 119,662 1.6 

2010  1504 90,174 1.7  123 25,012 0.5  128 1209 10.6  1759 116,395 1.5 

2011  1304 86,083 1.5  97 24,219 0.4  84 1153 7.3  1488 111,455 1.3 

 

 

Table 2. Bovine tuberculosis (bTB) new positive herds (Pos), number of herds 

(Herds) and percentage of bTB new positive herds (%), between 2006 and 2011. 

Year   New positive herds           Total 

  Beef  Dairy  Bullfighting     

    Pos Herds %   Pos Herds %   Pos Herds %  Pos Herds % 

2006  987 105,164 0.9  136 30,568 0.4  43 1184 3.6  1166 136,916 0.9 

2007  1126 99,236 1.1  160 29,012 0.6  91 1815 5.0  1377 130,063 1.1 

2008  950 97,067 1.0  122 26,454 0.5  63 1220 5.2  1135 124,741 0.9 

2009  1039 92,684 1.1  119 25,767 0.5  73 1211 6.0  1231 119,662 1.0 

2010  837 90,174 0.9  96 25,012 0.4  57 1209 4.7  990 116,395 0.9 

2011   822 86,083 1.0   74 24,219 0.3   42 1153 3.6   938 111,455 0.8 

 

2. Space-time model results 

The 95% CR for the temporal random effect included the number 1 in all the years, 

indicating that in Spain as a whole, there were no significant changes between 

consecutive years in the risk of becoming infected or newly infected. Even though at 

country level there was no significant temporal trend, at county level bTB temporal 



evolution was more evident and spatially heterogeneous. For some years, some counties 

presented a significant increase, or decrease, in the risk of being infected or newly 

infected, compared to the previous year (Figures 3 and 4, respectively). 

The final models for prevalence and incidence included 2 and 3 covariates  

respectively (Table 3). Movements from counties with high incidence (>1%) and 

presence of bullfighting cattle herds had a positive relation with both the risk of being 

positive and the risk of being new positive. Specifically, we found that herds located in 

counties with the highest number of risk movements (categories 3 and 4) had a risk of 

becoming positive or new positive between 1.5 and 1.7 times higher compared to those 

counties with the lowest number of risk movements (category 1). Moreover, counties 

with presence of bullfighting herds had a risk between 1.3 and 1.5 higher of becoming 

positive or new positive as compared with counties with absence of bullfighting herds. 

On the other hand, the abundance of red deer improved the specification of the model 

for new infections, explaining part of the risk heterogeneity, but the relationship was not 

statistically significant.  

 

Table 3. Covariates included in the final model selected according to the deviance 

information criterion, statistical coefficients and their standard deviations (SD) and 95% 

credible intervals. Coefficients are relative to the lowest values (categories 1). 

Significant categories are marked with an (*).  

Model Covariate Category Coefficient SD 2.5% 97.5% 

Space-time prevalence High risk movements 2 1.07 1.16 0.79 1.46 

  3* 1.71 1.17 1.25 2.33 

  4* 1.66 1.18 1.19 2.33 

 Bullfighting 2* 1.56 1.14 1.19 2.05 



Space-time incidence High risk movements 2 1.03 1.15 0.78 1.38 

  3* 1.67 1.15 1.25 2.23 

         4* 1.58 1.17 1.16 2.16 

 Bullfighting 2* 1.33 1.13 1.05 1.70 

 Red deer abundance 2 0.92 1.14 0.71 1.20 

  3 1.11 1.15 0.84 1.46 

  4 0.95 1.18 0.69 1.32 

 

The relative risks of the prevalence (RRP) and incidence (RRI) in Spain, throughout 

the years of study, are represented in Figures 5 and 6. The results of the model showed 

that the RRP and RRI were higher in counties located in central and southern Spain, 

throughout the whole period of study.  

 

Discussion 

According to a previous study, the risk of being positive or new positive, at county 

level, was not homogeneous throughout Spain, being higher in the central and southern 

areas of the country (Allepuz et al., 2011). However, in that study the temporal and 

space-time temporal trends could not be evaluated as just spatial models were used. Our 

results show that, the temporal trend at country level was not statistically significant for 

any of the years of study. The result of the temporal random effect of our models has to 

be interpreted based on its specification (i.e., autoregressive of order 1). In this sense, 

this random effect indicates the increase or decrease in the probability of disease 

compared with the previous year, but not as the temporal trend for the whole period of 

study. However, the temporal trend in herd prevalence from 2006 to 2011 has been 

reported to significantly decrease, from 1.8% in 2006 to 1.3% in 2011 (Anon., 2012b). 



Therefore, both results are not necessarily contradictory, as there may be no significant 

improvements in the bTB eradication campaign between consecutive years, but a 

significant temporal trend for the whole period.   

At county level, the evolution has been more heterogeneous, as some counties 

presented significant space-time interactions. This result indicates an increase or a 

decrease on the risk in that area in that specific year, and it is related with the presence 

of short-latency underlying factors (i.e. not occurring in a regular manner over time) 

(Abellan et al., 2008). It is difficult to have reliable information about which short-

latency uncontrolled factors could be responsible for those significant space-time 

interactions, but we speculate that factors such as changes in the personnel in charge of 

the implementation of the diagnostic tests, intensification of controls, or the application 

of immediate depopulation, could be related to them.  

Our results indicate that movements of animals from counties with high incidence 

(>1%) were positively correlated with the risk of being positive and new positive. This 

is in agreement with studies conducted in the United Kingdom, where movements of 

animals were identified as a significant risk factor for bTB (Gilbert et al., 2005; Gopal 

et al., 2006; Green et al., 2008). When animal movements take place, different 

situations may occur that expose the animals to new infections. In our data base it exist 

different types of movements: to shared grasslands, livestock markets and other farms. 

Pre and post-movement controls should be realized (Anon., 2012a) although problems 

with the sensitivity of IDT test (de la Rua-Domenech, et al., 2006) may originate the 

existence of infected animals in the herd which could spread the disease to other farms 

after the movement. Also the existence of anergic animals and the possible contact with 

cattle from other farms, other domestic animals or even with wildlife reservoirs may 

explain the animal movement as a risk factor. 



The results indicate that the risk of a herd being infected or newly infected was 

higher in counties which had bullfighting herds. The type of production, in particular 

fighting bulls, has been described as potential risk factor for bTB infection in Spain by 

numerous authors (Rodriguez-Prieto et al., 2012; Anon, 2012b; Allepuz et al., 2011; 

Boadella et al., 2011). Fighting bulls are difficult to handle because of their vigor and 

the fact that they are managed in extensive areas with difficult access, which implies 

that some of the animals of the herd may not be tested (Aranaz et al., 2006; Rodríguez-

Prieto et al., 2012). Moreover, bullfighting herds were introduced gradually into the 

eradication program context since 2004 (RD 1939/2004). These reasons may explain 

why the presence of bullfighting herds increases the risk of a herd becoming infected or 

newly infected. In fact, to tackle this problem, a new legislation (RD 186/2011), which 

reinforces the controls in bullfighting herds, has been introduced in 2011.   

Our results show a positive correlation, although not significant, between the red 

deer abundance and the risk of new infections. The possible role of wild animals, 

mainly wild boar and red deer, as reservoirs of bTB in Spain, has been suggested in 

different studies (Rodriguez-Prieto et al., 2012; Gortázar et al. 2011; Rodriguez 2010; 

Naranjo et al., 2008; Vicente et al., 2006; Aranaz et al. 2004). In central and southern 

Spain, high prevalences are reported in these species, particularly in areas of high 

density (e.g. Gortázar et al., 2008; Castillo et al., 2011; Acevedo et al., 2007, 2008; 

Boadella et al., 2011; García-Bocanegra et al., 2012). Molecular typing has shown that 

different wildlife species such as red deer, fallow deer (Dama dama) and wild boar are 

infected with the same M. bovis spoligotypes as cattle, and that they may be maintained 

in the same area over time even in the absence of contact with domestic ruminants 

(Aranaz et al., 1996, 2004; Gortazar et al., 2005; Parra et al., 2005; Hermoso de 

Mendoza et al., 2006; Romero et al., 2008; Naranjo et al., 2008; Rodríguez et al., 2009). 



As only data for red deer abundance was available for the whole Spain, this was the 

species whose role was assessed. However, as wild boar and red deer have similar 

ecological requirements (Acevedo et al., 2011), their distributions are highly correlated, 

and therefore red deer abundance may be considered as a proxy measure of wild host 

abundance. 

Even though there is no official data on the prevalence of caprine tuberculosis, the 

disease is considered to be endemic in Spain (Liébana et al., 1998), and therefore the 

presence of goats has also been suggested as a potential risk for bTB (Rodriguez et al., 

2011; Álvarez et al., 2007). In a recent study, it was evidenced that goat herds infected 

with tuberculosis may pose a threat to neighboring bovine herds (Napp et al., 2013). 

Nevertheless, our results did not show any significant correlation between number of 

goat herds or mixed cattle-goat farms and the risk of a herd being infected or newly 

infected. 

In the interpretation of the covariates included in the space-time model, it is 

important to keep in mind the spatial scale at which the analysis was done, as the 

relationship between the variables may change with the selection of different areal units 

(Meliker et al., 2011). While these kinds of models are useful to identify broad-scale 

spatio-temporal trends, they hide farm level heterogeneity, a phenomenon known as the 

ecological fallacy. Therefore, relations found at the aggregated level do not have to be 

the same at the individual level, and therefore, caution has to be taken when drawing 

conclusions from disease data summarized at the area level and should be corroborated 

by analysis at local scale. 

The prevalence and the incidence of disease were the parameters used to evaluate 

the risk of bTB infection instead of the standardized mortality/morbidity ratio (SMR). 

SMR describes the odds of being in the disease group rather than the background group 



(Lawson et al., 2003), by calculating the ratio between the observed number of cases 

and the number that would have been expected in a standard population (Pfeiffer et al., 

2008). It is very useful for disease mapping of aggregated (e.g. county) data (Pfeiffer et 

al., 2008), and it was previously used to describe the risk of bTB in Spain (Allepuz et al., 

2011). However, as we developed a space-time model, aimed at comparing the risk of 

bTB from one year to the previous year, a ratio between prevalences or incidences 

seemed easier to interpret than a ratio between SMRs.  

Regarding, the application of space-time models, there are a variety of formulations 

that have been proposed for the spatiotemporal analysis of the pattern of the risk of a 

disease, and it is not totally clear which one would be the most useful (Lawson et al., 

2009). Different approaches, such as the use of mixed models (Held et al., 2005; Paul et 

al., 2008), different specifications for the random temporal and space-time temporal 

components (Bernardinelli et al., 1995; Knorr-Held., 2000; Abellan et al., 2008; 

Martínez-Beneito et al., 2008) and the use of non-separable space-time interactions 

(Knorr-Held., 2000), have been proposed. In the present work we used one of the 

formulations proposed in Knorr-Held (2000). By this formulation, the correlated and 

uncorrelated spatial components are defined as constant in time, and there are separate 

temporal and space-time interaction terms. Within this specification an autoregressive 

prior distribution allowing a non-parametric temporal and space-time trend was used. 

We did not formally compare the performance of different space-time models 

specifications, as it was beyond the scope of this study. The model used has been 

reported to give a parsimonious representation of the space-time behavior in risk 

(Knorr-Held, 2000; Lawson et al., 2009), and therefore we believe it gives an accurate 

representation of the variability of bTB across Spain during the study period.  



Space-time models are usually solved by the use of Markov chain Monte Carlo 

(MCMC) algorithms.  However, they are computationally expensive and may induce 

large errors in parameter estimates (Schrodle et al., 2011). An alternative method to 

compute the parameters of interest, is the integrated nested Laplace approximations 

(INLA), recently proposed by Rue et al. (2009). The major advantage of this method is 

that it is computationally much faster than MCMC, returning precise parameter 

estimates. The application of space-time models using INLA is getting more common 

and, among others, it has been used to assess the space-time evolution of bovine viral 

diarrhea eradication in Switzerland (Schrödle 2011), to predict the areas with the 

highest potential for West Nile Virus introduction and amplification in Italy (Bisanzio et 

al., 2010), and to estimate air quality also in Italy (Cameletti et al., 2012).     
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