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Abstract

Cattle ticks are distributed worldwide and affect animal health and livestock production. White tailed deer (WTD) sustain
and spread cattle tick populations. The aim of this study was to model the efficacy of anti-tick vaccination of WTD to control
tick infestations in the absence of cattle vaccination in a territory where both host species coexist and sustain cattle tick
populations. Agent-based models that included land cover/landscape properties (patch size, distances to patches) and
climatic conditions were built in a GIS environment to simulate WTD vaccine effectiveness under conditions where
unvaccinated cattle shared the landscape. Published and validated information on tick life cycle was used to build models
describing tick mortality and developmental rates. Data from simulations were applied to a large territory in northeastern
Mexico where cattle ticks are endemic and WTD and cattle share substantial portions of the habitat. WTD movements were
simulated together with tick population dynamics considering the actual landscape and climatic features. The size of the
vegetation patches and the distance between patches were critical for the successful control of tick infestations after WTD
vaccination. The presence of well-connected, large vegetation patches proved essential for tick control, since the tick could
persist in areas of highly fragmented habitat. The continued application of one yearly vaccination on days 1-70 for three
years reduced tick abundance/animal/patch by a factor of 40 and 60 for R. annulatus and R. microplus, respectively when
compared to non-vaccinated controls. The study showed that vaccination of WTD alone during three consecutive years
could result in the reduction of cattle tick populations in northeastern Mexico. Furthermore, the results of the simulations
suggested the possibility of using vaccines to prevent the spread and thus the re-introduction of cattle ticks into tick-free
areas.
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Introduction

Cattle ticks, Rhipicephalus (Boophilus) annulatus and R. (B.)
microplus, are a serious threat to animal health and production in

many regions of the Americas, Asia, Oceania and Africa. They are

also recognized as an emerging threat to the cattle industry in the

United States [1–2]. Rhipicephalus microplus originated in Asia

before it was introduced and has spread into much of Central and

South America, as well as Mexico and southern USA [3].

Rhipicephalus annulatus is native to the Mediterranean basin,

Near and Middle East [4].

Empirical comparative studies on tick burden, reproductive

efficiency and larval hatching in samples collected from cattle and

deer confirmed the role of wild ungulates in maintaining tick

populations in wide areas of northeastern Mexico [2]. In

particular, the white tailed deer (WTD), Odocoileus virginianus,
was demonstrated to sustain and spread cattle tick populations and

are responsible for a series of R. microplus outbreaks in

southeastern USA [5].

Currently, only two methods are available to control ticks

feeding on WTD, (a) a systemic treatment involving dispersal of

ivermectin-medicated corn and (b) a topical treatment using 4-

poster deer treatment bait stations and 2-poster deer treatment

feeder adapters, both of which passively apply active acaricide

topically to deer [3]. Vaccines against cattle ticks became available

in the early 1990’s as a cost-effective alternative for tick control

that reduced the use of acaricides and the problems associated

with them such as selection of acaricide-resistant ticks, environ-

mental contamination and contamination of animal products with

pesticide residues [6-9]. The efficacy of WTD vaccination as a

method to reduce R. microplus tick infestations was demonstrated

using tick BM86 and SUB antigens [10]. These experiments were

conducted as pen trials in animal enclosures. Field trials have not
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been conducted with WTD but the efficacy of the vaccine was

demonstrated in red deer under field conditions in Spain [10].

Modeling the tick population dynamics is a procedure aimed to

capture the action of climate on the basic parameters of tick

reproductive performance and mortality [11]. Some studies have

explored the importance of the landscape composition on the

movement of animals through ‘‘corridors’’ that connect patches of

suitable habitat, and therefore their impact on the abundance of

ticks [12–13]. It is now widely accepted that animals may move

through a network of vegetation patches, and that these

movements are governed by simple rules depending on both the

size of the patch and the distance among patches of suitable

habitat [14–15]. These movements affect the abundance of

animals at specific points of the network, thus affecting also tick

abundance [12]. Simulating animal movements, host preferences

for some vegetation types and the impact of climate on ticks has

been demonstrated to be a suitable way to capture the basics of the

phenology and abundance of ticks [16]. These models are

commonly known as ‘‘agent-based models’’ [17] because each

animal is an ‘‘object’’ that moves through the landscape following

simple rules. Animals carry a variable tick load, thus according to

their phenology the abundance of ticks can be tracked and

correlated with the landscape composition.

In this study, the efficacy of anti-tick vaccination of WTD to

reduce cattle tick populations was modeled in simulated

landscapes with different configurations of patches (size and

distance among patches) and climate on these landscape were

parameterized to model their effect on tick populations. Published

and validated information on tick life cycle was used to build

models describing tick mortality and developmental rates [18–21].

The aim of the study was to identify the constraints of the habitat

spatial structure on the coexistence of cattle (unvaccinated) and

WTD (vaccinated) and how climate and landscape factors affect

tick control rates. Landscape features can affect the number of

unvaccinated cattle and vaccinated WTD sharing the same

landscape because the movement rules for both hosts are different.

The information gained from these simulations was applied to an

actual landscape in northeastern Mexico where WTD and cattle

share the same landscape. The results were used to simulate both

tick population dynamics under the actual climate features of the

region and animal movements between patches and assess their

effects on tick control after WTD vaccination.

Results

Model with simulated patches
Three critical parameters of the model had the highest impact

on the reduction of the abundance of questing tick larvae, (i)

absolute and relative densities of animal hosts (i.e. the actual

density of each host type and their ratio), (ii) size of the patch, and

(iii) degree of isolation of individual patches in the network. A

fourth critical parameter was the moment of the year at which

animals were vaccinated, but it was evident only when simulations

were conducted using real climate data. Figure 1A shows the

percent reduction of questing larvae in simulated patches of

vegetation, according to the relative proportions of WTD and

cattle and the density of animals per patch with vaccinated WTD

only. At low densities of WTD and/or WTD/cattle ratios,

vaccination protocols did not reduce tick larvae. Even with high

relative densities of WTD, reduction of larvae was higher than

50% only when the abundance of WTD was higher than 0.5

animals/ha. The reduction of tick larvae in simulated patches

according to the size of the patch and relative densities of both host

species is shown in Figure 1B. The control of tick infestations in

relatively small patches (from 10 to 30 ha) was better at high

densities of vaccinated WTD but the effect was not complete. In

large patches, low densities of vaccinated WTD resulted in more

than 50% control of tick populations. Differences were associated

with the rules governing the movements of animals across the

network of patches. Therefore, while there was an obvious

relationship between the isolation of the patch (the inverse of the

mean distance to every linked patch) and tick control, the most

important feature was patch size. The best control of tick

populations was always obtained for the largest patches that have

a high traversability.

Distribution of cattle ticks in the study area
The distribution of R. annulatus and R. microplus on WTD

moving across the vegetation patches was estimated in the study

area (Figure 2). After a 5 years simulation, the trends of tick

abundance stabilized and remained cyclic for the entire study area.

All patches larger than 2 ha were reachable by WTD and

supported permanent cattle tick populations. Rhipicephalus
annulatus was predicted to be the more abundant tick species in

western parts of the study area, mainly on dried areas of northern

Mexico (Figure 2). A few sites in western parts of the study area

were particularly well suited for R. annulatus (Figure 2). The

higher suitability for ticks in these areas was mainly derived from

the adequate climate and improved by a network of relatively

small and medium size patches located at short distances from

each other. These small patches support WTD populations that

contribute to the rapid dissemination of R. annulatus. Rhipiceph-
alus microplus was predicted to be abundant in wide portions of

northeastern Mexico, in sites with enough relative humidity to

support low tick mortality rates (Figure 2).

Effect of WTD vaccination on the reduction of cattle tick
populations

The effect of WTD vaccination on tick populations was tested

vaccinating at days 1, 70, 130, 190, 250 or 310. The simulations of

tick phenology concluded that both species have variable on-host

abundance peaks in the study area with two generations per year

between days 126–168 and 280–322. Since vaccination schemes

differed only at the moment of vaccination, they affected a

different number of ticks feeding on the vaccinated WTD. The

lowest tick control was obtained for protocols vaccinating on days

190, 250 and 310, because adequate protection in animals was

reached well after maximum on-host tick abundance. For both tick

species, vaccination around days 1 and 70 produced the best

results. The continued application of one yearly vaccination on

days 1–70 for three years reduced tick abundance/animal/patch

by a factor of 40 and 60 for R. annulatus and R. microplus,
respectively when compared to non-vaccinated controls (Figure 3).

The protocol simulating vaccination on days 130 and 190

produced only a 2-fold reduction in tick abundance rates at the

third year of vaccination. No significant improvements in the

reduction of tick abundance rates were observed after 5 years of

vaccination. An almost total lack of tick control was consistently

obtained for vaccination schemes on days 250 and 310. None of

the vaccination schemes completely eradicated ticks in the study

area and tick pockets persisted even after three years of

vaccination in sites with high habitat fragmentation, at sites where

WTD are scarce or in patches small enough not to be visited by

WTD.

Simulated Tick Control in Deer
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Discussion

Vaccination is an environmentally friendly alternative for the

control of cattle tick infestations and tick-borne diseases with an

impact on improving animal health and production [7–8,22–24].

Vaccination with recombinant BM86, the antigen included in

commercial vaccines for the control of cattle tick infestations [7]

and SUB, a recently discovered tick protective antigen [8],

demonstrated similar efficacy (76–83%) for the control of R.
microplus infestations in WTD [10]. Therefore, these antigens

were proposed as an alternative for tick control in deer [24].

Figure 1. Control of tick infestations. (A) Percent reduction of tick larvae in simulated patches of vegetation, according to the host density in the
patch. Each curve shows the reduction of tick larvae (in %) according to the density of vaccinated deer per hectare (colored insert). Different colored
lines indicate the density of vaccinated deer per hectare (B) Percent reduction of tick larvae in simulated patches of vegetation, according to the
relative host densities (unvaccinated cattle and vaccinated deer) and the size of the patch. Each curve shows the reduction of tick larvae (in %)
according to the size of the patch at a fixed density of 1 deer/hectare. Different colors indicate the size of the patch in hectares.
doi:10.1371/journal.pone.0102905.g001

Figure 2. Distribution of cattle ticks in the study area. The predicted distribution of (A) R. annulatus and (B) R. microplus in northeastern
Mexico. Each line shows the link between two contiguous patches forming the network of movements of hosts and ticks across the study area. The
colors represent the recruitment, a value expressing the density of ticks. Values indicate higher number of ticks moving between patches.
doi:10.1371/journal.pone.0102905.g002
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Our results are the first assessment of the constraints of the

landscape structure on the feasibility of the control of cattle ticks

by the application of tick vaccines on WTD. Although present

technology does not allow effective vaccination of wild deer, herein

we showed the effect of the physical properties of the landscape

and the phenology of the ticks on the outcome of vaccination

protocols to control tick infestations. The model used is a special

type of diffusion model [13] in which hosts must follow routes

connecting patches according to some preferences based on Graph

theory [14–15] using the evaluation of the habitat suitability for

the ticks, in line with recent developments incorporating the

landscape as an implicit description of tick population dynamics

[16]. This basic model was able to predict the route of invasion by

cattle ticks in southern Texas, before the break of the quarantine

zone by infested animals was noticed [2]. In parallel with the

development of models based on the climate suitability for ticks in

the space (the so-called ‘‘correlative approach’’), further improve-

ments were incorporated to the description and simulation of the

tick population dynamics based on the description of the processes

operating at each physiological process [18,25]. In the current

development, we further addressed the explicit description of host

movements by simple rules [16] and the effects derived from

habitat sharing by hosts on the persistence of tick populations. This

is a growing field of research [26] aimed to explain the properties

of complex systems by basic rules governing the behavior of

animals [27–28] by both locational (patch-dependent) and

directional (link-dependent) rules [29–30].

The framework used in this research could incorporate many

other features resulting in a deeper understanding of the basic

processes regulating the tick seasonal dynamics. However, the

inclusion of more layers of complexity aimed to improve the rules

driving host movements would result in a higher uncertainty of the

results, obscuring the basic relationships between ticks and hosts. It

is obvious that the choice of parameters for patch occupancy and

movements by animals might reshape the relationships between

host movements and WTD densities at a given patch. There are

not adequate censuses of WTD and cattle in the study area and

thus only partial estimations of the habitat preferences for these

hosts were used [30]. Because the lack of empirical data, a

complete parameterization of the model has not been achieved

and some facts such as the complete avoidance of some patches,

the existence of geographical barriers or the restriction of the hosts

because their management have not been addressed. The

modeling framework allows testing these basic relationships, and

shows a promising application to an actual landscape, which

cannot be validated at the current stage of knowledge of field

populations of ticks, cattle, and WTD.

However, several conclusions were obtained from our simula-

tions. The control of tick populations showed close relationships

with the structure of the habitat and the capture of tick phenology

Figures 3. Effect of WTD vaccination on tick infestations. (A–C) Changes in the recruitment rates of R. annulatus in the study area each year
after three years of WTD vaccination at the day 50 every year. (D–F) Changes in the recruitment rates of R. microplus in the study area each year after
three years of WTD vaccination at the day 50 every year. Each line shows the link between two contiguous patches forming the network of
movements of hosts and ticks across the study area. Different colors represent individual recruitment levels, a value indicating density of ticks. Higher
values indicate higher number of ticks moving between patches.
doi:10.1371/journal.pone.0102905.g003
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in the study area. These are key factors for promoting an effective

tick control, because vaccination schemes targeting ticks out of the

maximum on-host seasonal abundance did not work. Understand-

ing tick population dynamics is an essential step in the evaluation

of the efficacy of different control measures. Our study provided

further support to the existence of a clear border dividing the

suitable habitat for R. annulatus and R. microplus in the study

area [2,16,18,31]. This border is influenced by the deficit of water

in the air as the main restrictive factor in the survival of these

species of ticks. However, both tick species have a similar

phenology throughout the study area. Therefore, the importance

of the application of vaccination protocols at a precise time of the

year, which can change from year to year because regional

changes of climate, was valid for both tick species.

The second important aspect of tick ecology for control

programs is tick dispersal. The impact of habitat structure on

the management of cattle tick infestations by vaccination of WTD

emerged in our simulated landscapes. It is known that larger

patches will ‘‘attract’’ more animals moving on them, while shorter

inter-patch distances will benefit those movements. Therefore,

patches more frequently visited by the vaccinated hosts will have

reduced probabilities to develop permanent tick populations. In

this context, small patches closely allocated in clusters (because

high fragmentation of the habitat) support frequent movements by

few animals. These movements result in a higher uncertainty in

the results of the vaccination. In some cases, reduction of tick

population was attained but in some others the lack of habitat

overlapping between WTD and cattle resulted in small pockets of

remaining ticks. The driving factor of the success in tick control

derives from the habitat sharing by hosts, an aspect only partially

addressed in this research because the lack of empirical data.

Nevertheless, WTD have a role in the maintenance and spread of

R. annulatus and R. microplus populations [1,32–33]. The

behavior of WTD in nature has been addressed mainly regarding

conservation strategies in both Texas and Mexico [34–35] but

additional empirical studies are still necessary to understand the

interactions among cattle and WTD and to define dynamic

relationships of host diversity. These limitations have been

recognized as a gap in our current ability to plan adequate

strategies for the control of ticks and other ectoparasites affecting

wild and domestic ruminants [36]. Herein, we addressed this

problem by considering that WTD partially share habitat with

grazing cattle, as reported for WTD in Mexico and the USA

[26,35]. However, there is evidence of a low habitat sharing

between cattle and WTD in the Tamaulipas brush land [37],

which occupies wide portions of the arid-steppe biome in the

region, thus introducing some uncertainties in the computed data.

A recent risk assessment of potential tick and transmitted

pathogens outbreaks in the temperate zone east of the South Texas

Plains concluded that significant additional infrastructure and

personnel would be needed to meet operational demands and

treatment costs with production losses likely exceeding the

economic viability of the operations under current tick elimination

options [38]. It is thus necessary to evaluate the most cost-effective

management strategy for tick control in the area, since the only

control against the tick reintroduction into southern USA is the

acaricide treatment of moving cattle, infested animals and

quarantine of affected ranches in Texas [32]. However, moving

of wild animals and most importantly WTD cannot be adequately

managed by this strategy. Wildlife has been involved in almost all

tick outbreak episodes reported in southern USA and it is targeted

with the maximum priority for tick eradication in this area [2].

The results reported here suggest that WTD vaccination in

northern Mexico would reduce the risk for tick outbreaks resulting

in a lower risk of spreading in parts of southern USA, where

movements of tick-infested WTD are common.

Conclusions

BM86-based tick vaccines have been shown to control cattle tick

populations in the field [7]. The vaccine efficacy obtained in WTD

with both BM86 and SUB clearly suggests that it is possible to use

these vaccines for cattle tick control in deer. The study showed that

vaccinating WTD alone would reduce cattle tick populations in 3

years in northeastern Mexico. Furthermore, the results of the

simulations suggest the application of these vaccines to prevent the

spread and thus the re-introduction of cattle ticks into tick-free

areas. These results are particularly relevant for conservation of

cattle-tick free areas in the USA to prevent the possible impact of

ticks and tick-borne diseases on cattle industry. Future results in

the development of technologies for the application of tick vaccines

to WTD under field conditions are required to apply this approach

for the control of cattle tick populations in this and other regions of

the world.

Methods

Model rationale
A model was developed to simulate population dynamics of the

cattle ticks, R. annulatus and R. microplus, driven by the weather

and the availability of cattle and WTD which are reported as the

main hosts for these tick species in the study area [3,39] (File S1).

Artificial landscapes were produced in which patches of ‘‘habitat’’

were randomly allocated within a matrix of non-habitat. We used

Manifold-GIS (www.manifold.net) to create random points over a

background, each point being the centroid of one patch. Patches of

habitat refer to sites that can be colonized by the hosts, and the

model allows explicit exchange of animals following basic rules of

patch size and distance among patches (see below). These patches

of habitat have a range of sizes and distances among them to

examine the impact of the physical features of the network on the

movements of animals. Artificial landscapes of variable patch

numbers and size randomly located according to a normal

distribution were produced. A variable number of hosts was also

distributed and randomly allocated to the complete territory at the

beginning of each simulation [33,34]. We applied the universal

rule that encounters between questing ticks and hosts are governed

by their abundance [40]. Since ticks quest for host ‘‘waiting’’ on

the top of vegetation, it is assumed that high host densities will

result in increased contacts between ticks and hosts [40].

Therefore, the mortality rates of the tick population while questing

are lower because the effects of the climate resulting in higher tick

population turnover [40]. A tick-host encounter results in the

transition of the tick to the feeding stage with a certain probability

of success after feeding (File S1).

Animal dispersal in a fragmented landscape depends on the

complex interaction between landscape structure and animal

behavior [29]. This fact has an impact on tick survival because it

has been reported that tick abundance was higher in patches that

are closer to a network linking the main suitable patches within the

territory. Conversely, ticks were scarce or even absent within

patches that were located far from the network linking the main

suitable patches, even if the abiotic suitability of the patch was high

[12]. These findings suggested that movements of the main tick

hosts among patches support a network of tick dispersal, a

hypothesis that has been confirmed by empirical data [12,41]. The

basic term of this framework is the traversability [15]. Traversa-

bility is understood as permeability of the landscape and measures

Simulated Tick Control in Deer

PLOS ONE | www.plosone.org 5 July 2014 | Volume 9 | Issue 7 | e102905

www.manifold.net


the connectivity among the patches of a territory, which drives

animal movements.

According to graph theory [15], the probability that an animal

in node i will disperse to node j can be expressed in the form of a

flux rate or dispersal probability. Such dispersal probability is

directly proportional to the size of the neighboring patches, and

inversely proportional to the distance to these neighboring patches

(equation 1 in File S1) [15]. Total traversability is thus defined as

the sum of partial dispersal probabilities for every link between two

patches. The movements of the animals are governed by rules of

habitat perception that relate the proportion of dispersing hosts as

a response to the patch size and inter-patch distances (equation 2

in File S1) [12]. Animal movements are simulated at steps of 10

days, which is the time step used in the tick population dynamics

model outlined below.

The second model component evaluates tick seasonal dynamics

as driven by weather traits. The development, activity and

mortality rates of the ticks were modeled according to differential

equations that relate the climate features (temperature and water

availability) with the physiological processes of the tick, using

already published information for R. annulatus and R. microplus
[18–21,25]. This information was obtained from tick colonies

collected in the USA-Mexico border and are therefore relevant for

this study. These equations were not modified and used as

published [18–21,25]. Tick density is regulated by the climate-

derived mortality while questing for a host, whose densities depend

upon the rule of habitat perception. The relative densities of host

types regulate the allocation of ticks to hosts. These differential

equations were applied to each patch in the simulated landscapes

to model the tick phenology and to check the changes in tick

densities under different landscape configurations. All the equa-

tions used in the model development are included in File S1.

Artificial landscapes and parameterization
Different combinations of artificial landscapes were assayed

with variable size and distances of patches, and with different rules

of habitat perception for both cattle and wild ungulates, the only

cattle tick hosts in the study area [1]. The performance of the tick

population (e.g. the production of new individuals as output of the

current generation) is governed by mechanisms of density-

dependent regulation according to host resistance and operating

on feeding success. The models were first run in simulated

landscapes to inspect for the impact of the different features of the

habitat and relative densities of cattle and WTD on the tick

populations.

At the beginning of the simulations, the landscape was loaded

into the model together with data for the size of each patch and

distance among patches (File S1). Then, the host population was

allocated to the vegetation patches, with a maximum carrying

capacity of 5 WTD/ha and 10 cattle/ha [39,42]. At every decadal

(10-days interval) of the year, hosts moved over the network of

patches according to their physical features (size and distance; File

S1). Host movements were driven by equations governing the

probability that a host move to another patch according to its size

and the distance between the patches (File S1). The model for tick

survival and growth rates run in parallel with the host movement

at 10-days intervals (File S1). Ticks find hosts depending on host

density in the patch and the tick questing rates driven by climatic

features. Ticks have the same preference to feed on cattle than on

deer [22] and the parasitic loads on hosts depend only on host

availability at the patch. At each decadal, hosts moved to another

patch carrying a variable number of ticks according to the rules

governing host-tick encounters. Engorged tick females dropped

from the hosts and colonized patches as ‘‘visited’’ by the hosts.

Over the time ticks were distributed over the network of patches

visited by WTD or cattle. Models were run separately for R.
microplus and R. annulatus. For these initial configurations, the

effects of the relative WTD/cattle density were assayed from 0.1

(10% WTD, 90% WTD) to 1 (100% WTD, no cattle), different

density of WTD per area of the patch (from 0.2 to 1) and the size

of the patch (from 10 to 50 ha). The weather was set to optimum

and constant features (22uC, 85% relative humidity) because we

were parameterizing the effects of the landscape and the relative

composition of hosts on the performance of the tick populations.

WTD vaccination in simulated landscapes
Models were run for 5 consecutive years at 10-days intervals, at

which every scenario produced permanent tick populations. After

obtaining constant tick populations, WTD vaccination was

simulated [1,10,22,24]. Published data on the performance of

ticks feeding on vaccinated WTD were used to simulate the effect

on either R. annulatus or R. microplus [10] (File S1). For

simplicity, we assumed that all hosts were adults in a stable

population where changes in abundance, mortality and newborns

did not occur. It was also assumed that all WTD were vaccinated

in each simulation to avoid the effects of multiple levels of

immunity in a large population of moving WTD.

The effect of vaccination of WTD on the tick population is thus

the relationship of the animal movement in the network of patches

and the number of ticks feeding on a particular host. Such feeding

proportion results from the ratio between vaccinated WTD and

unvaccinated cattle in each patch. We examined the importance of

the patch size, the inter-patch distances and the relative

abundance of each host type at patches of habitat as drivers of

the percentage of tick control, measured by the reduction rate of

questing larvae at each patch.

WTD vaccination in the study area
The knowledge gained from the simulations above was applied

to a large area in northeastern Mexico. The purpose was not to

evaluate a realistic vaccination protocol of WTD alone to reduce

tick populations in the area because technology for mass

vaccination of large WTD populations is still unavailable. We

rather focused on examining how an actual landscape configura-

tion may interfere with the actions towards tick reduction by

vaccination, an intervention that must by applied in the complete

territory. The study area covers a region located between 96u and

104uW and 22u and 29uN in the States of Coahuila, Nuevo León

and Tamaulipas in the northeastern part of Mexico (Figure 4).

Previous simulations of the landscape configuration evaluated the

main spread routes of R. microplus from Mexico into the USA

[16]. The area is thus known to have a special significance for tick

control because it supports large populations of WTD [42] that

has a demonstrated role in the maintenance of cattle tick

populations [3,32]. WTD in this region is believed to be

responsible for the spread of tick populations into the USA [1,11].

This part of the study was a proof of concept instead of a set of

data to validate, because there is currently no way to demonstrate

the findings of the model in the field. We wanted to find if an

optimum strategy for WTD vaccination against both tick species

exists. Tick control depends on how vaccinated WTD move

through the landscape, how they share the same habitat with

unvaccinated cattle, and how the seasonality of the ticks is shaped

by the weather. If WTD is more abundant on critical patches of

the landscape, they will carry more ticks than cattle and therefore

a reduction in tick abundance will be observed. If the configura-

tion of the landscape does not allows for a critical tick load on

WTD, the effects of vaccination will be negligible.
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The information used regarding the expected abundance of WTD

is summarized in http://www.conabio.gob.mx/informacion/gis/?

vns = gis_root/biodiv/distpot/dpmamif/dpmartio/odo_virggw (ac-

cessed on March 2012). This information was produced in the year

2009 based on published data [39] and was updated with data on

WTD density obtained from 968 ranches in the study area. The

WTD distribution was assumed to follow the patches of adequate

vegetation and that its density is proportional to the size of each

vegetation patch. The spatial distribution of vegetation patches

available at the Mexican National Institute of Statistics and

Geography (http://www.inegi.org.mx, accessed on March 2012)

was used to calculate the carrying capacity of each patch according

to its size and vegetative layer. The WTD move across the network

of patches by rules governing movements according to the size of the

patch of vegetation and its distance to another patches in the

network. Thus, a patch must have a minimum area to be colonized;

the larger the area, the more WTD will visit and stay; the shorter the

distance to near patches, the less time WTD will remain at the same

patch. Details about calculations of carrying capacity and move-

ments of deer and cattle are included in File S1. Maximum carrying

capacity was 5 WTD/ha and 10 cattle/ha.

In the application of the model to the study area, the impact of

an annual vaccination scheme conducted for 3 consecutive years

in the complete study area on days 1, 70, 130, 190, 250 and 310

was evaluated. At each decadal, animals moved through the

landscape and were allocated to each patch, picking up a

proportional number of ticks according to the density of hosts

and ticks on each patch (File S1). Mortality of the tick females was

computed for ticks feeding on vaccinated WTD and dead females

were removed from the tick population. Tick fertility was then

calculated for surviving females according to the immunization

time and the moment of the year, and both values were introduced

into the model. The seasonal dynamics of the ticks was calculated

according to actual features of the weather, averaged for the

period 1960–1990 and obtained from www.worldclim.org (ac-

cessed in April, 2012). This is relevant because if vaccination is

carried out while only few ticks are active, the effect will be

minimal.

Supporting Information

File S1 Description of the modeling procedures and
equations governing the movements of the animals and
the population dynamics of R. annulatus or R. micro-
plus, including an R script containing the running of a
general version of the model. A schematic representation of

the steps in model development and evaluation, summarizing the

explanatory notes and the programming steps is also provided.

(PDF)
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Figure 4. Study area. The area used for the spatial simulations of the effect of WTD vaccination to control of R. annulatus and R. microplus is marked
in grey over the map of Mexico.
doi:10.1371/journal.pone.0102905.g004
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depicted by world maps of the Köppen-Geiger climate classification. Meteorol Z

19:135–141.

38. Anderson DP, Hagerman AD, Teel PD, Wagner GG, Outlaw JL, et al. (2010)
Economic Impact of Expanded Fever Tick Range. Research Report 10-2.

College Station, TX: Agricultural and Food Policy Center, Texas AgriLife
Research.

39. Delfı́n-Alonso CA, Gallina S, López-González CA (2009) Evaluación del habitat
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