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Abstract

The present study addresses the effect of heat stress on males’ reproduction ability. For that, we have evaluated the sperm
DNA fragmentation (DFI) by SCSA of ejaculates incubated at 37uC during 0, 24 and 48 hours after its collection, as a way to
mimic the temperature circumstances to which spermatozoa will be subject to in the ewe uterus. The effects of temperature
and temperature-humidity index (THI) from day 60 prior collection to the date of semen collection on DFI were examined.
To better understand the causes determining the sensitivity of spermatozoa to heat, this study was conducted in 60 males
with alternative genotypes for the SNP G/C2660 of the HSP90AA1 promoter, which encode for the Hsp90a protein. The
Hsp90a protein predominates in the brain and testis, and its role in spermatogenesis has been described in several species.
Ridge regression analyses showed that days 29 to 35 and 7 to 14 before sperm collection (bsc) were the most critical
regarding the effect of heat stress over DFI values. Mixed model analyses revealed that DFI increases over a threshold of
30uC for maximum temperature and 22 for THI at days 29 to 35 and 7 to 14 bsc only in animals carrying the GG2660

genotype. The period 29–35 bsc coincide with the meiosis I process for which the effect of the Hsp90a has been described
in mice. The period 7–14 bsc may correspond with later stages of the meiosis II and early stages of epididymal maturation in
which the replacement of histones by protamines occurs. Because of GG2660 genotype has been associated to lower levels
of HSP90AA1 expression, suboptimal amounts of HSP90AA1 mRNA in GG2660 animals under heat stress conditions make
spermatozoa DNA more susceptible to be fragmented. Thus, selecting against the GG2660 genotype could decrease the
DNA fragmentation and spermatozoa thermal susceptibility in the heat season, and its putative subsequent fertility gains.

Citation: Ramón M, Salces-Ortiz J, González C, Pérez-Guzmán MD, Garde JJ, et al. (2014) Influence of the Temperature and the Genotype of the HSP90AA1 Gene
over Sperm Chromatin Stability in Manchega Rams. PLoS ONE 9(1): e86107. doi:10.1371/journal.pone.0086107

Editor: W. Steven Ward, University of Hawaii at Manoa, John A. Burns School of Medicine, United States of America

Received October 1, 2013; Accepted December 4, 2013; Published January 21, 2014

Copyright: � 2014 Ramón et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by RTA2009-00098-00-00 INIA project (Subprograma de Investigación Fundamental orientada a los Recursos y Tecnologı́as
Agrarias). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: malena@inia.es

Introduction

Increasing concern over the implications of Climate Change in

biodiversity is clear. Many efforts are now intended to better

understand such implications, which are reflected by the large

number of studies about this topic developed in the last decade

[1,2,3]. It is now generally acknowledged that climate change has

a wide-range of biological consequences, potentially leading to

impacts on biodiversity. These biological effects are especially

noticeable in areas with adverse environmental conditions, such as

the arid regions of southern Europe, where temperature and

humidity conditions are more extreme. In these areas an

important farming activity takes place. Climate can affect in

many ways animals’ ability to survive and to produce. In this

context, breeding for heat stress tolerance is of interest.

Among others, climate factors can have diverse and often strong

effects on reproduction efficiency, with obvious consequences in

animal’s fitness (see [4] for references) which can result, ultimately,

in high economic losses for breeders [5,6]. Focusing on male

reproduction, exposure to adverse conditions of high temperature

and humidity may led to a reduction of the number of

spermatozoa [7,8] and also to an impairment of their functionality

[8,9], which will be accompanied by a transient period of partial or

complete infertility. After heat stress, viability of the spermatozoa

may not be compromised but some of them will appear with DNA

damage. Thus, a reduction in DNA integrity has been described in

rams [10], as well as alterations in DNA, RNA and protein

synthesis, and abnormal chromatin packing in mice [8,11,12]

under heat stress conditions. Two singular characteristics differ-

entiate sperm from somatic cells: protamination and absence of

DNA repair mechanisms. During spermiogenesis, protamines

replace the majority of histones [13]. This dense compacting gives

protection against exogenous assault to the sperm DNA [14].

DNA repair in sperm is terminated as transcription and translation

stop at post-spermiogenesis, so these cells have no mechanism to

repair the damage occurred during their transit through the

epididymis and post-ejaculation [15]. Therefore, assessing levels of

DNA fragmentation can be a useful tool for evaluating the effects

of heat stress on sperm and its consequences on male fertility.

Sperm DNA fragmentation is considered a non compensable trait

PLOS ONE | www.plosone.org 1 January 2014 | Volume 9 | Issue 1 | e86107

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital.CSIC

https://core.ac.uk/display/80863148?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


which implies that the pregnancy ratio does not change when the

number of sperm inseminated increases [16,17]. The relationship

between sperm DNA fragmentation index (DFI) and male fertility

has been studied in humans [18,19,20], bulls [21] and boars [22].

Thresholds for sub fertility were much lower for boars (6%) and

bulls (14.2%) than that for humans (30%). Recently, in rams

Nordstoga et al. [23] showed an association between sperm DNA

integrity and the non returned rate in Norwegian cross-bred rams.

Sensitivity of mammalian germ cells to environmental heat

stress has been extensively studied [24]. Sperm damage is

influenced by the stage at which germ cells are exposed to stress

[25]. Several authors have examined the sensitivity of testicular

cell population to heat [12,26,27]. From histological studies it has

been concluded that pachytene spermatocytes and early sperma-

tids are the cells in the testis which are most susceptible to heat

[28]. At the molecular level, there is some literature regarding

sperm damage by heat in mice [29,30], rats [31,32] and monkeys

[33]. Heat shock proteins are a family of highly conserved proteins

that play a fundamental role in the maintenance of cellular

homeostasis, under both physiological and stress conditions [34].

Heat shock proteins Hsp105, Hsp90, Hsp60 and Hsp27 have been

linked with apoptosis and heat stress response processes in Sertoli

cells, spermatogonias, spermatocytes and spermatids. Hsp90

(90 kDa heat shock protein) is an ubiquitous highly conserved

protein comprising up to 2% of total cell proteins even under non-

stressed conditions. In eukaryotes there are two cytosolic Hsp90

isoforms encoded by two separate genes, the Hsp90a (HSP90AA1

gene) and the Hsp90b (HSP90AB1 gene). Whereas Hsp90b is more

or less constitutively and ubiquitously expressed, the expression of

hsp90a is heat-inducible and more tissue specific [35]. Hsp90a
predominates in the brain and testis, while hsp90b is enriched in

other peripheral organs [36].

A role for Hsp90 in spermatogenesis was first described in

Drosophila melanogaster, were males with certain transheterozygous

combinations of mutant Hsp90 alleles are sterile and display a

disrupted meiosis [37]. In mice, a requirement of the Hsp90a for

spermatogenesis has been shown [38]. Authors pointed out that

Hsp90a must be necessary at least during the first wave of

spermatogenesis. In the absence of Hsp90a meiosis arrests very

specifically towards the end of the pachytene stage, disassembling

of homologous chromosomes fail and normal diplotene spermato-

cytes are totally absent. Also, an absence of a comparable

phenotype in Hsp90a mutant females was observed [38]. Also in

mice [39] a chaperoning function of the Hsp90 protein to assess

the proper folding of tNASP (testis histone binding protein) to bind

linker histones, have been observed. Expression of Hsp90 and

tNASP precede the expression of H1t (histone subtype 1 restricted

to the testis) in pachytene spermatocytes [40,41,42]. Authors [39]

pointed out that after the synthesis of linker histones in the

cytoplasm they are bound to a complex containing NASP and

Hsp90. NASP-H1 is subsequently released from the complex and

translocated to the nucleus where the H1 is released for bind DNA

[43].

The gene (HSP90AA1) encoding the inducible form of the

Hsp90a, was sequenced, mapped and characterized in sheep by

Marcos-Carcavilla et al. [44]. Fifteen polymorphisms located at

the gene promoter were detected [44,45]. The transversion G/C

located at position 2660 in the gene promoter was associated with

resistance/susceptibility to scrapie [46] and with the adaptation of

several sheep breeds to the different thermal conditions in where

they are reared [47]. In a recent work of this same group [48]

several SNPs located at the HSP90AA1 gene promoter were

associated with differences in the expression rate of this gene in

blood under mild and heat stress temperatures in rams. The

CC-660 genotype was associated to the highest levels of

HSP90AA1 expression under heat stress conditions.

Therefore, the aim of the present study was to examine: 1) if

heat stress has an effect on chromatin stability of ram’s sperm, and;

2) if a differential response to heat stress occurs based on male’s

genotype for one polymorphism located at the HSP90AA1 gene

promoter. For that, semen samples from males with different

genotypes for the HSP90AA1 gene were collected and exposed to

heat during 48 h. Daily temperature and relative humidity for the

60 days prior to semen collection were recorded and their effect on

resistance/susceptibility of spermatozoa to heat stress were

assessed. Finally, it was examined whether there was a sperm

differential response to heat stress depending on the HSP90AA1

genotype of males.

Results

Weather data
Figure 1 shows the evolution of average (Tave) and maximum

(Tmax) daily temperatures, average daily relative humidity (RH)

and average of the Temperature Humidity Index (THI) along the

period when sperm samples were collected. Average daily

temperatures higher than 25uC and maximum daily temperatures

higher than 30uC were observed from June to August. These

temperatures exceed the 22.2uC temperature threshold over which

heat stress is considered [49]. For the same period, minimum daily

temperatures never dropped from 10uC. The highest values of RH

were found from January to March (79 to 94%), however RH

higher than 70% were observed at some points of the summer

season (June, July and August), probably coinciding with summer

storms. There were also maximum values of RH greater than 90%

at June and August. From June to August THI, ranges from 22.4

to 27.0, which include the three THI heat stress categories,

moderate (22.2 to 23.3), severe (23.3 to 25.6) and extreme (25.6

and over) [49]. If maximum daily THI is considered, we found

days from May to August in which this parameter was in the range

of extreme heat stress.

DFI values
Figure 2 shows the evolution of xDFI, sdDFI and tDFI values

with the incubation time (0 h, 24 h and 48 h) along the period of

the year from which sperm samples were collected. There were

measures at 48 h of incubation time only for sperm samples

collected from the end of May to October. The xDFI values for

the three incubation times didn’t show significant changes in

sperm samples collected between March and the beginning of

August (xDFI around 20–21). However, their values increased to

Figure 1. Trends of daily average (Tave, 6C) and maximun
(Tmax, 6C) temperatures, relative humidity (RH, %) and
average (THI) and maximum (THImax) temperature humidity
index along the year 2010 (Data from SIAR http://crea.uclm.es/
siar/datmeteo/). Dotted lines are days of semen collection.
doi:10.1371/journal.pone.0086107.g001
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26 in August, dropping again to values of 20–21 in October. The

sdDFI values did not experiment significant changes along the

year for any incubation time, showing a very stable value close to

2.6. However, for tDFI values, differences along the year among

alternative incubation times were observed. Thus, tDFI values did

not show important changes along the period studied (1.9) for 0 h

of incubation time (after semen collection), except a certain

decrease observed in July (0.3). After 24 h of incubation, an

average value of tDFI of 2.3 was found for samples collected from

March to June. tDFI value decreased to 0.7 in July, and increased

to 6.8 in August, dropping to 3.0 in October. Finally, for 48 h of

incubation, an increase of tDFI from 4.4 to 6.4 was found for

measures taken in June and July, and decreased to 2.1 for samples

collected at the end of July. A clear increase of tDFI values was

observed for samples collected in August, 13.7. In samples

collected in October tDFI values dropped to 11.5. Thus,

incubation times of 24 and 48 h lead to same trend on tDFI

values but with different magnitude, being greater when sperm

samples were incubated during more time.

Ridge regression analysis
Figure 3 shows results from ridge regression analyses relating

DFI measures to weather parameters for each HSP90AA1

genotype. Results reveal a large effect on tDFI levels, a moderate

to low effect on xDFI levels and no effect on sdDFI values.

Regarding to HSP90AA1 genotypes, CC2660 males did not show

any significant change in DFI values associated with an increase of

Temperature/THI within the 60 days prior to semen collection;

for CG2660 males, a moderate effect was observed for tDFI levels;

and finally, for GG2660 males, a clear effect of Temperature/THI

was observed in the 60 days considered in this study. The period of

time with the most influence over xDFI and tDFI values was that

one located between days 29 to 35 before sperm collection (bsc),

with the largest effect on day 33, for the three different weather

parameters studied (Tave, Tmax and THI). For this period of time

in GG2660 males, the estimated increase of DFI per uC or THI

unit was 0.10 and 0.35 for xDFI and tDFI respectively. In addition

to these days, other periods in which DFI levels underwent

changes were identified. Thus, the time periods between days 7–

14, 37–42 and 45–47 were also considered in this study, although

none of them showed a clearly significant effect on the levels of

DNA fragmentation of spermatozoa. An increase of tDFI levels

close to 0.19 per uC or THI unit was estimated for the period 7 to

14 days bsc in GG2660 males; while an increase of tDFI levels of

0.18 was estimated for the days 37 to 42 in CG2660 males.

Mixed model estimates
Among the four time periods considered, the period between

days 29 to 35 bsc showed the largest effect on the levels of sperm

DNA fragmentation. Figures 4 and 5 show mixed-model estimates

for the relationships between xDFI and tDFI sperm levels with

temperature/THI for the days 7 to 14 and 29 to 35 bsc and

HSP90AA1 genotypes (numerical values are provided in Tables S1,

S2, S3 and S4). Results for sdDFI measures were not presented as

no significant changes associated with weather parameters were

observed (Figure 3). Thresholds at which degree of DNA

fragmentation significantly increased were estimated (median

values for the periods considered; see Tables S1, S2, S3 and S4)

at 22.6uC for Tave, 25.1 for THI and 29.9uC for Tmax when

xDFI measured was considered, and at 21.8uC, 21.3 and 29.2uC
for Tave, THI and Tmax, respectively, when evaluating the tDFI

levels. The effects sperm incubation time at 48 h, temperature/

THI over a threshold and the interaction of this temperature/THI

with the GG2660 genotype for the HSP90AA1 gene were

significant (p,0.05) in all models evaluated. All males, indepen-

dently of their genotype, showed a significant increase on DNA

fragmentation when Temperature/THI exceeds the thresholds.

However, for the interaction temperature/THI x genotype, only

GG2660 males showed a significantly increase in DFI values

(Table 1). These increments were around 0.1 and up to 0.4 per

unit of Temperature/THI for the xDFI and tDFI levels,

respectively, in the period from 7 to 14 days bsc, and around

0.2 and up to 1.3 per unit of Temperature/THI for the xDFI and

tDFI levels, respectively, in the period from 29 to 35 days bsc. For

the other two periods of time considered (37–42 and 45–47 days

bsc), sperm DFI levels also increased with the incubation time (24

and 48 h) and at temperatures above a threshold (Figure S1),

although the observed response for the three HSP90AA1 genotypes

was quite similar and of smaller magnitude than for the periods

above mentioned (Table 1).

Figure 2. Changes in xDFI, sdDFI and tDFI values with the
incubation time (0 h, 24 h and 48 h) along the period of the
year from which sperm samples were collected.
doi:10.1371/journal.pone.0086107.g002

Figure 3. Ridge regression analyses relating DFI measures
(xDFI, sdDFI and tDFI) from day 60 prior to semen collection to
date of collection with weather measures (Tave = average
daily temperature, Tmax = maximum daily temperature, and
THI = temperature humidity index), for each HSP90AA1 geno-
type. Fitted effects extending beyond dotted-lines (---) differ signif-
icantly (P,0.05) from zero. Four regions (gray regions) with a significant
possible effect on sperm DFI levels were identified.
doi:10.1371/journal.pone.0086107.g003
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Discussion

The present study shows how the exposure of males to heat has

consequences on the spermatogenesis process that result in an

impairment of sperm chromatin which could lead to subfertile

events. Exposure to temperatures above a threshold at certain

stages of the spermatogenesis process leads to an increase of DNA

fragmentation levels of spermatozoa. Moreover, here we show

how the resistance/susceptibility of sperm chromatin to heat is

subjected to the genotype of a SNP located at position 2660 in the

promoter region of the HSP90AA1 gene. Thus, males with the

GG2660 genotype have resulted to be more susceptible to

environmental heat, showing significantly higher values of sperm

DNA fragmentation.

In animals, where DNA damage can be experimentally induced

in the paternal germ line, strong associations have been shown

between the damage of the paternal genome and embryo

development including effects on the new born and subsequent

generations [50,51]. Chromatin in rams was shown to be more

decondensated in summer, but no differences were observed

between breeding (September to January) and non breeding

(February to June) seasons [52]. In addition, the considerable

increase in DFI parameters in summer suggests that chromatin

may be more susceptible to denaturation in this period.

Our results have showed moderate tDFI values at the beginning

of June, decreasing at the end of July, with a clear increase on

August and again a decrease in October for semen samples

incubated during 24 and 48 h, being greater when sperm samples

were incubated during more time. Levels of DNA fragmentation

in sperms sample are consequence of outdoor temperatures

occurred during the spermatogenesis (60 days prior to semen

collection) and heat stress derived of the incubation at 37uC during

24 or 48 hours. The experimental design proposed in the present

study was aimed to account for both sources of DNA fragmen-

tation. We performed 7 semen collections from March to October,

seeking days with different conditions of temperature (comfort/

heat). On the one hand, climate information for the 60 days prior

to semen collection was collected, in order to identify which days

are more related to the degree of DNA fragmentation. On the

other hand, sperm DNA fragmentation was assessed just after

collection and after 24 and 48 hours of incubation in an

environment inducing thermal stress (37uC) in order to evaluate

the response of spermatozoa to heat stress under environmental

conditions that mimic the temperature circumstances to which

Figure 4. Regression coefficients from the mixed-effects model relating DFI values with summary measure of Tave, Tmax and THI
for the days 7 to 14 before semen collection. For each coefficient in the model, estimates (points) plus and minus 1 (bold line) and 2 (thin line)
standard deviations are represented. *

doi:10.1371/journal.pone.0086107.g004
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spermatozoa are subject to into the ewe uterus. It is described that

an exposition to heat during spermatogenesis stimulates the

synthesis of the Hsp90 protein in those males with CC-660

genotype, whereas basal levels are maintained in males with the

GG-660 genotype. Therefore, it is expected that the latter would

not be able to respond appropriately to heat stress during

incubation (24–48 h at 37uC) increasing their levels of DNA

fragmentation. Our experimental design allows relating these two

measures: the in vitro heat stress and outdoor temperatures.

Changes on tDFI levels derived from changes on outdoors

temperatures could explain trends observed though the months,

whereas changes on tDFI values derived from sperm incubation at

37uC could explain differences observed between semen samples

incubated during 24 and 48 h.

In this work we have observed an increase of sperm DNA

fragmentation levels depending on Tave, Tmax and THI mainly

in the period between 29 to 35 days bsc, but also for the days 7 to

14. A lower magnitude effect was found for days 37 to 42 and 45

to 47. However, no relationship was found between environmental

parameters existing at collection date and DFI parameters.

Spermatogenesis in ovine is 49 days long, plus 11 days of sperm

maturation at epididymus [53]. Considering day zero that of

sperm collection, the period comprised between 7 to 14 days bsc

must correspond to the early stages of epididymal maturation; the

period comprised between 29 to 35 days bsc coincide with the

meiosis I and II processes in which primary spermatocytes (2n)

change to secondary spermatocytes (n); the period comprised

between 37 to 42 days bsc would correspond to an intermediate

period between the mitosis and meiosis phases; and the period

comprised between 45 to 47 days bsc would be part of the

spermatogenesis process when dormant spermatogonium type A2

evolve to active spermatogonium type A3 and begin the mitosis

process (spermatocytogenesis) [54].

An association between the genotype of the SNP located at

position 2660 in the promoter of the HSP90AA1 gene, Temper-

ature/THI over the estimated thresholds and sperm DNA

fragmentation levels have been observed which was higher for

the time periods comprised from 7 to 14 and from 29 to 35 days

bsc. Thus, animals carrying the CC2660 genotype showed quite

similar values of xDFI and tDFI than those with the CG2660, and

both showed lower levels than males carrying the GG2660

genotype (up to 1.7 times) when environmental temperatures

Figure 5. Regression coefficients from the mixed-effects model relating DFI values with summary measure of Tave, Tmax and THI
for the days 29 to 35 before semen collection. For each coefficient in the model, estimates (points) plus and minus 1 (bold line) and 2 (thin line)
standard deviations are represented. *

doi:10.1371/journal.pone.0086107.g005
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exceeds a threshold over 22uC and 29uC for Tave/THI and

Tmax, respectively. In a previous work [48], higher expression

levels of the HSP90AA1 gene, in these same rams were observed

for animals carrying the CC2660 genotype that those with the

CG2660 (FC (Fold change) = 1.20) and the GG2660 (FC = 1.22)

genotypes, when blood samples were collected in August at 34.4uC
of maximum environmental temperature. Thus, the lower

expression rates found for the GG2660 animals under a heat

stress environment could be associated to higher values of sperm

DNA fragmentation. Also these results pointed out that critical

steps of the spermatogenesis process regarding heat-stress suscep-

tibility may be occurring at periods 7 to 14 and 29 to 35 days bsc.

Meiosis is thought to be followed by a brief period of high

transcriptional activity, and a large number of mRNAs are stored

as messenger ribonucleoprotein particles [55]. Messenger RNA

sequestration provides a mechanism by which mRNAs can be

synthesized prior to transcriptional arrest and translated when

their protein product is required [56]. Most stress-response genes

are regulated in a concordant manner with respect to transcript

levels and translational efficiency. A strong overall correlation has

been observed between transcriptional/translational induction of

genes and translation of the corresponding proteins [57].

Therefore, differences in the expression level of the HSP90AA1

gene will be accompanied by differences in the amount of protein

produced. High temperatures (or THI) existing between 29–35

days bsc would activate the heat shock response increasing the

HSP90AA1 gene transcription/translation. Suboptimal expression

rates of the HSP90AA1 gene at this spermatogenesis step would

lead to meiosis failures and defects of histone DNA packing. In this

sense, in a study to ascertain the program whereby histones are

handled before incorporation onto chromatin, a complex

containing HSP90, tNASP, histone H4 and histone eH3.1 was

found in the cytosolic fraction (S100) [39] Campos et al. [58]

suggest that tNASP is a HSP90 co-chaperone for the assembly of

the H3.1-H4 units. Therefore the efficiency of the traslocation of

histones to the nucleus seems to depend on the available amounts

of HSP90 to form the tNASP-HSP90 complex.

The period comprised between days 7 to 14 bsc may coincide

with the first steps of the spermiogenesis process in which histones

are replaced by protamines. Heat stress at this time point could

produce an incomplete DNA protamination if no proper

machinery to avoid heat effects is available, making spermatozoa

more vulnerable to attack by endogenous and exogenous agents

[59,60,61]. DNA fragmentation is more frequent in protamine

deficient spermatozoa [62]. High number of HSP90AA1 tran-

scripts present at this step will yield more Hsp90a protein amounts

to cope with heat stress effects over protein denaturation and

missfolding.

In this breed we have observed a low frequency of the GG2660

genotype (,10%) in the milk progeny tested rams (424 rams

genotyped; data not shown). Frequencies of CC2660 and CG2660

genotypes were 43% and 42%, respectively. We have confirmed

that there is no association between the estimated breeding values

(EBVs) for milk yield and the G/C2660 genotype of these rams.

Since animals are selected based on their genetic merit for milk

production, the low frequency of GG2660 males will be due to

other causes not directly related to the production level. Thus, we

could hypothesize that the GG2660 males would have a smaller

reproductive capacity, which leave less offspring and this will lead

to a lower frequency of GG2660 genotype. The presumed lower

fertility of the GG2660 males could be due to their lesser degree of

resistance to thermal stress. Thus, exposure to heat can lead to

increased levels of DNA fragmentation, and therefore, a decrease

of fertility, as observed in this study. Moreover, results from the

present study suggest that highest DNA fragmentation occurs in

the late summer. For short-day breeders, with favorable breeding

season starting in September, the consequences of heat stress on

breeding may be more significant.

Recently, Nordstoga et al. [23] showed an association between

sperm DNA integrity and the non returned rate among

Norwegian cross-bred rams. In this sense, future works must be

directed to assess if changes observed in DFI values of rams with

alternative genotypes of the G/C2660 mutation at the HSP90AA1

gene promoter have effect on their fertility. Since rams used in this

experiment belongs to the progeny test of the milk breeding

program of Manchega sheep breed, many records of insemination

results are available. With appropriate statistical models, we would

assess if there are differences in the pregnancy rate of rams with

alternative genotypes for the G/C2660 transversion when sperm

samples are used in the AI and they could have been subjected to

heat stress in some critical steps of the spermatogenesis process. As

Hsp90 genes are highly conserved, in structure and function, in

mammals, this study can be extended to other species to test if

their reproductive efficiency is compromised by polymorphisms

affecting expression rate and/or protein sequence of these genes.

Materials and Methods

Ethics Statement
The current study was carried out under a Project License from

the INIA Scientific Ethic Committee. Animal manipulations were

performed according to the Spanish Policy for Animal Protection

RD 53/2013, which meets the European Union Directive 86/609

about the protection of animals used in experimentation. We

hereby confirm that the INIA Scientific Ethic Committee, which is

the named IACUC for the INIA, specifically approved this study.

Animals belong to an artificial insemination centre, were raised in

small groups in different barns and fed according to their

necessities.

Animals
A total of 60 adult rams from Manchega dairy sheep breed were

used in this study. Males were kept at the Regional Centre of

Animal Selection and Reproduction (CERSYRA) in Valdepeñas

(Spain) at the same environmental conditions. All males were

trained for semen collection by artificial vagina and maintained a

regimen of regular collection. All animal handling was done

following Spanish Animal Protection Regulation RD 53/2013

which meets the European Union Directive 86/609 about the

protection of animals used in experimentation.

Weather data
Castilla-La Mancha is a region located in the south of Spain

which is characterized by an arid environment with a low rainfall

and high temperatures. Meteorological data was provided by the

Irrigation Advisory Service for Farmers (SIAR) in Castilla-La

Mancha. The meteorological data set consisted of hourly measures

of temperature (uC) and relative humidity (%) on 245 days from

March to October 2010. Daily average temperature (Tave, uC),

daily maximum temperature (Tmax, uC) and daily average relative

humidity (RH, %) were calculated from these hourly records. A

temperature-humidity index (THI) was also calculated as proposed

by Marai et al. [49] by combining daily average temperature

(Tave) in uC with daily average relative humidity (RH) %?0.01:

THI~Tave{½(0:31{0:31:RH):(Tave{14:4)�
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To better understand THI values, Marai et al. [49] proposed a

scale of the effect of THI values over heat stress. Thus, values of

THI ,22.2 assume absence of heat stress; 22.2$ THI ,23.3

means moderate heat stress; 23.3# THI ,25.6, severe heat stress;

and THI $25.6 indicates extreme severe heat stress.

Semen Samples collection
Semen collection was made by artificial vagina. A total of 7

collections per male were carried out, from March to October as a

way to ensure that sperm analyses were conducted in different

weather conditions of temperature and humidity. After collection,

sperm samples were diluted in phosphate-buffered saline (PBS;

pH 7.5, 310 mOsm/kg) with 0.5% bovine serum albumin and

then incubated in a saline medium at 37uC during 48 hours. The

sperm chromatin stability was assessed after collection (0 h) and

after 24 and 48 h. Sperm incubation at 37uC has the aim to mimic

the environmental circumstances existing at ewe reproductive

track.

DFI assessment
Chromatin stability was assessed by using the Sperm Chromatin

Structure Assay (SCSA) technique (SCSA Diagnostics, Inc.,

Brookings, SD, USA) [63,64]. This technique is based on the

susceptibility of the sperm DNA to acid-induced denaturation in

situ and in the Acridine Orange (AO) metachromatic acid nucleic

staining. This stain fluoresces green when combined with double

stranded DNA and red when combined with single stranded DNA

(denatured). This technique has been used in rams with good

results [52,65]. Garcı́a-Álvarez et al. [65] provides a more in depth

explanation of the procedure used to assess the sperm chromatin

stability in Manchega rams. Briefly, sperm samples were diluted

with TNE (0.15 M NaCl, 0.01 M Tris HCl, 1 mM EDTA;

pH 7.4) buffer at a final sperm concentration of 26106 cells/ml

and flash frozen in LN2 and stored at 280uC until analysis. For

the analysis, the samples were thawed on crushed ice, and 200 ml

were put on a cytometry tube. Immediately, 400 ml of an acid-

detergent solution (0.08 N HCl, 0.15 M NaCl, 0.1% Triton6100;

pH 1.4) were added to the tube. After exactly 30 s, 1.20 ml of

Acridine Orange (AO)-staining solution (0.037 M citric acid,

0.126 M Na2HPO4, 0.0011 M dissodium EDTA, 0.15 M NaCl;

pH 6.0, 4uC) containing 6 mg/ml electrophoretically purified AO

was added. Stained samples were analyzed just after 3 minutes by

flow cytometry, being the excited AO used as the fluorophore. AO

was excited by using an argon laser providing 488 mm light. A

total of 5000 events were accumulated for each sample. We have

expressed the extent of DNA denaturation in terms of DNA

Fragmentation Index (DFI), which is the ratio of red to total (red

plus green) fluorescence intensity, i.e. the level of denatured DNA

over the total DNA [64]. The DFI value was calculated for each

sperm cell in a sample, and the resulting DFI frequency profile was

obtained. Each sperm sample was characterized by a mean (xDFI)

and a standard deviation (sdDFI). Total DNA fragmentation index

(tDFI) was defined as the percentage of spermatozoa with a DFI

value over 25.

HSP90AA1 genotypes
The 60 adult rams of Manchega breed used in this study were

selected on the basis of its genotype for the transversion G/C

located at position -660 in the promoter region of the HSP90AA1

gene (SNPs have been recently submitted to the NCBI dbSNP.

Actual information GeneBank acc. number DQ983231.1). These

animals proceed from a previous work [48] focused on the study of

expression differences of alternative genotypes of seven SNPs

located in the HSP90AA1 promoter. Twenty males of each

genotype CC2660, CG2660 and GG2660 were selected, and used in

this work to assess sperm DNA fragmentation.

Statistical analysis
The present study consisted of two steps: in a first step, we

studied the effect of temperature prior to semen collection on the

degree of sperm DNA fragmentation. For that, measures of Tave,

Tmax and THI from the day 60 prior to semen collection to date

of collection were used. The goal was to identify which days had a

significant effect on DFI values. In a second step, we studied

whether there is an association between DFI values recorded

under differential climatic conditions and the genotype of the SNP

located in the HSP90AA1 gene promoter.

To examine the effect of weather conditions on the degree of

DFI of spermatozoa in rams, a Ridge Regression analysis

including the Tave, Tmax and THI measures of all days from

the day of semen collection to 60 days previous to semen collection

(period in which spermatogenesis must be developed) were

performed. The high correlation among temperature measures

of consecutive days leads to problems of multicollinearity. Ridge

Regression analysis [66] is a kind of penalized least squares

procedure which is recommended when predictor variables in a

multiple regression model are highly correlated. Applying the

Ridge Regression penalty in the analysis, it has the effect of

shrinking the estimated regression coefficients toward zero,

reducing the variance of the estimate. The model used for the

Ridge Regression was the following:

y~b0xT0zb1xT1z . . . zb60xT60

The ridge regression estimator of b is:

b̂b~(X T XzlI){1X T y

where, y is the vector of DFI measures (xDFI, sdDFI and tDFI)

corrected by some environmental effects, X is a matrix containing

the Tave, Tmax or THI measures from the day 60 previous to

semen collection to date of the collection, b the vector of regression

coefficients, and l the shrinkage parameter. Given that sperm DFI

values could be affected by various environmental effects, DFI

values were corrected by the time of incubation (0, 24 and 48 h)

and the month of semen collection prior to Ridge Regression

analysis. Collection month was considered as a way of handling

management differences observed throughout the year. No other

effects such us housing or age of males were considered as were the

same for all males. The value of l may range from 0 to +‘. If

l= 0, ridge regression estimates are equal to ordinary least squares

(OLS) estimates; if l= +‘, ridge regression estimates are equal to

0. Cross-validation was used to find the best value of l. Ridge

Regression analysis was carried out using the functions available in

the MASS package [67] and the glmnet package [68] of the R

statistical software [69].

Once the days having significant effect on the degree of sperm

DNA fragmentation were identified, we examined whether males

with different genotype for the SNP located in the HSP90AA1 gene

promoter may have a differential response in the associated

variation of DFI to heat stress. A linear mixed model including

genotype, sperm incubation time (0 h, 24 h and 48 h), a summary

measure for the Tave, Tmax or THI and its interactions as fixed

effects, and male as random effect were fitted. As summary

weather measures we considered the average and maximum for

Tave, Tmax and THI for the days prior to semen collection that

HSP90 and Temperature Effect on Sperm Cells
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showed a significant effect on the ridge regression analysis. Since it

was expected that the effect of temperature on DFI values was

revealed from a threshold, a piecewise linear function was used to

model the temperature effect:

f (T)~b1min(T{k,0)zb2max(T{k,0)

where, T is the Tave, Tmax or THI measure and k is the selected

threshold. As threshold we used values ranging from 15 to 35, a

range in which we expected to find the threshold above which DFI

values increased, and retained the value that best fit the data.

Heterogeneous residual variance for the effect of sperm incubation

time was considered. Several models consisting of combinations of

effects were compared by maximum likelihood (MLE). The model

that showed better fit (data not shown) was the following:

yijkl~mzITjzf (T)kzG|f (T)lkzaizeijkl

where: yijkl: DFI measure (xDFI and tDFI)

m: global mean

ITj: sperm incubation time (3 levels: 0, 24 and 48 h)

f(T)k: effect of temperature measure (Tave, Tmax and

THI) for the days prior sperm collection showing a

significant effect.

G6f(T)lk: HSP90AA1 genotype (3 levels: CC, CG and

GG) – temperature effect interaction

ai: male (60 levels)

eijkl: heterogeneous random residual error , N(0, sei
2)

Statistical analysis was performed using the libraries nlme and

lme4 from the R-statistical analysis package [70]. Differences

between HSP90AA1 genotypes on the effect of the Ta/THI on the

sperm DFI values were tested using the multcomp package [71].
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Figure S1 Regression coefficients from the mixed-
effects model relating DFI values with summary mea-
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and 2 (thin line) standard deviations are represented. *
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prior to semen collection.*

(DOC)

Acknowledgments

We thanks AGRAMA breeders association to provide biological samples,

SIAR (Servicio Integral de Asesoramiento al Regante de Castilla-La

Mancha) to provide meteorological data and SaBio IREC to provide

technical support.

Author Contributions

Conceived and designed the experiments: MR MMS. Performed the

experiments: MR JSO CG MDPG JJG OGA AMM MMS. Analyzed the

data: MR MMS. Contributed reagents/materials/analysis tools: MR

MMS JJG. Wrote the paper: MR JSO JJG JHC MMS.

References
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