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Abstract 15 

Mammalian carnivore communities affect entire ecosystem functioning and structure. However, their large spatial 16 

requirements, preferred habitats, low densities, and elusive behavior deems them difficult to study. In recent years, 17 

non-invasive techniques have become much more common as they can be used to monitor multiple carnivore 18 

species across large areas at a relatively modest cost. Hair snares have the potential to fulfill such requirements, but 19 

have rarely been tested in Europe. Our objective was to quantitatively assess the effectiveness of hair snares for 20 

surveying mesocarnivores in the Iberian Peninsula (Southwestern Europe), by comparison with camera trapping. We 21 

used an occupancy modeling framework to assess method-specific detectability and occupancy estimates, and 22 

hypothesized that detection probabilities would be influenced by season, sampling method, and habitat related 23 

variables. 24 

A total of 163 hair samples were collected, of which 136 potentially belonged to mesocarnivores. Genetic 25 

identification success varied with diagnostic method: 25.2% of identification success using mitochondrial CR, and 26 

9.9% using the IRBP nuclear gene. Naïve occupancy estimates were, in average, 5.3 ± 1.2 times higher with camera 27 

trapping than with hair snaring, and method-specific detection probabilities revealed that camera traps were, in 28 

average, 6.7 ±1.1 times more effective in detecting target species. Overall, few site-specific covariates revealed 29 

significant effects on mesocarnivore detectability. 30 

Camera traps were a more efficient method for detecting mesocarnivores and estimating their occurrence when 31 

compared to hair snares.  To improve our hair snares’ low detection probabilities, we suggest increasing the number 32 

of sampling occasions and the frequency at which hair snares are checked. With some refinements to increase 33 

detection rates and the success of genetic identification, hair snaring methods may be  valuable for providing deeper 34 

insights into population parameters, attained through adequate analysis of genetic information, that is not possible 35 

with camera traps. 36 

 37 

Keywords: Noninvasive sampling, monitoring, molecular methods, occupancy, detection probability, carnivores 38 
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 40 

Introduction 41 

Carnivores have cascading effects on entire ecosystems despite being relative sparse across landscapes (Gompper et 42 

al. 2006).  As a result, carnivores are often the target of conservation efforts and an increasing number of studies 43 

have focused on assessing their density, relative abundance, or occupancy across large geographical areas (Gompper 44 

et al. 2006, Linkie et al. 2007).  However, the challenges involved with monitoring carnivores are numerous.  The 45 

majority of carnivores have large spatial requirements, often live in remote and rugged habitats, occur at low 46 

densities, and are nocturnal and elusive (Long et al. 2007, Mills 1996).  Invasive techniques, such as mark-recapture 47 

or radiocollaring, are impractical to apply across large spatial scales since they are time-consuming, have high costs, 48 

and involve complex logistical requirements.  Non-invasive techniques are therefore becoming much more common 49 

as they can be used to monitor multiple carnivore species across large areas at a relatively modest cost (Johnson et 50 

al. 2009, Weaver et al. 2005, Zielinski et al. 2006).          51 

Camera traps and hair snares, two non-invasive techniques, are often used to confirm the presence of a species.  52 

Camera traps have successfully documented the presence of a vast array of common and rare mammals including 53 

felids, ursids, viverrids, mustelids, and cervids (Baldwin and Bender 2008, Johnson et al. 2009, Linkie et al. 2007, 54 

Tobler et al. 2009).  Camera traps generally have high detection rates (Long et al. 2007, O’Connell et al. 2006) but 55 

only permit species identification if patterns in the pelage or specific markings allow individual identification. Hair 56 

snares, conversely, permit individual and sexual identification (using genetic methods) in addition to species 57 

identification, and recently have been extensively used to detect several mammal species (Kendall et al. 2009, Mills 58 

1996, Ruell and Crooks 2007). The complementary individual identification provided by hair snares can be used to 59 

study the spatial structure, demography and occurrence of carnivore populations (Davoli et al. 2013; Zielinski et al. 60 

2006).  61 

The success of camera traps and hair snares at detecting animals varies across species and habitats.  Thus, 62 

quantifying the efficacy and potential biases of these techniques would help inform researchers and managers on 63 

what sampling method(s) and survey design can be used to optimally achieve their research objectives (Nichols et 64 

al. 2008). The ability to effectively and efficiently monitor carnivores is particularly critical in Southwestern (SW) 65 
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Europe, since it has a diverse mammalian carnivore community, and where research studies and funding for 66 

conservation are limited in comparison to North America and other parts of Europe.     67 

Using an occupancy modeling framework, we aimed to quantitatively assess the effectiveness of hair snares for 68 

surveying Iberian mesocarnivores, by investigating how sampling method (i.e., hair snares and camera trap surveys) 69 

affects the ability to detect and estimate species’ occupancy. Occupancy modeling allows the estimation of method-70 

specific detection probabilities, and consequently the sampling effort required to determine the occupancy status of 71 

each target species using camera traps vs. hair snares (Bailey et al. 2007). We hypothesized that site-specific 72 

covariates such as distance to water, habitat type, slope or elevation would influence target species behavior, and 73 

consequently, their detectability. Detection is also expected to be influenced by season and sampling method 74 

(O’Connell et al. 2006, Royle and Nichols 2003). Therefore, by controlling for these external factors potentially 75 

influencing detectability, we explored whether a hair snaring sampling protocol would provide adequate data for 76 

mesocarnivore population monitoring. As detection by rub stations is dependent on a behavioral response elicited by 77 

a lure or bait, we anticipated that detectability would be lower by hair snaring than by camera trapping.  78 

Methods 79 

Study areas  80 

     This study was performed in two different protected areas within the Mediterranean bioclimatic region of the 81 

Iberian Peninsula (Rivas-Martínez et al. 2004): the Guadiana Valley Natural Park (GVNP; Portugal; N 27o40’50’’, 82 

W 7o44’30’’), and the Cabañeros National Park (CNP; Spain; N 39o20’10’’, W 4o25’50’’).  A study area of 83 

approximately 6000ha within each park was selected based on the criteria of ecosystem conservation status and 84 

logistic factors. The GVNP is located in the Guadiana River basin (Southeastern Portugal), the most important 85 

ecological corridor in southern Portugal, and harbors some of the most endangered species in Europe (ICN 2006, 86 

Sarmento et al. 2004).  Small game hunting is a major economic driver within GNVP, and predator control directed 87 

towards red fox (Vulpes vulpes) and Egyptian mongoose (Herpestes ichneumon) is legally allowed. The landscape is 88 

highly fragmented with cereal croplands and agroforestry systems (‘Montado’) of stone pine Pinus pinea L. and 89 

holm oak Quercus ilex L. Scrubland patches are mainly associated with steeper slopes and elevation ridges (Costa et 90 

al. 1998, Monterroso et al. 2009). The CNP is located in the Castilla La-Mancha Spanish community, and is 91 
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dominated by Pyro-Quercetum rotundifoliae series and other sub-serial stages (Rivas-Martinez 1981), especially 92 

associated with the steeper slopes, higher elevations and main water bodies. The landscape at the central lower part 93 

of this study area constitutes a savannah-like system, with holm oak trees scattered within a grassland matrix 94 

(García-Canseco 1997). Neither hunting activity nor predator control is allowed. 95 

 96 

Survey methods and design 97 

The sampling design was based on a sampling grid composed by 1-km2 grid cells, which was superimposed over 98 

each study area. Sampling devices were deployed at grid cell vertexes, alternating between camera traps and hair 99 

snares. As a result, all cameras and all hair snares were approximately 1.4km apart, promoting method-specific 100 

independence. Study areas were surveyed in August-October 2009 (hereafter autumn season) and in February-April 101 

2010 (hereafter spring season) for a period ≥ 28 days, and assumed occupancy was constant during each survey 102 

period (MacKenzie et al. 2002). All procedures were performed in accordance with the guidelines for the care of 103 

mammals, as approved by the Portuguese Nature and Biodiversity Institute and the Animal Experimentation Ethic 104 

Committee of the University of Castilla La-Mancha (process nr. PP1104.3).     105 

Hair snares on baited rub stations consisted of hair collection structures and scent lures (Kendall and Mckelvey 106 

2008), and were set at 38 and 29 sampling locations in CNP and GVNP, respectively.  Hair collection structures 107 

included both barbed rub pads and adhesive pads.  This design exploits the cheek-rubbing behavior of felids, the 108 

neck-rubbing behavior of canids, and has been found to detect other mesocarnivores (e.g., mustelids) as by-catches 109 

(Kendall and Mckelvey 2008).  Rub stations comprised a 50×5×5cm wooden stake, on which four 5x3cm pieces of 110 

dog wire (one at each side of the stake) were glued at 20 to 30cm above the ground. Below the dog wire, we covered 111 

the stake with sticky-side-out tape, which functioned as an adhesive pad. The attractants were deployed in separated, 112 

perforated plastic tubes supported by the wooden stake, at a distance of 10–15cm from each other (Monterroso et al. 113 

2011). A volume of 5mL of each attractant was sprayed into a cotton gaze held inside each plastic tube. The selected 114 

attractants were Lynx urine and Valerian, which have been described as efficient in attracting mesocarnivores 115 

(Monterroso et al. 2011, Steyer et al. 2013). Hair snares were monitored and scent lures replenished every 7 days.  116 

We collected hairs with tweezers, stored them in plastic vials with ethanol (96%) and then kept at room temperature 117 

until lab processing.  Hair samples were identified under a microscope by analyzing its medular and cuticular 118 
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structure with the aid of specific guides (e.g. Teerink 1991). Hair was identified as either under hair (UH), type 1 119 

(GH1) or type 2 (GH2) guard hair. GH1 hair is usually stiff and firm, and occurs very often within pelage. It can be 120 

slightly wavy or bent. In GH2 hair the shaft is usually straight and forms an angle with the shield (Debelica and 121 

Thies 2009). Subsequently, samples were identified by molecular methods. Species assignment was performed using 122 

two diagnostic methods described by Oliveira et al. (2010; interphotoreceptor retinoid-binding protein, IRBP, 123 

fragment) and Palomares et al. (2002; domain 1 of the mitochondrial control region. CR), following the procedures 124 

described by Monterroso et al. (2012). Aligned IRBP and CR sequences were compared with the corresponding 125 

regions from the target species available in the GenBank and in CIBIO’s genetic database. Both markers were 126 

consistently used to increase identification confidence. Whenever hair samples, collected from the same hair snare in 127 

the same sampling occasion, were identified as belonging to the same species from their medular and cuticular 128 

structure, they were used together for DNA extraction and molecular identification. Otherwise, single hair samples 129 

were analyzed idependently. 130 

Leaf River IR5 infrared-triggered digital cameras (LeafRiver OutDoor Products, Taylorsville, Mississippi, USA) 131 

were deployed at 38 and 32 sampling locations in CNP and GVNP, respectively.  A circular area of 250-m radius 132 

surrounding each grid-cell vertex was inspected for carnivore paths prior to camera trap placement. The final 133 

location of camera traps corresponded to areas of easy access and potentially good detection probability within the 134 

mentioned buffer. Cameras were then mounted on trees approximately 0.5 – 1.0m off the ground and set to record 135 

time and date when triggered.  We programmed cameras to fire a burst of three photos when triggered, and with the 136 

minimal delay time possible (< 1min). 137 

In order to enable adequate comparisons between sampling methods, the same attractants used in hair snares were 138 

used to attract animals to camera traps. Therefore, the same structure built for hair snares (but without the dog wire 139 

and adhesive tape) was set at a distance of 2-3m of camera traps. Scent lures at camera stations were replenished in 140 

7 days intervals, when stations were checked for batteries and to change memory cards.   141 

 142 

Occupancy modeling 143 

Likelihood-based occupancy modeling was used to estimate detection probability (P), given presence, and the 144 

probability of occupancy ( ; MacKenzie et al. 2002, Mackenzie et al. 2006).  To account for potential 145 
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heterogeneity in probabilities of occupancy and detection, and to evaluate our a priori hypotheses we assessed four 146 

site-specific covariates at the local scale: elevation, slope, distance to water and habitat type (forest, shrub or 147 

grassland). These covariates were assessed at each sampling location (camera trap or hair snare).  We extracted 148 

elevation and slope data from the ASTER (Advanced Spaceborne Thermal Emission and Reflection radiometer) 149 

global digital elevation model (GDEM: www.gdem.aster.ersdac.or.jp), which has a spatial resolution of 30m; and 150 

estimated distance to water by measuring the linear distance from the sampling site to the nearest water source (i.e., 151 

river, lake, or reservoir).  Habitat type was reclassified into three major structural types: forest, shrub and grassland 152 

cover from vegetation geographic information system coverages of CNP and GVNP, with a spatial resolution of 153 

30m, and was assigned to each sampling site (camera trap or hair snare) according to its exact location.   154 

We divided survey periods into four 1-week sampling occasions during which the detection/non-detection data on 155 

each target species was recorded. We created species-specific detection histories, allowing us to assess factors that 156 

may affect species-specific detection.  The probabilities of detecting target species given they occupy a site (i.e. P) 157 

were estimated from their detection histories. Missing values during a sampling occasion resulted from cameras 158 

malfunctioning or temporary inability to access a camera trap or hair snare.   159 

Multi-season occupancy models were developed in PRESENCE 5.8 (Hines and Mackenzie 2013) to estimate species 160 

and method-specific occupancy and detection probabilities.  A set of candidate models was built for each species-161 

study area combination based on our a priori hypotheses. We modeled occupancy as constant across all sampling 162 

sites and constant vs. dependent on sampling season. Detection probability was modeled as constant or dependent on 163 

season, sampling occasion or site-covariates.   164 

As we wanted to assess the effect of detection method (i.e. hair snare vs. camera trap) on detection probabilities we 165 

tested the simplest models with and without a detection method covariate: models (.)p(.), (.)p(method), (season)p(.), 166 

(season)p(method). If the effect of method was found to be significant, we developed the models further, 167 

constraining them to always include the method covariate.  We used Spearman’s rank correlation (rs) to test for 168 

collinearity among the landscape variables; if variables were correlated (rs  > 0.70) we kept the variable with the 169 

greatest univariate effect size  (β/SE) as a potential covariate for the probability of detection (Zar 2005). We 170 

estimated overall AIC weights for individual variables by summing the AIC weights of all the candidate models in 171 

which they were included (Mackenzie et al. 2006). If no single model accounted for > 90% of the total model 172 
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weights, we model-averaged by extracting the top 95% model confidence set and recalculating model weights 173 

(Burnham and Anderson 2002). Model averaged estimates were calculated using the spreadsheet developed by B. 174 

Mitchell (http://www.uvm.edu/%7Ebmitchel/software.html).   175 

Finally, we estimated the number of hair snare surveys and the number of camera trap surveys, ni, required to 176 

achieve a specified probability of detection. We estimated ni  following Long et al. (2007): P = 1 – (1 – pi)ni. The 177 

effectiveness of camera traps and hair snares for mesocarnivores using 3 indicators: (1) naïve occupancy estimates 178 

(i.e. proportion of sites where the target species was detected by a single sampling method in a single season), (2) 179 

method-specific estimates of the probabilities of occupancy and detection; and (3) number of surveys required using 180 

each method to reach a designated detection probability.     181 

Results 182 

A total of 163 hair samples were collected in hair snare stations (Table 1). CNP accounted with 43 and 70 samples 183 

in autumn and spring seasons, respectively, while 24 and 26 samples were obtained from the same seasons at 184 

GVNP. The average number of hairs collected per sample was 5.42 ± 0.35 (mean ± SE). Hair samples that were 185 

unequivocally identified by their microscopic structure as belonging to non-target species (e.g. ungulates or 186 

lagomorphs) were not sent for genetic analysis (n=27). However, potential carnivores’ or unidentified hair samples 187 

were sent for genetic analysis, and consisted of 83.4% of the total samples (n=136).  188 

The genetic identification success varied with diagnostic method: 25.2% of identification success using 189 

mitochondrial CR, and 9.9% using the IRBP nuclear gene. 190 

Hair samples were identified as belonging to red fox, stone marten, and European wildcat when employing 191 

conventional microscopic methods; no samples were identified as belonging to common genets, European badger, or 192 

Egyptian mongoose. However, employing genetic methods hair samples were identified as belonging to red fox, 193 

genet, and stone martens; no samples were identified as belonging to European wildcat, European badger, or 194 

Egyptian mongoose. 25 samples from CNP were genetically identified as red fox: 15 from autumn and 10 from 195 

spring seasons; 5 samples from GVNP were red fox: 2 from autumn and 3 from spring seasons. Genetically 196 

identified genet hair was only obtained at CNP, with one sample from each season. Only one hair sample collected 197 

at GVNP during the spring season was genetically confirmed as stone marten. 198 
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From all of the genetically confirmed red fox hair samples (n=30), 67% contained under hair (UH) while 50% and 199 

10% contained GH2 and GH1 guard hair, respectively. Seventy-three percent of the hair samples were collected 200 

from dog wire brush and 27% from adhesive tape. Genetically confirmed common genet samples (n=2), were either 201 

UH  (n=1) or GH1 ( n=1). Both genet hair samples were collected from dog wire brush. The only genetically 202 

confirmed stone marten hair sample consisted of GH2 guard hair, and it was obtained from the adhesive tape.    203 

With camera trapping methods we were able to detect red foxes, European wildcats, common genets, stone martens, 204 

Egyptian mongooses and Eurasian badgers at GVNP in both seasons (Table 2). At CNP, we were able to detect the 205 

same species during autumn using camera traps. However, the Egyptian mongoose was not detected during autumn. 206 

Although mesocarnivore species composition was similar between the two study areas, their spatial distribution 207 

differed, as supported by their naïve occupancy estimates (Table 2).  208 

Naïve estimates, occupancy and detection probabilities 209 

We had a greater number of detections via camera trapping than we did via hair snares. When both methods detected 210 

the target species, naïve occupancy estimates were, on average, 5.3 (± 1.2) times higher with camera trapping than 211 

with hair snaring (table 2). For the species undetected by hair snares, naïve occupancy based on camera traps were 212 

always  < 10% in CNP (Table 2). Conversely, at GVNP species undetected by hair snaring displayed naïve 213 

occupancy estimates ranging from 3 to 23% (Table 2). 214 

The limited numbers of detections prevented us from modeling common genet at GVNP and European wildcat, 215 

Eurasian badger, and Egyptian mongoose in both study areas. For the species that did have sufficient numbers of 216 

detections, our estimated probabilities of occupancy were, on average, 31.5% (± 3.7%) greater than our overall naïve 217 

estimates (Tables 2 and 3). 218 

Method-specific detection probabilities revealed that camera traps were, on average, 6.7 (± 1.1) times more effective 219 

in detecting target species than hair snares (Table 3). Given presence, red foxes had, on average, a 49.9% (± 10.4%) 220 

and 14.2% (± 5.4%) chance of being detected by camera traps and hair snares, respectively, in a give sampling 221 

occasion (Table 3). The mean probability of detecting stone martens by camera trapping was 21.7% (± 3.2%) and 222 

3.5% (± 0.6%) by camera trapping and hair snaring, respectively (Table 3). Common genets at CNP had mean 223 

chance of being detected of 20.1% (± 1.2%) by camera trapping and 2.1% (± 0.2%) by hair snaring (Table 3).  224 
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The top ranked models for red fox consistently included habitat type at CNP and elevation at GVNP. Distance to 225 

water was included in three, and slope in one of the top ranked models at CNP; whilst slope, elevation and distance 226 

to water were each included at a single model of the top ranked models at GVNP. The top ranked models for 227 

common genet at CNP consistently included distance to water, but elevation also appeared in 5 of these models. 228 

Slope was included in two of these models and habitat type in one. 229 

The effect of detection method was positive and significant across species and study areas, with  estimates ranging 230 

from 1.75 to 2.56 (Table 4). The 95% confidence intervals of all red fox model-averaged covariates overlapped 0.0 231 

at GVNP. However, a significant seasonal influence was detected at CNP, with the probability of detecting a red fox 232 

being significantly higher in spring than in autumn (Table 4). Elevation also showed a significant negative effect on 233 

detection probability at CNP (table 4). For stone martens at GVNP, season was the only covariate to significantly 234 

influence detectability with P decreasing from autumn to spring. At CNP, there were no observable covariate effects 235 

(Table 4). For genets, distance to water significantly negatively influenced detection probability (Table 4). All 236 

remaining variables’ coefficients exhibited 95% confidence intervals that overlapped 0.0 (Table 4).  237 

A greater number of 1-week sampling occasions are required to attain a given detection probability when employing 238 

hair snares than when employing camera traps (Figure 1).  Based on the obtained detection probabilities, camera 239 

traps would have to be deployed, on average, for ≥ 4 1-week sampling occasions to confirm red fox occupancy, with 240 

95% accuracy.  In order to achieve the same level of accuracy, ≥ 20 1-week occasions are required when employing 241 

hair snares. Additionally, ≥ 12 and 13 camera trapping sampling occasions are required to confirm stone marten and 242 

genet occupancy, respectively, with 95% accuracy (Figure 1). It would take 6.9 and 10.8 times longer to achieve the 243 

same confidence level for stone martens and genets, respectively, if using hair snares. 244 

Discussion 245 

Camera traps were a more efficient method for detecting mesocarnivores and estimating their occurrence when 246 

compared to hair snares.  These results are consistent with previous studies done in North America (Comer et al. 247 

2011, Long et al. 2007, O’Connell et al. 2006).  We detected a total of six mesocarnivore species in each of the 248 

study areas when employing camera trapping, in comparison to only three mesocarnivore species in each of the 249 

study areas when employing hair snares. When both methods were able to detect a target species, partial naïve (raw) 250 
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occupancy estimates were 7.7 ± 1.9% higher when assessed through camera trapping than through hair snaring 251 

methods. Lastly, we found that hair snares required a greater number of sampling occasions to attain a given 252 

detection probability than camera traps.  This suggests that our four-week sampling period would not have provided 253 

adequate estimates of species occupancy in our study areas had we only employed hair snares. 254 

A limited number of hairs were collected from hair snares (< 10 hairs/sample) and this number was reduced even 255 

further when considering the tufts of hair that yielded sufficient DNA for species identification. Our overall success 256 

of the molecular methods was rather low when compared to similar studies, which usually ranges from 40 to 80% 257 

(Weaver et al. 2005, Long et al. 2007, Steyer et al. 2012). Three main factors may be responsible for our low success 258 

rates in genetic identification: low DNA quantity, low DNA quality and contamination (Kendall and Mckelvey 259 

2008). Most hair collected from rub stations, such the ones used in our study, consists of shed hair. Shed hair can 260 

provide enough DNA for genetic species assignment if mitochondrial DNA is used (Mills et al. 2000, Riddle et al. 261 

2003). However, the DNA quantity obtained of plucked hair is usually higher because it often contains follicles, 262 

which are the main source of DNA for analysis (Goossens et al. 1998). DNA quality can also be affected by 263 

exposure to harsh environmental conditions, especially environmental temperature (Nsubuga et al. 2004, Santini et 264 

al. 2007). Both of our study areas are located in the Mediterranean Bioclimatic region of the Iberian Peninsula, 265 

where ambient temperature often rises above 35°C during the warmer seasons (Hijmans et al. 2005, Rivas-Martínez 266 

et al. 2004). These warm temperatures could have decreased DNA quality in the autumn period. Further, the spring 267 

season corresponded to a period of heavy precipitation, which could have led to sample “wash”, and a consequent 268 

reduction of DNA quality. Cross-contamination from multiple visits to the same station within a sampling occasion, 269 

can also reduce DNA identification success because mixed samples could lead to more multiple alleles at one or 270 

more diagnostic loci, preventing adequate genotyping (Mowat and Paetkau 2002). Reducing the time between 271 

station revisits could increase genetic identification success by preventing excessive exposure of hair DNA to 272 

environmental conditions and reducing the probability of multiple visits. However, a likely drawback of reducing 273 

the length of sampling occasions would be a reduction in detection probabilities and increase in survey costs (Long 274 

et al. 2007, Mowat and Paetkau 2002). Our sampling occasion length, 7 days, is similar to that used in other studies 275 

(e.g. Long et al. 2007, Stricker et al. 2012,Burki et al. 2010). 276 
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The baited hair snare model we tested (sensu Kendall and McKelvey 2008) required an active response from the 277 

target species in order to produce a detection (i.e. the rubbing behavior exhibited by most felid and canid species). 278 

Similar rub stations have been tested worldwide on a variety of species and yielded contrasting results. Long et al. 279 

(2007) failed to detect bobcats (Lynx rufus) in Vermont, USA, with rub pad hair snares, but successfully detected 280 

them with scat detection dogs and camera traps. However, they successfully detected black bears with all three 281 

methods. Comer et al. (2011) obtained low bobcat detection rates in Texas, USA, when compared to those obtained 282 

by camera traps. Using similar rub pads, Downey et al. (2007) failed to detect margays (Leopardus wiedii) at El 283 

Cielo Biosphere Reserve (Mexico), but obtained a 20.8% success in detecting gray foxes (Urocyon 284 

cinereoargenteus), whereas Castro-Arellano et al. (2008) were successful in detecting 67% of the medium and large 285 

mammals species known to be present. Steyer et al. (2012) were successful in identifying individual European 286 

wildcats with rub pad hair snares at a low-density area, in the Kellerwald-Edersee National Park,Germany. Even 287 

though cubby-like designs have been preferred for collecting hair from mustelids (Kendall and Mckelvey 2008), 288 

pine martens have been successfully detected by their hair using lure sticks at the Jura Mountains, Switzerland 289 

(Burki et al. 2010).  290 

We used lynx urine and valerian extract solution as our scent lures because they have been found to elicit rubbing 291 

behavior in captive red foxes, European wildcats, common genets and Eurasian (Monterroso et al. 2011). We were 292 

surprised by the small number of wildcat hair samples collected in our study, especially in GVNP where a stable 293 

wildcat population is known to occur (Monterroso et al. 2009). Similar studies (with regard to hair collection 294 

structures and attractants) have proved effective for wildcat detection  (Steyer et al. 2013) and estimation of 295 

population parameters (Kéry et al. 2011,). However, some studies have found valerian to be ineffective in attracting 296 

wildcats (Kilshaw & Macdonald, 2011; Anile et al. 2012), suggesting that genetic characteristics of wildcat 297 

populations could be related to their attractiveness towards valerian lure. Further field tests could help clarify the 298 

reasons for the poor performance of hair snares for detecting wildcats in our study areas.   299 

Overall, a limited number of site-specific covariates revealed influence on the detectability of mesocarnivores. In 300 

CNP, we found the probability a red fox was detected was negatively related to elevation and the probability a genet 301 

was detected was negatively related to distance to water.  We suggest that this is because the foxes’ scavenging 302 

behavior at CNP is related to the abundance of Red deer (Cervus elaphus) and Wild boar (Sus scrofa) carcasses at 303 
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lower elevations (García-Canseco 1997) and waterways provide abundant cover, food, and often serve as travel 304 

corridors (Rondinini and Boitani 2002, Santos et al. 2008). Given the close relationship between abundance and 305 

detectability (McCarthy et al. 2012), we would foxes were more abundant at lower elevations and genets closer to 306 

water.. In CNP, red fox were also more likely to be detected in autumn than in spring and in GVNP, stone marten 307 

were more likely to be detected in spring than in autumn. This was most likely the result of seasonal differences in 308 

the annual biological cycle of the target species. For example, the yearlings of most mesocarnivores disperse and 309 

incorporate the ‘active’ population in autumn. Thus, territoriality is more relaxed when compared to the spring 310 

season, which coincides with the breeding season of most species (Blanco 1998).  311 

To our knowledge, this is the first study that evaluates the efficiency of hair snares for monitoring a mesocarnivore 312 

community in Europe. If individuals only need to be identified to the species-level, then our results suggest that 313 

camera trapping is a more efficient sampling method than hair snares.  Other noninvasive methods, such as detection 314 

dogs or scat surveys, may also provide detection rates comparable to those of camera traps (Gompper et al. 2006, 315 

Long et al. 2007, O’Connell et al. 2006).  However, because hair samples can be identified to the individual level 316 

through microsatellite analysis of nuclear DNA (Beja-Pereira et al. 2009), they allow for the estimation of 317 

population parameters such as density (Kéry et al. 2011), spatial organization (Davoli et al. 2012) or genetic 318 

diversity (Mullins et al. 2009).  319 

Protected area administrations require adequate information on the status of wildlife populations through constant 320 

monitoring in order to detect population trends or sudden changes, and adjust management actions accordingly 321 

(Moriarty et al. 2011). Occupancy modeling, in combination with camera trap surveys, may be an ideal method for 322 

large-scale, long-term monitoring of wildlife populations as it provides information on the spatial distribution of 323 

species and patch-specific rates of colonization and extinction (MacKenzie et al. 2003, Moriarty et al. 2011).  If 324 

management objectives, however, require deeper insights into population dynamics that can only be attained through 325 

analysis of genetic information (Kendall and Mckelvey 2008), then hair snaring may need to be employed.  To 326 

improve the efficacy of hair snaring, we suggest increasing the number of sampling occasions (Bailey et al. 2007, 327 

O’Connell et al. 2006) and the frequency at which hair snares are checked.  This will likely improve detection rates, 328 

minimize environmental degradation of DNA, and decrease incidence of cross-contamination.  Additionally, 329 

depending on the target species, employing multiple types of hair snares (e.g., rub pads and cubby boxes) and 330 
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multiple types of lures at each station may increase the number of species detected and overall detection rates.  We 331 

suggest that future studies test different hair snare protocols and sampling designs, perhaps through simulation 332 

studies, to increase the efficiency of hair snare techniques; namely, determining the optimal duration of sampling 333 

occasions and the design of snares that increases both detection probabilities and the success of molecular methods.    334 
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Figures: 486 

Figure 1. Mean estimated sampling occasions (weeks) required to attain a given detection probability, given species 487 
presence, for a) red foxes, b) stone martens, and c) common genets.488 
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