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Abstract

Background: Correlative modelling combines observations of species occurrence with environmental variables to
capture the niche of organisms. It has been argued for the use of predictors that are ecologically relevant to the
target species, instead of the automatic selection of variables. Without such biological background, the forced
inclusion of numerous variables can produce models that are highly inflated and biologically irrelevant. The
tendency in correlative modelling is to use environmental variables that are interpolated from climate stations,

or monthly estimates of remotely sensed features.

Methods: We produced a global dataset of abiotic variables based on the transformation by harmonic regression
(time series Fourier transform) of monthly data derived from the MODIS series of satellites at a nominal resolution
of 0.1°. The dataset includes variables, such as day and night temperature or vegetation and water availability,
which potentially could affect physiological processes and therefore are surrogates in tracking the abiotic niche. We
tested the capacities of the dataset to describe the abiotic niche of parasitic organisms, applying it to discriminate
five species of the globally distributed tick subgenus Boophilus and using more than 9,500 published records.

Results: With an average reliability of 82%, the Fourier-transformed dataset outperformed the raw MODIS-derived
monthly data for temperature and vegetation stress (62% of reliability) and other popular interpolated climate datasets,
which had variable reliability (56%-65%). The transformed abiotic variables always had a collinearity of less than 3

(as measured by the variance inflation factor), in contrast with interpolated datasets, which had values as high as 300.

Conclusions: The new dataset of transformed covariates could address the tracking of abiotic niches without inflation
of the models arising from internal issues with the descriptive variables, which appear when variance inflation is higher
than 10. The coefficients of the harmonic regressions can also be used to reconstruct the complete original time series,
being an adequate complement for ecological, epidemiological, or phylogenetic studies. We provide the dataset as a
free download under the GNU general public license as well as the scripts necessary to integrate other time series of
data into the calculations of the harmonic coefficients.
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Background

Various methods of species distribution modelling have
been applied to arthropods of medical importance to
understand the factors limiting their distributions [1-4].
These quantitative tools combine observations of species
occurrence with environmental features (variously called
“descriptive variables”, “environmental variables”, or “abi-
otic covariates”) to capture the niche of the target species
and then project a prediction on a geographic range. This
approach is called correlative modelling [5,6]. Such projec-
tion is generally a map illustrating the similarity of the
abiotic covariates in relation to the data used to train the
model. Commonly, only the abiotic component of the
niche (e.g., temperature, water vapour) is used to infer
the niche of the target species, although for some species,
it is necessary to include an explicit description of biotic
factors, like the availability of hosts, which are necessary
as a blood source. These abiotic covariates are thus used
to gain information about which variables may affect the
fitness of the species. Because information on abiotic
variables can be produced on a timely basis, correlative
modelling is a useful tool for resource managers, policy
makers, and scientists.

A number of modellers have argued strongly for the use
of predictors that are ecologically relevant to the target
species, describing the biological and ecological con-
straints of the species in the spatial range to be modelled
[4,7-10]. However, the rule seems to be the automatic
selection of variables by the modelling algorithms, relying
on the statistical values of model performance [11] rather
than weighting them by ecological relevance. Without
such biological background, the forced inclusion of nu-
merous variables can produce models with highly reliable
matching distributions that are statistically rather than
biologically relevant. The tendency in correlative model-
ling is to use abiotic covariates that are interpolated from
climate stations [12]. These datasets describe either the
monthly values of a variable (e.g., mean temperature in
March) or the relationships among the variables (e.g.,
rainfall in the warmest quarter). The overall usefulness of
these datasets for global climate studies is not in question,
but they may be affected by internal issues like collinearity
[13,14] that influence the reliability of the resulting spatial
projection. Collinearity refers to the non-independence of
predictor variables, usually in a regression-type analysis. It
is a common feature of any descriptive ecological dataset
and can be a problem for parameter estimation because it
inflates the variance of regression parameters and hence
potentially leads to the wrong identification of predictors
as relevant in a statistical model [14].

Tackling the complex challenges of decision-making
about human and animal health requires development of
a monitoring and assessment system of the climate cover-
ing the Earth’s dimensions. Such a system must be
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coherent, reliable, and ready for updating as new data in-
corporate into the stream of observations. It ideally would
supply indicators that account for climate changes and
trends and how they might affect the physiological pro-
cesses of the organisms to be modelled. Remotely sensed
products of Earth’s processes are dynamic predictors suit-
able for capturing the niche preferences of some medically
important arthropods [15]. Because of continuous tem-
poral sampling, remotely sensed data provide a synoptic
representation of the climate at the required spatial and
temporal scales. However, the potential of such harmo-
nised datasets to capture the abiotic niche of organisms
has not yet been fully explored [16,17]. It has been men-
tioned that weather patterns are better surrogates for
niche preferences of an organism than are the averaged
and extreme values of some variables [18]. Incorporating
such phenological descriptives of the abiotic niche would
improve estimations of the abiotic preferences of the
target organism. Studies have focused on the transform-
ation of the time series of remotely sensed covariates via
principal component analysis (PCA) or Fourier transform-
ation [16-18]. These modifications of the time series of
covariates retain the variability of the original dataset
while removing the collinearity.

This paper describes a dataset of remotely sensed
covariates based on the transformation by harmonic
regression (time series Fourier transform) of monthly
data derived from the MODIS series of satellites. Such a
dataset is internally coherent, has a small number of
layers to reduce the inflation of the derived models, and
includes information about day and night temperature,
vegetation, and water availability. This paper shows how
the dataset was produced and provides the scripts neces-
sary for further calculations. We also explicitly explored
the performance of the dataset describing the abiotic
niche of several species of ticks [19] and compared it
with the results using other popular datasets of climate
features. We provide the transformed dataset for free
download under the GNU general public license serving
the purpose of making specific data available to ecolo-
gists and epidemiologists.

Methods

A primer on harmonic regression

Harmonic regression is a mathematical technique used to
decompose a complex signal into a series of individual sine
and cosine waves, each characterised by a specific ampli-
tude and phase angle. In the process, a series of coefficients
describe the cyclical variation of the series, including its
seasonal behaviour. A variable number of components can
be extracted, but only a few terms are in general necessary
to describe annual, semi-annual, and smaller components
of the seasonal variance. In summary, the harmonic regres-
sion produces an equation with coefficients that fit the



Estrada-Pefa et al. Parasites & Vectors 2014, 7:302
http://www.parasitesandvectors.com/content/7/1/302

seasonal behaviour of each pixel of a series of images.
When the term for time is incorporated, the coefficients
reconstruct the value of the environmental variable for
such time. Most important, these coefficients can be used
to describe the amplitude, peak timing, seasonal peaks, sea-
sonal threshold, and many other features of a time series
[20]. Thus, harmonic regression describes the pattern of
the temporal variable to be measured, from which other
phenological data can be obtained. It serves as a method of
potential application for capturing the abiotic niche of an
organism because it describes both the pattern (seasonal
components) and the ranges of climate variables between
defined time intervals with the coefficients that result from
the harmonic regression. The harmonic regression used in
this study has the following form:

nix . HmX
Y=f(x) =ao+ ijl (a,» cos—— + b; smT)

where Y is the value of the variable at a moment of the
year, ao is the offset, ai is the coefficient of the ith
oscillation, L is the fundamental frequency, and x is the
time-dependent variable. The coefficients of the har-
monic regression are referred to here as “environmental
covariates” because they explicitly represent the environ-
mental niche that an organism may occupy. The final form
of the regression equation is Y = A + (B*(sin(2mt))) + (C*(cos
(2mt))) + (D*(sin(4mt))) + (E*(cos(4t))) + (F*(sin(61t))) + (G*
(cos(61t))) where A, B, C, D, E, F, and G are the seven coef-
ficients chosen to represent the complete time series, and ¢
is the time of the year. Y represents the reconstructed value
of a variable for the time ¢.

Figure 1 displays the potential of the method to describe
complex series of data. The first coefficient in the regres-
sion is the mean of the regressed variable. Each further
pair of coefficients contributes to explain the complete
series by determining the amplitude and the phase of
periods of time that are half the length of the preceding
period, e.g., twelve, six, three months, etc. Hypothetical
examples in Figure 1 show how different phenological
patterns are easily created, explaining the full potential of
the method. Figure 1D displays real monthly values of
temperature, randomly selected from two sites in the
northern and southern hemispheres, compared with
the weekly reconstruction of these actual series using
the equation and the coefficients in Figure 1E, where “t” is
the time of the year. The error of the fitted equations to
the actual data is less than 1%, as measured by the
residuals.

The interest of harmonic regression is that a few coefti-
cients are able to reconstruct even daily values of the
target variable (weekly in the example of Figure 1D). We
claim that these coefficients retain the ecological meaning
of the variable, because after reconstruction of the time
series, standard features (in terms of “length of the
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summer”, “peak of humidity in spring” or “number of days
below 0°C”) are still available using simple algebra [20].
The reduction of the time series by other methods, like
Principal Components, allows the destruction of such sea-
sonal component [21]. In correlative modelling, harmonic
regression defines the abiotic niche with a few variables,
therefore improving the reliability of the models because
internally correlated variables, like time series, are not
included [21].

The series of data

All the data were obtained from the NEO’s (NASA Earth
Observations) web server (http://neo.sci.gsfc.nasa.gov/
about/). The mission of NEO is to provide an interface to
browse and download satellite data from NASA’s constel-
lation of Earth Observing System satellites. Over 50 differ-
ent global datasets are represented with daily, weekly, and
monthly snapshots. NEO is part of the EOS Project Sci-
ence Office located at the NASA Goddard Space Flight
Center.

Four series of data were targeted because of their
potential to describe the abiotic niche of parasitic organ-
isms: the Land Surface Temperature, either at day or
night (LSTD, LSTN); the Normalised Difference Vegetation
Index (NDVI); and the Leaf Area Index (LAI). The first
expresses the temperature at the ground surface with a
precision of one decimal. We worked out both LSTD and
LSTN because the phenological curve of these datasets can
address calculations of the total accumulated temperature
over a given threshold, which is important in the detection
of habitat. The NDVI is a measure of the photosynthetic
activity of plants. Its value has been proven in the field of
large-scale monitoring of vegetation cover, and it has been
extensively used as a descriptive variable of the habitat for
medically important arthropods [22,23]. NDVI thus repre-
sents an adequate source of data to cope with the water
component of the arthropod life cycle, assessing temporal
aspects of vegetation development and quality [23,24].
However, the relationship between NDVI and vegetation
can be biased in low-vegetated areas, unless the soil back-
ground is taken into account [25]. The LAI defines an im-
portant structural property of a plant canopy, the number
of equivalent layers of leaf vegetation relative to a unit of
ground area [26]. This feature is important for the abiotic
niche of an organism because it measures how the ground
is protected against the sun and its evaporative capacities.

The four series of covariates (LSTD, LSTN, NDVI, and
LAI) were obtained from the NEO website at a reso-
lution of 0.1°, from October 2000 to December 2012 at
8-day intervals. The available sets of images have been
already processed by the MODIS team, with improved
cloud masking and adequate atmospheric correction and
satellite orbital drift correction applied. Such processing
is extremely important because the raw data are free of
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Figure 1 The background of harmonic regression. Panels A, B, and C show how changes in the seven coefficients of a harmonic regression
(namely A1 to A7) can be used to reconstruct the mean values of a variable and the peak moment of the year can be modelled. In A, the pattern
is obtained leaving A1 =20, A3=-15, A4=2.357, A5=-0.12, A6 =—0.094, and A7 =—0.237. The value of A2 was varied between —10 and 10 at
constant intervals to produce the pattern observed in the series 1-8. In B, values were left constant for A1 (20) A3 (—=10) and A4 to A7 (-0.12),
while the value of A3 was varied between —15 and —1, at constant intervals to produce the pattern reproduced. It is observed that changes in A2
and A3 account for the seasonality of the complete year, showing the peak of a variable in both its value and moment of the year. In C, A4 was
varied between —15 and 15 at constant intervals leaving the other coefficients with fixed values, namely A1 =20, A2=-10, A3=-15, A5 to A7 =-0.12.
Charts in A to C show simulated temperature values. Actual data for temperature were obtained from five sites in either the northern or southern
hemisphere (D) and then subjected to a harmonic regression (E), which was fitted with the parameters and the equation included in E. Capital letters
in the equation refer to the rows in the table for each of the five sites simulated.

(A5*(COS(4mt)))+(A6*(SIN(6mL)))+(A7*(COS(6Tt)))

pixels contaminated by clouds or ice, which avoids inter-
pretation errors. We prepared one month composites from
the 8-day images, using the method of the maximum pixel
value, to obtain the largest area without gaps in pixels. Data
were filtered using a Savitzky—Golay smoothing filter [27].
One of the problems with applying remotely sensed im-
agery to the detection of abiotic niche is the existence of
gaps at regions near the poles because of the long-lasting
accumulation of snow, ice, or clouds. The effects are larger
in the northern hemisphere because of the proximity of
inhabited lands to the North Pole. The detection of these
gaps and filling them with estimated values may be unreli-
able if the number of consecutive gaps is too long [28].
Some regions in the far North were not included in the
final set of images because they were covered by snow,
clouds, or ice for periods longer than 4 months.

Monthly values of each variable were subjected to har-
monic regression. We performed the harmonic regressions

in the R development framework [29] together with the
packages “raster” [30] and “TSA” [31]. Seven coefficients
for each variable were extracted from the annual time
series. A script is provided as Additional file 1, illustrating
the production of the coefficients of the harmonic regres-
sion. The coefficients representing the yearly, 6-month,
and 3-month signals were selected from the harmonic re-
gressions. Thus, seven layers of coefficients of each variable
could reconstruct the complete original time series and
constitute the environmental covariates proposed in this
paper to describe the abiotic niche of organisms.

A RGB composition of the four sets of harmonic coef-
ficients is included in Additional file 2: Figure S1.

Comparison of performance of the environmental variables
We aimed to demonstrate that (i) the coefficients of the
harmonic regression have a significantly smaller collinear-
ity than the original MODIS-derived time series and other



Estrada-Pefa et al. Parasites & Vectors 2014, 7:302
http://www.parasitesandvectors.com/content/7/1/302

popular climate datasets commonly used in correlative
modelling, and (ii) that the performance of the harmonic
coefficients in describing the abiotic niche of parasitic or-
ganisms is better than other products commonly used for
this purpose. Collinearity is a statistical phenomenon of a
dataset of spatial covariates [14]. Two or more variables in
a multiple regression model may be highly correlated and
then inflate the reliability of the model. In our application,
the typical situation involves the use of time series of co-
variates that are strongly correlated (e.g., the temperature
in one month is expected to be very similar to the values
of the following month). A special situation exists when
covariates are grid interpolations of climate point records.
In this case, the problems are magnified because the
interpolation algorithms use a set of discrete, irregularly
spaced sites (the meteorological stations) and the temporal
series of covariates will exhibit a high collinearity. We
assessed collinearity of the covariates with the variance
inflation factor (VIF), which is a measure of correlation
between pairs of variables [32]. Values of VIF > 10 denote
a potentially problematic collinearity within the set of
covariates, indicating that these covariates should be re-
moved from model development [33]. A VIF =1 indicates
that the variables are orthogonal. VIF was calculated with
the package “fmsb” [34] for R on the monthly values of
LSTD, LSTN, NDVI, and LAI as well as the derived
harmonic coefficients. To compare with other popular
products used in the inference of the abiotic niche, we
computed the VIF of the monthly values of temperature
and rainfall of Worldclim (www.worldclim.org) and the
so-called “bioclimate variables” from the same source,
which are calculated ratios among some significant vari-
ables [35] at the same spatial resolution as the remotely
sensed data.
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The performance of the models built with these abiotic
covariates was tested on a dataset of the reported world
distribution of ticks of the subgenus Boophilus. This
database of tick distribution has a global extent and is
therefore appropriate for an explicit test of the environ-
mental covariates. These ticks have a recent history of
introduction by the trade movements of livestock [19],
and some species are sympatric and thus may have similar
preferences for defined portions of the abiotic niche [36].
Thus, the reported world distribution of boofilid ticks is a
demanding statistical problem of discrimination among
species because some of them may share a portion of the
available ecological niche. We used the known distribution
data for Rhipicephalus (B.) annulatus, R. australis, R.
decoloratus, R. geigyi, and R. microplus, which consists of
9,534 records for the five species. Few details are known
about the distribution of R. kohlsi, and it was removed
from further calculations. Details of the compilation of the
original dataset have been provided [36], but the dataset
has been updated with new records from Africa and South
America published after the date of the original compil-
ation. Figure 2 shows the spatial distribution of the world
records of the five species.

We wanted to discriminate among the five species of
ticks as a proof of concept, using different datasets. This
application is intended to allow inferences regarding the
abiotic conditions behind an observed distribution of an
organism, not to project such inferences onto the spatial
domain but to correctly classify the set of records. The
best set of abiotic covariates will produce the best descrip-
tion of the abiotic niche of these species of ticks, thus
allowing the best discrimination among species. We built a
discriminant analysis with the records of the five species of
ticks and the different datasets of environmental covariates.

annulatys i
australis
decoloratus
geigyi

] microplus

Figure 2 The reported distribution of 9,534 records of ticks of the subgenus Boophilus. Only records with a pair of coordinates were
included in the map and considered for further computations. Records from Asia lack such reliable georeferencing and were not included.
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Details of the discriminant analysis approach to distribu-
tion models or epidemiological issues have been addressed
elsewhere [37,38]. We used a standard (linear) approach to
the discriminant analysis, which uses a common (within-)
covariance matrix for all groups. We used stepwise variable
selection to control which variables are included in the
analysis. We used the discriminant scores, the distance to
the mean of that classification, and the associated probabil-
ity to assign the classification of each record of ticks
included in this study. The performance of such models is
traditionally assessed by calculating the area under the
curve (AUC) of the receiver operator characteristic [39], a
plot of the sensitivity (the proportion of correctly predicted
known presences, also known as absence of omission
error) vs. 1 — specificity (the proportion of incorrectly pre-
dicted known absences or the commission error) over the
whole range of threshold values between 0 and 1. The
model AUC thus calculated is compared to the null model
that is an entirely random predictive model with AUC =
0.5, and models with an AUC above 0.75 are normally con-
sidered useful [40]. Using this method, the commission
and omission errors are therefore weighted with equal im-
portance for determining the performance of the model
Other than the calculation of AUC, we explicitly evaluated
the percentage of correctly determined records of ticks,
using the different sets of abiotic covariates.
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To capture the abiotic niche and thus discriminate the
five species of ticks, we used (i) the coefficients of the
harmonic regression of LSTD and NDVI; (ii) the same set
of (i) plus the coefficients of the harmonic regression of
LAJ; (iii) remotely sensed monthly averages of LSTD and
NDVI (iv) the same set in (iii) after removal of the pairs
of covariates with VIF>10; (v) monthly averages of
temperature and rainfall obtained from Worldclim; (vi)
bioclimate variables from the Worldclim dataset; and (vii
and viii) monthly Worldclim values and bioclimate vari-
ables after removal of the covariates with VIF > 10,
respectively. No attempts were made to include LSTN in
these efforts because it parallels the phenology of LSTD.
We are aware that NDVI is not highly correlated with
rainfall, but it is commonly used as a surrogate of drought
conditions [41], and its performance can therefore be
compared with rainfall estimates.

Results

Table 1 includes the collinearity values among the seven
coefficients of the harmonic regressions of each series of
remotely sensed covariates over the complete Earth’s
surface. The calculation of collinearity between LSTD and
LSTN was omitted because they express the same variable
either at day or night and are obviously highly correlated.
The collinearity among the harmonic environmental

Table 1 Collinearity among the coefficients of the harmonic regression of T, NDVI, and LAI

T T2 T3 T4 T5 Té6 T7

NDVI1T NDVI2 NDVI3 NDVI4 NDVI5 NDVI6é NDVI7 LAI1 LAI2 LAI3 LAI4 LAI5 LAI6

T2 1.03

T3 185 120

T4 100 1.03 1.00

T5 137 102 101 107

T6 1.02 100 100 1.00 1.02

17 137 102 126 102 107 1.00

NDvIT 101 100 1.17 100 100 1.00 1.02

NDvVI2 105 129 102 104 100 1.00 101 100

NDVI3 300 115 185 104 108 102 133 101 1.16

NDVI4 100 100 101 103 104 107 101 106 1.04 1.01
NDVI5S 159 101 120 101 132 101 128 1.11 1.02 148
NDVI6 128 101 1.11 101 104 101 122 100 1.03 140
NDVI7 105 100 102 100 1.13 1.00 100 107 1.00 1.01
LAI 1.00 100 107 101 123 100 101 3.18 1.00 1.02
LAI2 119 107 116 100 1.00 100 117 101 145 1.08
LAI3 143 122 122 101 102 101 100 101 1.19 2.28
LAI4 140 101 1.16 105 102 1.00 117 100 1.01 1.26
LAIS 121 102 1.0 100 106 1.00 102 100 1.03 1.29
LAl 1.11 101 102 101 101 101 105 100 1.00 1.07
LAI7 100 100 1.00 100 100 1.01 102 100 1.00 1.00

1.19

1.02 1.09

1.22 1.27 1.04

1.00 1.01 1.00 1.01

1.06 1.01 1.10 1.01 1.03

1.07 1.03 1.07 1.00 100 1.00

1.18 1.01 1.30 1.03 1.00 161 1.11

1.00 1.36 1.03 1.02 101 100 145 101

1.00 1.03 1.40 1.00 100 105 107 136 106

1.01 1.04 1.00 1.13 1.00 102 100 103 108 1.00

Collinearity was calculated as the variance inflation factor. Values lower than 10 are indicative of low collinearity and could be used together in models of the
environmental niche. The number after the letters of the variables indicates the ordinal coefficient in the harmonic regression of the variable.
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Table 2 Collinearity among the monthly values of temperature

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov
Feb 5843
Mar 9.59 20.80
Apr 377 551 18.89
May 2.18 2.75 5.32 19.04
Jun 1.59 1.85 2.80 5.58 20.08
Jul 1.63 1.89 282 542 1642 14231
Aug 1.66 193 2.90 5.60 16.29 69.95 229.85
Sep 2.55 3.21 6.14 17.01 30.26 12.84 14.47 18.06
Oct 4.58 6.62 1871 3247 10.29 4.50 467 5.10 1931
Nov 16.60 31.02 33.66 8.83 3.73 2.28 2.34 243 4.82 14.85
Dec 213.04 56.23 10.83 413 2.32 1.66 1.70 1.74 2.75 525 23.96

Eight-day-interval MODIS-derived series of values were converted to monthly composites and collinearity calculated as the variance inflation factor. Values higher

than 10 are indicative of high collinearity.

variables was lower than 3 for every possible combination,
an indication that all of these covariates could be used
together to train models without inflation of the resulting
inference. However, the monthly series of remotely sensed
covariates had values of VIF higher than 200 (Tables 2, 3
and 4), and the maximum statistically allowable is around
10. The transformation of the monthly series of remotely
sensed covariates removes the collinearity while retaining
its complete ecological meaning. Tables 5 and 6 show the
VIF values for the monthly series of interpolated tempera-
ture and rainfall, respectively. A total of 45% of monthly
combinations of temperature and 6% of monthly combi-
nations of rainfall produced VIF values higher than 10.
The “bioclim” variables were also affected by the collinear-
ity (Table 7). Some combinations of these covariates
produced high VIF values, including combinations of vari-
ables related to temperature (e.g., annual mean, mean of
coldest quarter, seasonality, annual range, maximum and

mean of warmest quarter, minimum and mean of driest
quarter) and a few combinations of rainfall (wettest period
and quarter and driest period and quarter) that are intui-
tively correlated.

Table 8 reports the results of the discriminant analysis
trained with different combinations of environmental co-
variates applied to the dataset of the world distribution of
the ticks of the subgenus Boophilus. The table includes
data on both the percentage of records correctly identified
by each model and the AUC values, a measure of general
reliability. All the models performed variably, but the best
overall performance was obtained for the Fourier-derived
covariates including seven coefficients of LSTD and NDVI
and the first five coefficients of LAI, with 82.4% correct
determinations. This model produced the best discrimin-
ation between R. annulatus and R. geigyi, with almost 70%
of records of the former correctly determined. The per-
formance of discriminant analysis decreased if only the

Table 3 Collinearity among the monthly values of the normalised difference vegetation index

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov
Feb 35.82
Mar 15.40 31.65
Apr 5.09 6.05 1050
May 1.74 204 231 427
Jun 113 123 1.27 1.53 3.75
Jul 1.06 1.10 1.13 1.25 2.09 11.21
Aug 1.11 1.16 1.18 1.32 2.21 743 24.85
Sep 1.59 1.75 1.81 2.33 4.36 3.75 3.06 4.55
Oct 254 266 2.80 4.26 4.67 197 1.57 1.88 774
Nov 6.11 497 5.50 7.58 287 137 1.20 133 287 8.89
Dec 3142 12.00 9.80 4.95 1.79 1.22 1.14 1.20 1.75 2.79 9.14

Eight-day-interval MODIS-derived series of values were converted to monthly composites and collinearity calculated as the variance inflation factor. Values higher

than 10 are indicative of high collinearity.
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Table 4 Collinearity among the monthly values of the leaf area index

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov
Feb 3.21
Mar 2.14 7.88
Apr 223 526 948
May 1.89 3.23 438 6.35
Jun 1.50 2.86 3.68 491 18.29
Jul 1.21 284 364 4.82 16.73 54.59
Aug 1.56 2.89 3.72 494 17.06 43.16 62.82
Sep 1.98 3.00 391 529 21.09 37.14 38.85 50.07
Oct 2.01 5.54 793 9.71 6.13 4.85 477 491 527
Nov 292 6.72 6.36 478 3.08 2.75 2.73 2.78 2.88 5.08
Dec 3.05 417 3.21 271 214 2.00 1.99 201 2.06 2.74 4.76

Eight-day-interval MODIS-derived series of values were converted to monthly composites and collinearity calculated as the variance inflation factor. Values higher

than 10 are indicative of high collinearity.

seven coefficients of LSTD and NDVI were included (14
covariates, 72.9% of correct determinations). Models
trained with the monthly series of LSTD and NDVI (24
partially correlated variables) had poorer performance
(62.3% of correct determinations), which further decreased
after removal of covariates with high VIF (12 variables,
56.7% of correct determinations). Discriminant models
built with 24 covariates of gridded interpolated data of
temperature and rainfall performed slightly better than
remotely sensed covariates (69.7%). Such performance
decreased when pairs of covariates with high VIF were
removed (16 covariates, 65.1%). It is interesting to note the
low overall performance of the discriminant analysis
trained with 19 covariates derived from the interpolated
climate, the so-called “bioclim” variables (57.9%), which
further decreased after removal of the pairs of covariates
showing high VIF (7 variables, 57.4%). The low discrimin-
ant capacity of such a set of derived interpolated covariates
can be observed comparing the slight differences in

performance if covariates with high VIF are removed from
the model training: There was only a drop of 0.5% of
correctly determined records after the removal of as many
as 12 variables. With this application, the “bioclim” dataset
had the poorest performance in capturing the abiotic niche
of the set of records of the world distribution of boofilid
ticks.

Discussion

Increased availability of species distribution and environ-
mental datasets, combined with the development of
sophisticated modelling approaches, has resulted in many
recent reports evaluating the distributions of health-
threatening arthropods [42-46]. This capture of the envir-
onmental niche represents an inference of the recorded
distribution of the organism, which can then be projected
into a different spatial or temporal framework. The cap-
ture of the abiotic niche comes with some methodological
caveats, however: (i) It is necessary to select a set of

Table 5 Collinearity among the monthly values of temperature obtained by interpolated data (Worldclim)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov
Feb 184.56
Mar 24.31 50.92
Apr 7.77 10.89 32.00
May 3.61 4.34 7.7 2147
Jun 191 2.11 2.75 452 12.87
Jul 1.50 1.61 1.96 2.77 524 27.31
Aug 1.88 2.06 2.64 4.07 891 37.03 38.90
Sep 363 4.27 6.59 1349 27.88 10.75 5.80 12,66
Oct 10.07 13.78 29.90 40.82 1222 391 261 397 1591
Nov 41.60 5881 4565 14.48 540 242 1.81 243 569 27.95
Dec 329.62 152.40 27.89 874 3.89 2.00 1.56 1.98 3.99 1230 7392

Collinearity was calculated as the variance inflation factor. Values higher than 10 are indicative of high collinearity.
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Table 6 Collinearity among the monthly values of rainfall obtained by interpolated data (Worldclim)
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov
Feb 2441
Mar 6.82 12.22
Apr 2.12 2.54 4.86
May 123 1.29 1.57 3.33
Jun 1.03 1.04 1.10 1.40 3.58
Jul 1.00 1.00 1.02 1.14 1.76 542
Aug 1.00 1.00 1.02 113 1.72 4.14 13.64
Sep 1.05 1.05 1.11 1.35 2.23 355 3.34 5.06
Oct 1.38 1.37 1.55 204 233 1.73 140 1.53 3.09
Nov 2.70 240 265 247 1.59 1.16 1.06 1.08 1.34 355
Dec 10.33 6.13 456 224 1.30 1.05 1.01 1.01 1.10 1.73 5.77

Collinearity was calculated as the variance inflation factor. Values higher than 10 are indicative of high collinearity.

descriptive covariates with an ecological meaning for the
organism to be modelled [7]; (ii) these covariates must be
free of statistical issues that could affect the process of in-
ference [47]; (iii) they must cover the widest geographical
range [48]; and (iv) they should be ideally prepared with
the same resolution. It is commonly the case that points
(i) and (ii) may be mutually exclusive, i.e., the ecologically
relevant covariates are indeed highly correlated, therefore

leaving only ecologically inappropriate covariates for
environmental inference. The automatic selection of the
covariates that render the best model, which has become
popular in recently available modelling algorithms [49],
introduces further unreliability in the modelling process.
A large evaluation of how to deal with collinearity in
environmental covariates [14] concluded that none of the
purpose-built methods yielded much higher accuracies

Table 7 Collinearity among the “bioclim” variables derived from interpolated data

Bio1 Bio2 Bio3 Bio4 Bio5 Bio6 Bio7 Bio8 Bio9 Bio10 Bio1l Bio12 Bio13 Bio14 Bio15 Bio16 Bio17 Bio18
Bio2 134
Bio3 340 116
Bio4 329 104 479
Bio5 505 19 162 136
Bio6 1565 113 472 817 240
Bioz 215 100 310 1721 115 431
Bio8 298 138 171 135 354 201 1.18
Bio9 846 122 290 391 268 1014 258 161
Biol0 808 159 180 153 4152 3.15 127 404 327
Bio11 2525 120 484 705 272 12300 353 218 1045 3.60
Bio12 118 107 148 146 102 133 162 108 118 105 1.28
Bio13 128 101 152 148 106 140 154 117 122 1 137 514
Bio14 101 116 106 107 102 104 115 100 102 1.00 102 206 1.20
Biol5 115 135 108 103 122 107 100 125 107 120 BN 1.03 1.02 1.36
Biol6 126 102 152 149 105 139 156 115 121 110 136 672 6934 124 1.01
Biol7 101 116 108 109 101 105 118 100 102 100 1.03 229 124 8401 136 1.29
Bio18 106 104 116 114 100 110 119 108 103 101 1.09 280 224 148 1.01 239 1.54
Bo19 107 106 124 121 100 116 130 101 111 1.02 1.12 236 1.54 1.85 1.08 161 1.98 1.18

Collinearity was calculated as the variance inflation factor. Values higher than 10 are indicative of high collinearity. The names Bio1 to Bio19 are the names
defined by the Worldclim dataset, namely annual mean temp., mean diurnal range, isothermality, temp. seasonality, max temp. of warmest month, min. temp. of
coldest month, temp. annual range, mean temp. of wettest quarter, mean temp. of driest quarter, mean temp. of warmest quarter, mean temp. of coldest quarter,
annual precipitation, precipitation of wettest month, precipitation of driest month, precipitation seasonality, precipitation of wettest quarter, precipitation of driest

quarter, precipitation of warmest quarter, precipitation of coldest quarter.
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Table 8 Percent of correctly discriminated species of the subgenus Boophilus, using the sets of descriptive covariates

Records reported as AUC annulatus australis decoloratus geigyi microplus

1. Discriminant analysis with 7 coefficients of LST, 7 coefficients of NDVI, and 5 coefficients of LAI. Correct determinations: 82.4%

annulatus 0.955 69.94 0.00 2.76 25.15 2.15
australis 0977 0.00 9339 117 0.00 543
decoloratus 0.905 221 0.18 79.85 9.26 8.50
geigyi 0.986 141 0.00 141 97.18 0.00
microplus 0.924 253 1.86 16.39 1.31 7791
2. Discriminant analysis with 7 coefficients of LST, and 7 coefficients of NDVI. Correct determinations: 72.9%

annulatus 0.959 46.79 0.00 3.21 48.08 192
australis 0.995 0.02 94.45 144 0.00 4.08
decoloratus 0.922 494 0.09 73.84 8.94 12.19
geigyi 0.989 347 0.00 1.39 93.75 1.39
microplus 0.946 536 133 12.06 073 80.52
3. Discriminant analysis with 12 months of remotely sensed LST and NDVI. Correct determinations: 62.3%

annulatus 0.931 32.69 1.28 449 57.05 4.49
australis 0991 020 96.83 1.22 0.00 1.75
decoloratus 0.889 427 191 69.93 10.77 1312
geigyi 0.979 6.25 0.69 0.00 92.36 0.69
microplus 0919 4.68 593 16.69 2.62 70.08

4. Discriminant analysis with monthly remotely sensed LST and NDVI, after removal of months with high collinearity. Only values for January, March,

May and October were included for LST. Data for February, March and July were removed from NDVI. Correct determinations: 56.7%

annulatus 0912 3462 1.28 0.64 57.05 641
australis 0.947 049 90.83 3.20 0.00 548
decoloratus 0.761 512 12.06 52.89 14.10 15.84
geigyi 0.971 9.72 1.39 0.69 88.19 0.00
microplus 0.826 823 1512 18.87 246 5532

5. Discriminant analysis with 12 months of gridded interpolated temperature and rainfall (Worldclim dataset). Correct determinations: 69.7%

annulatus 0.872 42.31 1.92 385 44.23 7.69
australis 0.996 0.00 99.67 0.13 0.00 0.20
decoloratus 0.923 4.23 1.33 7829 7.96 8.19
geigyi 0.985 556 0.69 278 8542 5.56
microplus 0.949 2.66 7.78 14.88 0.81 73.87

6. Discriminant analysis with monthly gridded interpolated temperature and rainfall (Worldclim dataset) after removal of the months with high
collinearity. Only data of temperatures of January, April, June and September were included. Data of rainfall of February, August and December
were removed. Correct determinations: 65.1%

annulatus 0.889 44.23 449 0.64 4551 513
australis 0.982 0.00 97.63 235 0.00 0.02
decoloratus 0.851 841 3.65 7215 10.63 5.16
geigyi 0.965 1597 0.00 0.00 7639 7.64
microplus 0.879 6.45 16.57 14.88 3.06 59.03

7. Discriminant analysis with “bioclim variables” derived from monthly gridded interpolated temperature and rainfall (Worldclim dataset). Correct

determinations: 57.9%

annulatus 0.941 28.21 1.92 8.97 46.15 14.74
australis 0.990 0.00 97.45 0.00 0.00 2.55
decoloratus 0.876 391 2.58 7464 9.34 9.52
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Table 8 Percent of correctly discriminated species of the subgenus Boophilus, using the sets of descriptive covariates

(Continued)
geigyi 0968 139 208 347 8333 972
microplus 0.901 149 11.09 19.60 1.98 65.85

8. Discriminant analysis with “bioclim variables” derived from monthly gridded interpolated temperature and rainfall (Worldclim dataset) after removal

of variables with high collinearity. Correct determinations: 57.4%

annulatus 0.930 2949 1.92
australis 0.991 0.00 95.12
decoloratus 0.890 351 249
geigyi 0.979 1.39 0.69
microplus 0.920 2.30 15.52

7.69 53.21 769
0.00 0.09 4.79
73.84 10.85 9.30
1.39 86.81 9.72
19.68 5.85 56.65

For some of these datasets of descriptive covariates, the analysis was repeated with every variable included (e.g., the 12 months of average temperature) and
after the highly correlated variables were removed. A discriminant analysis was conducted, and its reliability evaluated by the percent of records correctly
predicted and the area under the curve (AUC). The AUC is a general measure of model performance and does not consider individual results of true positives for
each species. Therefore, some models may perform better for a particular species while having a general low AUC. The percent of correctly determined records of

each species is also included.

than those that ignore collinearity. As a rule, collinearity
must be removed before the building of the models
because it cannot be handled by further methods.

We produced a dataset of environmental variables
based on the harmonic regression of remotely sensed
time series of day and night temperature, vegetation
stress, and leaf area index. This dataset is aimed to fit
the statistical rules of internal coherence when applied
to the detection of the environmental niche of organ-
isms. Our goal was to produce a homogeneous set of
uncorrelated variables, retaining the complete ecological
meaning and covering the complete Earth’s surface. We
obtained the raw data from a reliable source that ensures
the best pre-processing, which makes for a consistent
and homogeneous set of raw variables. The meaning and
the potential of the harmonic regression to capture the
phenology of the climate have been already pointed out
[20]. We evaluated the performance of the harmonic
regression coefficients with a dataset of world records of
boofilid ticks, which is a challenging problem for such
techniques because these species have a pan-Tropical
and Mediterranean distribution [50]. In some cases, the
trade movements of livestock introduced and spread
species far away from the original ranges [51]. We dem-
onstrated that the covariates derived from the harmonic
regression better captured the abiotic niche of several
species of ticks than did the monthly raw set of descrip-
tors or interpolated gridded climate, which have been
traditionally used for this purpose [52-54]. We are aware
that the nominal spatial resolution of 0.1° may be too
coarse for some applications focusing on local or re-
gional issues, which could require a higher resolution.
The choice of such resolution is a balance between
complete coverage of the Earth’s surface and processing
requirements in terms of time and computer resources.
Such resolution is similar to a previous set focusing on
remotely sensed data from the AVHRR series of sensors

[55]. However, MODIS is particularly more attractive for
epidemiological applications than AVHRR because of
the better spectral and temporal resolutions [55].

One source of unreliability is the inference from inad-
equate sets of descriptive covariates, which in some cases
may include a high collinearity [14]. We are considering
collinearity in the context of a statistical model that is
used to estimate the relationship between one response
variable (the species in our application) and a set of de-
scriptive covariates. Examples include regression models
of all types, classification and regression trees, and neural
networks. Coefficients of a regression can be estimated,
but with inflated standard errors [56] that result in in-
accurate tests of significance for the predictors, meaning
that important predictors may not be significant, even if
they are truly influential [14]. Extrapolation beyond the
geographic or environmental range of sampled data is
prone to serious errors because patterns of collinearity are
likely to change. Obvious examples include use of statis-
tical models to predict distributions of species in new geo-
graphic regions or changed climatic conditions, giving the
impression of a well-fitted model to which tests of model
reliability are “blind” [21,57,58].

Generalised sets of covariates produce an unmanageable
level of uncertainty in species distribution models that
cannot be ignored. The use of sound ecological theory
and statistical methods to check predictor variables can
reduce this uncertainty, but our knowledge of species may
be too limited to make more than arbitrary choices. Data
reduction methods are usually employed to remove these
correlations and provide one or more transformed images
without such correlation, which can then be used in fur-
ther analyses or applications. One ordination approach
commonly applied to multi-temporal imagery is PCA
[59], but explicit measures of seasonality are lost in the or-
dination process. PCA thus achieves data reduction at the
expense of biological descriptiveness. Alternative methods
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that retain information about seasonality include polyno-
mial functions [10] and temporal Fourier analysis [17,18].
The Fourier transformation of remotely sensed variables
has been proposed as a reliable approach to define the
niche of organisms [18,19,60] because it retains the
complete variability of the original time series as well as
the ecological meaning. Temporal harmonic regression
transforms a series of observations taken at intervals over
a period of time into a set of (uncorrelated) sine curves, or
harmonics, of different frequencies, amplitudes, and
phases that collectively sum to the original time series. A
high-resolution version of AVHRR data converted into
Fourier derivate, focused on the western Palearctic, was
made available commercially [54], and a general algorithm
to handle MODIS images and decompose them into har-
monics was already available [18]. Our application is thus
the first to provide a set of statistically suitable, internally
coherent set of variables with ecological meaning, aimed
at describing the abiotic niche of organisms and covering
the complete Earth’s surface. While this new set of envir-
onmental descriptors has been developed to delineate the
associations of parasites with abiotic traits and how these
traits can shape potential distributions, it would poten-
tially benefit ecologists and epidemiologists in the capture
of the abiotic niche of other organisms.

Conclusions

The set of environmental covariates described in this study
covers the complete Earth and lacks internal issues that
may inflate the models derived. It targets capturing the
abiotic niche of organisms, with potential applications in a
variety of fields in ecology, epidemiology, and phylogeogra-
phy. The tests, applied to a worldwide collection of records
of five species of ticks with overlapping spatial distribu-
tions, demonstrated that the environmental variables de-
rived from a harmonic regression better discriminated the
species, and therefore their abiotic niche, outperforming
the reliability of other sets of environmental covariates and
not inflating the models as a result of the collinearity of the
descriptors, which were measured by the VIF. The useful-
ness of interpolated gridded covariates is not in question in
many fields, but it must be stressed that they offer limited
value for describing the abiotic niche of ticks because the
application of statistical rules may force removal of eco-
logically relevant covariates describing such a niche. We
have made the set of coefficients of the harmonic regres-
sions available for free download and provided the scripts
necessary to either reproduce the workflow or to apply the
methodology to new sets of time variables.

Additional files

Additional file 1: Script Fourier. This is an R script to ingest the time
series of remotely sensed images and obtain the coefficients of the
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harmonic regression. Brief instructions are provided as comments in
the script.

Additional file 2: Figure S1. Composite images of the coefficients of
harmonic regression for the four series of remotely sensed covariates.
Composites represent LSTD (A), LSTN (B), NDVI (C), and LAI (D).
Compositions related to LSTD and LSTN were prepared with A1 (red), A2
(blue), and A3 (green) coefficients (i.e, the three first coefficients of the
harmonic regression for each variable). Compositions regarding NDVI and
LAl were prepared with the A1 (green), A2 (blue), and A3 (red)
coefficients.
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LAI: Leaf area index; LSTD: Land surface temperature (day); LSTN: Land
surface temperature (night); NDVI: Normalised difference vegetation index;
PCA: Principal components analysis; VIF: Variance inflation factor.
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