

1	Original Article
2	
3	Range dynamics driven by Quaternary climate oscillations explain the distribution
4	of introgressed mtDNA of Lepus timidus origin in hares on the Iberian Peninsula
5	Pelayo Acevedo ^{1,2*} , José Melo-Ferreira ² , Liliana Farelo ² , Beatriz Beltran-Beck ² ,
6	Raimundo Real ³ , Rita Campos ² , Paulo C. Alves ²
7	¹ SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-
8	JCCM, Ciudad Real, Spain.
9	² CIBIO (Centro de Investigação em Biodiversidade e Recursos Genéticos), InBIO
10	Laboratório Associado. Universidade do Porto, Portugal.
11	³ Grupo de Biogeografía, Diversidad y Conservación, Departamento de Biología
12	Animal, Universidad de Málaga, Spain.
13	* Correspondence: Pelayo Acevedo. SaBio, Instituto de Investigación en Recursos
14	Cinegéticos (IREC), CSIC-UCLM-JCCM, Ciudad Real, Spain. E-mail:
15	pelayo.acevedo@gmail.com
16	Running title: Quaternary climate oscillations and range of introgressed mtDNA
17	Word count: 6482 (2 pages for tables and figures)
18	

2
3
4
5
6
7
8
9
10
10
11
12
13
14
15
16
17
18
10
19
20
21
22
23
24
25
26
20
21
28
29
30
31
32
33
34
25
30
36
37
38
39
40
41
12
<u>⊤∠</u> ∕\?
43
44
45
46
47
48
49
50
51
50
5Z
53
54
55
56
57
58
50
60
OU

19 ABSTRACT

20 Aim A striking case of mitochondrial DNA (mtDNA) introgression occurs in the 21 Iberian Peninsula: the mtDNA of *Lepus timidus*, a species that inhabited this territory 22 during the Last Glacial Maximum (LGM), is almost fixed in the Iberian range of Lepus 23 europaeus, is very frequent in the northern half of Iberia within Lepus granatensis and 24 is fixed in Lepus castroviejoi. Here, we have used a transdisciplinary approach to 25 understand the ecological drivers of the distribution of this introgressed mtDNA in the 26 Iberian hare species. Methods First, we have modelled the climatic niche of L. timidus to predict the 27 28 favourability for the species during the LGM. Second, we have gathered data regarding 29 L. timidus mtDNA introgression for 1137 individuals (139 populations) from the Iberian 30 Peninsula. We have tested whether the climatic favourability for L. timidus during the LGM reflects the frequency of the introgressed mtDNA in the carrier hare populations. 31 32 **Results** The climatic favourability for the LGM is positively related to the presence of individuals with L. timidus mtDNA (z-value=3.513, P<0.001), and discriminates better 33 34 than by chance between individuals with and without this lineage (AUC=0.712). At the 35 population level, the favourability values relate to the observed frequencies of mtDNA

introgression (r=0.454, P<0.001) and discriminate between populations with and

37 without *L. timidus* mtDNA (AUC=0.835).

Main conclusions The results suggest that the geographic distribution of *L. timidus*mtDNA introgression is linked to *L. timidus* distribution in Iberia during the LGM. Our
study helps to understand the role of climate in the reticulated evolutionary history of
hares, and is a first step toward understanding the ecological impact of mtDNA

42 introgression on Iberian hares.

- 43 Keywords: climatic niche, Iberian hare, *Lepus granatensis*, mountain hare, reticulate
- 44 evolution, species distribution modelling.

Journal of Biogeography

47	INTRODUCTION
----	--------------

Quaternary climatic changes have governed the geographical range dynamics of species worldwide, affecting their spatial distribution and genetic diversity (Hewitt, 2000). Patterns of genetic variation, when interpreted within the context of geography (s.s. phylogeography), can provide important insights into the history of species (Avise, 2000). However, research in phylogeography has placed more emphasis on the phylocomponent than on geography, despite the inherent information that the latter contains about the evolutionary envelope and ecology of the species (Kidd *et al.*, 2006). The geography of species ranges can be understood by using species distribution models (SDMs), which are descriptive and/or explanatory approaches for the assessment of range drivers and the prediction of species occurrence in space and/or time (see Guisan & Zimmermann, 2000). These approaches have been widely used to address basic questions in ecology (Soberón, 2007) and conservation biogeography (Lomolino, 2004). Moreover, SDMs can provide the information needed to generate and test hypotheses concerning the past structure of genetic diversity (Richards et al., 2007; Nogués-Bravo, 2009). When SDMs are analysed in an evolutionary context, they can supply complementary information to that obtained from phylogeography (Diniz-Filho et al., 2013), as both SDMs and phylogeography are focused on the understanding of macroevolutionary patterns, and the microevolutionary processes related to them (Bermingham & Moritz, 1998; Ruegg et al., 2006). Phylogeographical evidence can thus be complemented by SDM studies, as the latter provide quantitative hypotheses to test regarding species distribution in past scenarios and a statistical inference of the main determinants of the distribution ranges (Svenning et al., 2011). For instance, the applications of SDMs in evolutionary studies allow researchers to propose and validate hypotheses about the existence and location of glacial refugia (e.g. Carnaval & Moritz,

Journal of Biogeography

2008; Acevedo et al., 2012a; de Lima et al., 2014), to explore ecological relationships within and between phylogenetically related taxa (Peterson et al., 1999; Wiens & Graham, 2005; Acevedo et al., 2014) or to reconstruct the conditions that allowed, among other things, historical hybridisation and genetic introgression to occur (Wielstra & Arntzen, 2012). Hares (Lepus spp.) are an important example in the study of hybridisation and genetic introgression (Arnold, 2008). Past and ongoing events of hybridisation and/or mitochondrial DNA (mtDNA) introgression among species of hares are being increasingly reported in literature (e.g. Melo-Ferreira et al., 2012). Most of the cases reported involve the mountain hare, *Lepus timidus*, an arctic/boreal species that is currently widespread in northern Eurasia, from the British Isles to the Russian Far East, with some isolated populations in Scotland, Poland, the Alps and Japan (Smith & Johnston, 2008). The range fluctuations of this species throughout the glacial cycles, attested by fossil records that show the presence of the species during the Upper Pleistocene in areas from where it later disappeared, such as Southern France (Lopez-Martinez, 1980) or the Iberian Peninsula (Altuna, 1970), created multiple contacts with other temperate hare species, thus facilitating hybridisation and introgression, most notably of mtDNA (Alves et al., 2008a). One of the most extreme cases of mtDNA introgression among hares occurs in the Iberian Peninsula (e.g. Melo-Ferreira et al., 2011) where mtDNA of *L. timidus* origin is almost fixed in the Iberian range of *Lepus* europaeus, is very frequent in the northern half of Iberia for Lepus granatensis and is fixed in Lepus castroviejoi (Alves et al., 2008b; Melo-Ferreira et al., 2012). On the contrary, introgression at nuclear loci seems generally limited (Melo-Ferreira et al., 2009, 2012; but see Melo-Ferreira et al., 2011 for a case of massive X-linked introgression into L. granatensis). Molecular data suggest two major time-frames for

Journal of Biogeography

3
4
5
6
7
0
8
9
10
11
12
13
1/
14
15
16
17
18
19
20
21
20
22
23
24
25
26
27
20
20
29
30
31
32
33
34
35
33
30
37
38
39
40
41
12
+∠ 40
43
44
45
46
47
48
<u>10</u>
50
51
52
53
54
55
56
50
5/ 50
58
59
60

97	these mtDNA introgression events, one during Middle Pleistocene, affecting the
98	common ancestor of L. castroviejoi and Italian Lepus corsicanus, and another at the
99	LGM, affecting all three Iberian species (Melo-Ferreira et al., 2007, 2012). Whether
100	mtDNA introgression from L. timidus resulted from neutral demography, adaptive
101	processes or both is a matter of debate (Alves et al., 2008b; Melo-Ferreira et al., 2005,
102	2009, 2011). While adaptive introgression predicts that the prevalence of the
103	introgressed variants depends on the adaptive landscape of the haplotypes, introgression
104	driven by purely demographic processes strongly relies on the biogeographic and
105	demographic history of the involved species. Theoretical simulations show that
106	situations of competitive replacement with hybridization may lead to massive
107	introgression of genetic variants from the local into the invading species, due to drift in
108	the invasion front and/or recurrent hybridization, and that the pattern should be stronger
109	in markers linked to the least dispersing sex, as mtDNA in species with female
110	philopatry (Currat et al., 2008). This may explain mtDNA introgression from L. timidus
111	into L. granatensis if the latter competitively replaced the former in northern Iberia by
112	the end of the last glacial period (Melo-Ferreira et al., 2007). A recent study carried out
113	in the contact zone between L. granantensis and L. europaeus in northern Iberia
114	suggested that recurrent introgression along the invasion front may better explain the
115	patterns of mtDNA differentiation and that the current distribution of mtDNA of L.
116	timidus origin in the Iberian hare species could thus be linked to the historical
117	distribution of the species in the region (Melo-Ferreira et al., 2014a).
118	To date the case of L. timidus mtDNA introgression in Iberia has only been
119	addressed by means of molecular approaches. In this work, using SDMs, we test
120	whether the distribution of this mtDNA lineage in other hare species reflects the past
121	distribution of L. timidus in Iberia (Melo-Ferreira et al., 2014a). This analysis helps

122 understanding the role of climate-driven range shifts in the reticulated evolutionary

history of hares.

125 MATERIAL AND METHODS

126 Species data and geographical extent for modelling

127 The current distribution of *L. timidus* in Europe was extracted from The Atlas of

128 European Mammals (Mitchell-Jones *et al.*, 1999), with UTM 50×50 km squares as

territorial units (Fig. 1). Two procedures were applied in order to select an appropriate

130 geographical background in which to parameterise the species niche model:

131 1) Given that a geographically-biased sampling effort was acknowledged by the

authors of the Atlas, we calculated the number of mammal species in each square in

133 order to consider only for modelling those squares in which at least one species was

134 reported. This filter excluded territories from Eastern Europe which coincided with the

135 most incomplete sampling areas identified by the Atlas' authors (A.J. Mitchell-Jones,

136 personal communication), and resulted in the selection of 2557 squares.

2) Since the extent of the geographical background (i.e. extent of the study area)

has substantial effects on the outputs of species distribution modelling (see Barve *et al.*,

139 2011; Acevedo *et al.*, 2012b), we delimited an adequate territory in order to study *L*.

timidus distribution within the 2557 squares selected in the previous step. This was done

141 by modelling the species distribution in which the third-degree polynomial of the spatial

142 coordinates were considered as predictors (TSA; Trend Surface Analysis). The

143 geographical background for niche modelling was represented by the localities which,

144 after carrying out the TSA, had a predicted favourability that was higher than the

145 minimum value assigned to a presence (for further details see Acevedo *et al.*, 2012b; see

146 Fig. 1). This procedure selected 1582 squares, of which *L. timidus* was reported in 760.

Page 9 of 38

Journal of Biogeography

1
ว
2
3
4
5
6
7
1
8
9
10
11
10
12
13
14
15
16
17
10
10
19
20
21
22
22
23
24
25
26
27
28
20
29
30
31
32
33
24
34
35
36
37
38
30
40
40
41
42
43
44
15
40
46
47
48
49
50
50
51
52
53
54
55
55
50
57
58
59
60

147 Determining the species climatic niche

148	The climatic drivers of <i>L. timidus</i> distribution – i.e. its "climatic niche" – were
149	determined on the basis of the locations in which the species currently occurs. The niche
150	model was parameterized using an 80% random sample of the species distribution data
151	(training dataset) and evaluated against the remaining 20% of the data (validation
152	dataset). Nineteen bioclimatic variables (spatial resolution of ~1km) were obtained from
153	the WorldClim project database for the present (see Hijmans et al., 2005): annual mean
154	temperature (BIO1), mean diurnal range (mean of monthly (BIO2=max temp-min
155	temp), isothermality (BIO3=(BIO2/BIO7) * 100), temperature seasonality
156	(BIO4=standard deviation *100); max temperature of warmest month (BIO5), min
157	temperature of coldest month (BIO6), temperature annual range (BIO7=BIO5-BIO6);
158	mean temperature of wettest quarter (BIO8), mean temperature of driest quarter (BIO9),
159	mean temperature of warmest quarter (BIO10), mean temperature of coldest quarter
160	(BIO11), annual precipitation (BIO12), precipitation of wettest month (BIO13),
161	precipitation of driest month (BIO14), precipitation seasonality (BIO15; coefficient of
162	variation), precipitation of wettest quarter (BIO16), precipitation of driest quarter
163	(BIO17), precipitation of warmest quarter (BIO18), and precipitation of coldest quarter
164	(BIO19). Multicollinearity among predictor variables in a model can bias the
165	predictions when the model is transferred outside the range/timeframe in which it was
166	trained, and in which correlation among variables may be different, as in this study. In
167	order to avoid multicolinearity-derived problems, we quantified the variance inflation
168	factor (VIF) in the training dataset in order to exclude those predictors with VIF>10
169	from the analyses prior to modelling (Montgomery & Peck, 1992). VIFs were
170	calculated for each predictor as the inverse of the coefficient of non-determination of
171	the regression of each predictor against all others by using the 'HH' R package

1	
2	
3	
4	
с С	
7	
8	
9	
10	
11	
12	
14	
15	
16	
17	
18	
19	
20 21	
22	
23	
24	
25	
26	
28	
29	
30	
31	
32	
33 34	
35	
36	
37	
38	
39	
40 41	
42	
43	
44	
45	
46 ⊿7	
48	
49	
50	
51	
52 52	
ეკ 54	
55	
56	
57	
58	
59	
60	

172	(Heiberger, 2012). The predictors selected after controlling the VIF were considered in
173	a multiple logistic regression (Hosmer & Lemeshow, 1989), in which the L. timidus
174	distribution was used as a response variable and the bioclimatic variables selected were
175	used as predictors. The final model was obtained by using a forwards-backwards
176	stepwise procedure based on the Akaike Information Criterion (AIC).
177	In order to test that our predictions are not biased for the selection of an unique
178	modelling technique, we assessed the consistency of the predictions obtained from
179	logistic regression when they are compared with those derived from seven different
180	techniques widely used in species distribution modelling (namely generalized additive
181	model, boosted regression trees, classification tree analysis, artificial neural network,
182	BIOCLIM and flexible discriminant analysis) and, in addition, an ensemble of their
183	forecasts (see Appendix 1 in the Supporting Information). The results showed that the
184	logistic regression is as robust as obtained by other methods and the predicted pattern
185	for LGM from logistic regression is consistent with the obtained for most explored
186	methods (Fig. S1, Tables S1 and S2). As model's complexity (e.g. Merow et al., 2014)
187	limit the capability of models to be projected, in our study we opted to show results
188	from logistic regression as a simpler, well-known technique able to produce robust
189	inference.
190	Two components of the model's predictive performance were assessed in the
191	evaluation dataset, namely discrimination and reliability (Jiménez-Valverde et al.,
192	2013). The area under the curve of the receiver operating characteristic plot (AUC) was
193	computed by using the 'ROCR' R package (Sing et al., 2012) to assess the
194	discriminatory power of the model in the evaluation data. The reliability of the predicted
195	probabilities was estimated by exploring the calibration plots (Pearce & Ferrier, 2000).

- 196 Graphs were constructed using the 'ggplot2' R package (Wickham, 2009) by plotting the
 - 9

Journal of Biogeography

proportion of occupied evaluation sites against the predicted probability of presence (for
the ten equally sized probability intervals); points located along the 45° line indicate
perfect calibration. The Hosmer–Lemeshow goodness-of-fit statistic (H-L; Lemeshow
& Hosmer, 1982) was used to statistically assess whether the observed values matched
those expected in the calibration plots.

The objective of the model calibrated for the present was to identify the climatic favourability for the species. The parameterised model was therefore used to identify the location of the climatically favourable areas for the species during the LGM, when L. timidus was present in the Iberian Peninsula. This was done by projecting the model on bioclimatic variables for the LGM (Braconnot et al., 2007), which are available at a spatial resolution of \sim 5km. Previously, as the models are not able to accurately predict beyond the range of values of the predictors used for training (Campbell, 2004), a multivariate environmental similarity surface (MESS) analysis was developed (Elith et al., 2010). The MESS was used to estimate how similar each square in the LGM was to the training dataset (the present), in relation to the predictors retained in the final model. Negative values were obtained for those squares in which at least one predictor had a value that was outside the range of environments represented in the training dataset, and these are therefore climatic conditions that differ from those that the species is currently experiencing, where the uncertainty of the predictions is high. Therefore, the model was not projected to the past in those squares outside the climatic range represented in the training dataset.

218 Determining *L. timidus* mtDNA introgression in hares from the Iberian Peninsula

219 We used both data concerning *L. timidus* introgression reported in previous studies

- carried out by our research group (Alves *et al.*, 2008b; Melo-Ferreira *et al.*, 2011) and
- 221 new data obtained to improve the representativeness of the populations sampled. A total

~
3
4
5
5
6
7
0
8
9
10
10
11
12
13
10
14
15
16
47
17
18
19
20
20
21
22
<u></u>
23
24
25
20
20
27
28
20
29
30
31
51
32
33
31
04
35
36
37
57
38
39
40
-10
41
42
43
11
44
45
46
47
41
48
10
+3
50
51
52
52
53
54
55
55
56
57
58
50
FC

1

of 1137 individuals (139 populations) were analysed, including samples of *L. europaeus*(*n*=179 individuals) and *L. granatensis* (*n*=958 individuals) – see Fig. 1 and Appendix
S2.

225 Total genomic DNA was extracted from frozen liver or ear tissue using the EasySpin Genomic DNA Tissue Kit (Citomed) or the JETQUICK Tissue DNA 226 227 Purification Kit (Genomed). Lepus timidus mtDNA lineage was detected in each of the 228 animals sampled, using the polymerase chain reaction-restriction fragment length 229 polymorphism (PCR-RFLP) approach implemented by Melo-Ferreira et al. (2005) or by the amplification and sequencing of a mitochondrial control region fragment, as 230 231 described by Melo-Ferreira et al. (2007). Relating model predictions for the LGM to L. timidus mtDNA in the Iberian 232 233 Peninsula 234 Climatic favourability for L. timidus occurrence during the LGM was related to the L. 235 timidus mtDNA detection in hares from the Iberian Peninsula at both the individual and the population levels. At the individual level we first explored the capability of the 236 237 predicted probabilities to explain the presence of mtDNA foreign lineage by employing 238 a generalised linear mixed model (GLMM; family "binomial-logit"), in which population was included as a random factor, and which was run with the use of the 239 240 'lme4' R package (Bates *et al.*, 2012). We additionally estimated the probability that an 241 animal with L. timidus mtDNA lineage chosen at random would be sampled in a square 242 with a higher probability for L. timidus occurrence during the LGM than an animal without L. timidus mtDNA also chosen at random, i.e. the AUC at the individual level. 243 244 The same rationale used at the individual level was also used to assess the 245 predictive performance of the model at the population level. In order to avoid the inclusion of potential bias owing to an insufficient sampling size in the populations 246

Journal of Biogeography

247	sampled, only those populations that contained more than 10 sampled animals were
248	considered in these analyses. The discriminatory capacity of the model predictions to
249	separate populations with and without introgressed lineages, independently of their
250	frequency, was assessed using AUC, and a Pearson correlation was carried out to
251	explore the relationship between the predicted probabilities (probabilities of L. timidus
252	occurrence during LGM) and the observed L. timidus mtDNA origin frequencies.
253	
254	RESULTS
255	From the initial set of predictors, only eight (BIO2, BIO3, BIO5, BIO8, BIO9, BIO15,
256	BIO18 and BIO19) were considered for building up the climatic niche model, as they
257	had all achieved VIFs<10. In the stepwise procedure (Table 1, see also Fig. 2) all the
258	predictors related to temperature were selected earlier than those related to precipitation.
259	The model achieved a good performance in terms of both discrimination (AUC=0.907)
260	and calibration (H-L: Chi=11.28, P =0.186; see Fig. 2) when it was assessed in the
261	validation dataset.
262	Previous to the model's transference to the LGM, the MESS analysis showed
263	that only southern areas of Europe had the LGM climatic conditions included in the
264	gradient represented in the calibration dataset, and the projection of the model to the

265 past was thus restricted to these areas. The results showed that the climatic favourability

266 for *L. timidus* is currently more restricted than it was in the LGM, when climatic

267 conditions in the Mediterranean peninsulas were favourable for it (Fig. 3).

The predicted probability for the LGM was significantly related to the presence of individuals with *L. timidus* mtDNA (GLMM: *z-value*=3.513, *P*<0.001), and there was a better than random discrimination between individuals with and without *L*.

timidus mtDNA (AUC=0.712). We also obtained consistent results at the population

272 level: the predicted probabilities related to the observed frequencies of mtDNA

introgression (Pearson's r=0.454, n=42, P<0.001) and the discrimination between

274 populations hosting the L. timidus mtDNA lineage and populations without this mtDNA

- were better than by chance (AUC=0.835).

277 DISCUSSION

278 Genetic and paleontological data suggest that climate oscillations played an important

279 role in modulating the geographic distribution, evolutionary history and interspecific

280 interactions of *L. timidus* in Western Europe (Altuna, 1970; Lopez-Martinez, 1980;

281 Melo-Ferreira *et al.*, 2007). Ancient hybridisation in areas in which *L. timidus* is

currently locally extinct, such as in the Iberian Peninsula, left genetic traces in the native

species, which is particularly visible in their mtDNA (Melo-Ferreira *et al.*, 2005; Alves

et al., 2008a). A recent genetic study has suggested that the current geographic

285 distribution of mtDNA of *L. timidus* origin in the hare species from the Iberian

286 Peninsula could be a testament to *L. timidus* distribution in the region during the LGM

287 (Melo-Ferreira *et al.*, 2014a). The results reported here confirm this hypothesis from a
288 macroecological perspective.

According to our model (Table 1), L. timidus is distributed in cold areas with strong diurnal contrasts in temperature and a high seasonality in the precipitation regime, with very dry summers and very wet winters (e.g. Thulin, 2003; Acevedo et al., 2012c). The four variables first selected in the stepwise procedure, and therefore acting on a larger spatial scale (see Muñoz et al., 2005), were related to temperature. The strong dependence of L. timidus on temperature, and in particular on the maximum temperature, reinforces the idea of high sensitivity to ongoing climate change, which had previously been suggested for both this (Acevedo et al., 2012c) and other species

Journal of Biogeography

3
4
5
6
7
0
0
9
10
11
12
13
14
15
16
17
18
10
20
2U 04
21
22
23
24
25
26
27
28
29
30
31
22
32
33
34
35
36
37
38
39
40
41
42
43
44
+ / E
40
40
4/
48
49
50
51
52
53
54
55
56
50
ບ/ E0
20
59
60

297	inhabiting the Boreal-Alpine region (Thuiller et al., 2005). Working on a large
298	ecophysiological dataset including terrestrial ectotherms, endotherms and plants, Araújo
299	et al. (2013) found that, in contrast to the lower thermal limit of the species climatic
300	niche, the upper thermal limit is highly conserved in nature. As a consequence the
301	species' capacity to adapt to climatic oscillations is principally constrained when the
302	climatic niche of the species is close to its upper limit. The fact that L. timidus
303	distribution is strongly limited by maximum temperatures suggests that its realized
304	climatic niche is close to its upper temperature limit. In that case, L. timidus would be
305	expected to have been strongly affected by post-glacial climate warming and to be also
306	highly affected by ongoing climate change. This prediction is in agreement with the
307	results obtained in previous works (Acevedo et al., 2012c). This study thus provides
308	new support for the potential role of climate in the decreasing demographic trend of this
309	species in some European countries (e.g. Thulin, 2003), and we strongly suggest that
310	climate must be considered among the potential factors that limit the viability of
311	populations of L. timidus in Western Europe (Smith & Johnston, 2008).
312	Our model of L. timidus climatic favourability at the LGM produced a plausible
313	scenario for the past distribution of this species in Iberia, with relevant insights into the
314	biogeographical settings that drove mtDNA introgression into other Iberian hare
315	species, in particular L. granatensis, despite the local extinction of L. timidus in the
316	region. In keeping with theoretical predictions of Currat et al. (2008), the northwards
317	gradient of increasing frequencies of mtDNA introgression of L. timidus origin into L.
318	granatensis and the signs of expansion of the introgressed lineage, conform to a model
319	of competitive replacement with hybridization of the resident L. timidus by an invading
320	L. granatensis after the LGM, if the first was present in northern Iberia and the latter
321	expanded from the south, spreading the traces of introgression into the newly colonized

Journal of Biogeography

3
4
4
5
6
7
0
0
9
10
11
10
12
13
14
15
16
47
17
18
19
20
21
21
22
23
24
25
20
20
27
28
29
20
30
31
32
33
24
34
35
36
37
30
20
39
40
41
42
12
40
44
45
46
17
-T1 40
48
49
50
51
52
52
53
54
55
56
50
5/
58
59
60

1 2

322	territory (Melo-Ferreira et al., 2005, 2007). Analyses of genetic diversity among the
323	native L. granatensis mtDNA haplotypes further refined this model, suggesting that the
324	species may have expanded from a refugium in central Iberia, and that the post-glacial
325	expansion of the species may have been centrifugal (Melo-Ferreira et al., 2011). This
326	hypothesis agrees with SDMs, which suggest that central Iberia (area around Caceres)
327	was strongly suitable for L. granatensis at the LGM (Acevedo et al., 2012a).
328	Interestingly, the genetic isolation by distance of native <i>L. granatensis</i>
329	haplotypes is maximized if this area is considered the origin of a post-glacial expansion.
330	In addition, Acevedo et al. (2012a) suggested that some other areas, in the north and the
331	south, were also suitable for the species at the LGM. The present work suggests that L.
332	timidus may have been widespread in northern Iberia at the LGM, which could have
333	then impeded the presence of L. granatensis in the region. These areas could have
334	nevertheless acted as points of attraction, defining the post-glacial colonization routes of
335	an expanding L. granatensis. Similar range replacements may also explain massive
336	introgression into L. europaeus, which likely have arrived to Iberia after the LGM
337	(Stamatis <i>et al.</i> , 2009).
338	Another interesting pattern has been inferred from molecular data and deserves
339	consideration here: the introgressed haplotypes of L. timidus origin show strong east-
340	west structure in northern Iberia (Melo-Ferreira et al., 2007). Considering this model of

341 northwards range replacement with hybridization of the resident *L. timidus* by an

342 invading *L. granatensis*, two phenomena may have contributed to this structured pattern

343 of introgression: i) the fixation of different introgressed alleles by drift in the invasion

front and amplification of these variants in the wave of colonisation; and/or ii) recurrent

345 hybridisation with a structured *L. timidus* population along the invasion front. A recent

346 molecular study suggested that recurrent hybridisation was probably involved, and that

Journal of Biogeography

3
4
5
6
7
0
0
9
10
11
12
13
14
14
15
16
17
18
19
20
21
∠ I 00
22
23
24
25
26
27
28
20
29
30
31
32
33
34
35
33
30
37
38
39
40
41
<u>4</u> 2
72 40
43
44
45
46
47
48
<u>10</u>
-3 50
50
51
52
53
54
55
56
50
5/
58
59
60

347	the areas in which the introgressed haplotypes are currently found might thus represent
348	the ancestral distribution of L. timidus in Iberia during the LGM (Melo-Ferreira et al.,
349	2014a). The results presented here agree with this hypothesis, by showing that the
350	climatic favourability for the presence of L. timidus in northern Iberia during the LGM
351	is correlated with the frequency of introgression (Fig. 3).
352	The biogeographical scenarios put forward to explain mtDNA introgression do
353	not exclude the possibility that natural selection may have favoured mtDNA
354	introgression or explain the persistence of the introgressed haplotypes in northern
355	Iberia. Indeed, the comparison of the demographic signals of the introgressed and native
356	mtDNA lineages in northern Iberia suggest that the former may have outcompeted the
357	latter (Melo-Ferreira et al., 2011). Also, a recent study has shown evidence of positive
358	selection in the evolution of mtDNA in hares, particularly in the arctic lineage, of which
359	L. timidus is part (Melo-Ferreira et al., 2014b). Our results suggest that the current
360	distribution of mtDNA of <i>L. timidus</i> origin in the Iberian Peninsula could mimic a
361	particular ecological niche closely related to that expressed by L. timidus in Western
362	Europe, which may indicate some potential for local adaptation. Even though our results
363	do not demonstrate an adaptive advantage of <i>L. timidus</i> mtDNA in hares from Iberia (or
364	of any other genes that may have been affected by ancient hybridisation events), they
365	provide hypotheses to be tested in future field studies (Richards et al., 2007). Future
366	studies based on sampling populations across the introgression gradient are needed to
367	characterise fitness-related parameters in both introgressed and non-introgressed
368	individuals, and to provide conclusive evidence regarding the ecological role of L.
369	timidus mtDNA in hares from Iberia. Also, given the close interaction of mitochondrial
370	and nuclear encoded peptides in key aspects of energy metabolism, the inspection of

<u>4</u>		
5		
6		
7		
ι Q		
ი ი		
9 1	^	
1	4	
1	1	
1	2	
1	3	
1	4	
1	5	
1	6	
1	1	
1	8	
1	9	
2	0	
2	1	
2	2	
2	3	
2	4	
2	5	
2	6	
2	7	
2	8	
2	9	
3	0	
3	1	
3	2	
3	3	
3	4	
3	5	
3 3	6	
2 2	7	
2 2	2 Q	
ე 2	0 n	
J ⊿	0	
+ ∕	1	
4 ∕	ו ר	
4 1	2	
4 1	ა ⊿	
4 1	4 E	
4	с С	
4	0	
4	1	
4	8	
4	9	
5	0	
5	1	
5	2	
5	3	
5	4	
5	5	
5	6	
5	7	
5	8	
5	9	
ค	n	

З

putative co-evolution and co-introgression of nuclear genes would shed light onto theadaptive nature of historical introgressive hybridization in this system.

373

374 ACKNOWLEDGMENTS

375 Sally Newton kindly reviewed the manuscript for grammar. We thank the Societas

376 Europaea Mammalogica and Tony Mitchell-Jones for providing the distribution data

377 used to prepare the Atlas of European mammals. P.A. is currently supported by the

378 Spanish Ministerio de Economía y Competitividad (MINECO) and Universidad de

379 Castilla-La Mancha (UCLM) through a 'Ramón y Cajal' contract (RYC-2012-11970).

380 J.M.-F. and R.C. hold FCT Investigator and postdoctoral grants, respectively, from the

381 Fundação para a Ciência e a Tecnologia (FCT), funded by Programa Operacional

382 Potencial Humano (POPH) – Quadro de Referencia Estrategico Nacional (QREN) from

the European Social Fund and by the Portuguese Ministerio da Educacao e Ciencia

384 (IF/00033/2014 and SFRH/BPD/64365/2009, respectively). This work is funded by

385 FEDER funds through the Operational Programme for Competitiveness Factors -

386 COMPETE and by National Funds through FCT - Foundation for Science and

387 Technology under the EXPL/AAG-MAA/1082/2013 and FCOMP-01-0124-FEDER-

388 041082. Partial found was also obtained from FCT-ANR/BIA-EVF/0250/2012 and by

389 the Spanish Ministry of Agriculture, Food and Environment, Spanish National Park's

390 Network (project 1098/2014).

391 **REFERENCES**

Acevedo, P., Melo-Ferreira, J., Real, R. & Alves, P.C. (2012a) Past, present and future
distributions of an iberian endemic, *Lepus granatensis*: ecological and
evolutionary clues from species distribution models. *PLoS ONE*, 7(12), e51529

Journal of Biogeography

 Acevedo, P., Jiménez-Valverde, A., Lobo, J.M. & Real, R. (2012b) Delimiting the geographical background in species distribution modelling. <i>Journal of</i> <i>Biogeography</i>, 39, 1383-1390. Acevedo, P., Jiménez-Valverde, A., Melo-Ferreira, J., Real, R. & Alves, P.C. (2012c) Parapatric species and the implications for climate change studies: a case study on hares in Europe. <i>Global Change Biology</i>, 18, 1509-1519. Acevedo, P., Melo-Ferreira, J., Real, R. & Alves, P.C. (2014) Evidence for niche similarities in the allopatric sister species <i>Lepus castrovicjoi</i> and <i>L. corsicanus</i>. <i>Journal of Biogeography</i>, 41, 977-986. Altuna, J. (1970) Hallargo de una liebre ártica (<i>Lepus timidus</i>) en el yacimiento prehistorico de Urtiga (Guipuzcoa). <i>Munibe</i>, 22, 165-168. Alves, P.C., Melo-Ferreira, J., Branco, M., Suchentrunk, F., Ferrand, N. & Harris, D.J. (2008b) Evidence for genetic similarity of two allopatric European hares (<i>Lepus corsicanus</i> and <i>L. castrovicjoi</i>) inferred from nuclear DNA sequences. <i>Molecular Phylogenetics and Evolution</i>, 46, 1191-1197. Alves, P.C., Melo-Ferreira, J., Freitas, H. & Boursot, P. (2008a) The ubiquitous mountain hare mitochondria: multiple introgressive hybridization in hares, genus Lepus. <i>Philosophical Transactions of the Royal Society B</i>, 363, 2831-2839. Araújo, M.B., Ferri-Yáñez, F., Bozinovic, F., Marquet, P.A., Valladares, F. & Chown, S.L. (2013) Heat freezes niche evolution. <i>Ecology Letters</i>, 16, 1206-1219. Arnold, M.L. (2008) <i>Reticulate evolution and humans</i>. Oxford University Press, NY. Avise, J.C. (2000) <i>Phylogeography: the history and formation of species</i>. Harvard University Press, Cambridge, MA. Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S.P., Peterson, A.T., Soberón, J. & Villalobos, F. (2011) The crucial role of the accessibl	0		
 geographical background in species distribution modelling. <i>Journal of</i> <i>Biogeography</i>, 39, 1383-1390. Acevedo, P., Jiménez-Valverde, A., Melo-Ferreira, J., Real, R. & Alves, P.C. (2012c) Parapatric species and the implications for climate change studies: a case study on hares in Europe. <i>Global Change Biology</i>, 18, 1509-1519. Acevedo, P., Melo-Ferreira, J., Real, R. & Alves, P.C. (2014) Evidence for niche similarities in the allopatric sister species <i>Lepus castroviejoi</i> and <i>L. corsicanus</i>. <i>Journal of Biogeography</i>, 41, 977-986. Altuna, J. (1970) Hallazgo de una liebre ártica (<i>Lepus timidus</i>) en el yacimiento prehistorico de Urtiga (Guipuzcoa). <i>Munibe</i>, 22, 165-168. Alves, P.C., Melo-Ferreira, J., Branco, M., Suchentrunk, F., Ferrand, N. & Harris, D.J. (2008b) Evidence for genetic similarity of two allopatric European hares (<i>Lepus corsicanus</i> and <i>L. castroviejoi</i>) inferred from nuclear DNA sequences. <i>Molecular Phylogenetics and Evolution</i>, 46, 1191-1197. Alves, P.C., Melo-Ferreira, J., Freitas, H. & Boursot, P. (2008a) The ubiquitous mountain hare mitochondria: multiple introgressive hybridization in hares, genus Lepus. <i>Philosophical Transactions of the Royal Society B</i>, 363, 2831-2839. Araújo, M.B., Ferri-Yáñez, F., Bozinovic, F., Marquet, P.A., Valladares, F. & Chown, S.L. (2013) Heat freezes niche evolution. <i>Ecology Letters</i>, 16, 1206-1219. Arnold, M.L. (2008) <i>Reticulate evolution and humans</i>. Oxford University Press, NY. Avise, J.C. (2000) <i>Phylogeography: the history and formation of species</i>. Harvard University Press, Cambridge, MA. Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S.P., Peterson, A.T., Soberón, J. & Villalobos, F. (2011) The crucial role of the accessible area 	2 3	395	Acevedo, P., Jiménez-Valverde, A., Lobo, J.M. & Real, R. (2012b) Delimiting the
 <i>Biogeography</i>, 39, 1383-1390. Acevedo, P., Jiménez-Valverde, A., Melo-Ferreira, J., Real, R. & Alves, P.C. (2012c) Parapatric species and the implications for climate change studies: a case study on hares in Europe. <i>Global Change Biology</i>, 18, 1509-1519. Acevedo, P., Melo-Ferreira, J., Real, R. & Alves, P.C. (2014) Evidence for niche similarities in the allopatric sister species <i>Lepus castroviejoi</i> and <i>L. corsicanus</i>. <i>Journal of Biogeography</i>, 41, 977-986. Altuna, J. (1970) Hallazgo de una liebre ártica (<i>Lepus timidus</i>) en el yacimiento prehistorico de Urtiga (Guípuzcoa). <i>Munibe</i>, 22, 165-168. Alves, P.C., Melo-Ferreira, J., Branco, M., Suchentrunk, F., Ferrand, N. & Harris, D.J. (2008b) Evidence for genetic similarity of two allopatric European hares (<i>Lepus corsicanus</i> and <i>L. castroviejoi</i>) inferred from nuclear DNA sequences. <i>Molecular Phylogenetics and Evolution</i>, 46, 1191-1197. Alves, P.C., Melo-Ferreira, J., Freitas, H. & Boursot, P. (2008a) The ubiquitous mountain hare mitochondria: multiple introgressive hybridization in hares, genus Lepus. <i>Philosophical Transactions of the Royal Society B</i>, 363, 2831-2839. Araújo, M.B., Ferri-Yáñez, F., Bozinovic, F., Marquet, P.A., Valladares, F. & Chown, S.L. (2013) Heat freezes niche evolution. <i>Ecology Letters</i>, 16, 1206-1219. Arnold, M.L. (2008) <i>Reticulate evolution and humans</i>. Oxford University Press, NY. Avise, J.C. (2000) <i>Phylogeography: the history and formation of species</i>. Harvard University Press, Cambridge, MA. Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S.P., Peterson, A.T., Soberón, J. & Villalobos, F. (2011) The crucial role of the accessible area 	4 5 6	396	geographical background in species distribution modelling. Journal of
 Acevedo, P., Jiménez-Valverde, A., Melo-Ferreira, J., Real, R. & Alves, P.C. (2012c) Parapatric species and the implications for climate change studies: a case study on hares in Europe. <i>Global Change Biology</i>, 18, 1509-1519. Acevedo, P., Melo-Ferreira, J., Real, R. & Alves, P.C. (2014) Evidence for niche similarities in the allopatric sister species <i>Lepus castroviejoi</i> and <i>L. corsicanus</i>. <i>Journal of Biogeography</i>, 41, 977-986. Altuna, J. (1970) Hallazgo de una liebre ártica (<i>Lepus timidus</i>) en el yacimiento prehistorico de Urtiga (Guipuzcoa). <i>Munibe</i>, 22, 165-168. Alves, P.C., Melo-Ferreira, J., Branco, M., Suchentrunk, F., Ferrand, N. & Harris, D.J. (2008b) Evidence for genetic similarity of two allopatric European hares (<i>Lepus corsicanus</i> and <i>L. castroviejoi</i>) inferred from nuclear DNA sequences. <i>Molecular Phylogenetics and Evolution</i>, 46, 1191-1197. Alves, P.C., Melo-Ferreira, J., Freitas, H. & Boursot, P. (2008a) The ubiquitous mountain hare mitochondria: multiple introgressive hybridization in hares, genus Lepus. <i>Philosophical Transactions of the Royal Society</i> B, 363, 2831-2839. Araújo, M.B., Ferri-Yáñez, F., Bozinovic, F., Marquet, P.A., Valladares, F. & Chown, S.L. (2013) Heat freezes niche evolution. <i>Ecology Letters</i>, 16, 1206-1219. Ariold, M.L. (2008) <i>Reticulate evolution and hunans</i>. Oxford University Press, NY. Avise, J.C. (2000) <i>Phylogeography: the history and formation of species</i>. Harvard University Press, Cambridge, MA. Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S.P., Peterson, A.T., Soberón, J. & Villalobos, F. (2011) The crucial role of the accessible area 	7 8	397	<i>Biogeography</i> , 39 , 1383-1390.
 Parapatric species and the implications for climate change studies: a case study on hares in Europe. <i>Global Change Biology</i>, 18, 1509-1519. Acevedo, P., Melo-Ferreira, J., Real, R. & Alves, P.C. (2014) Evidence for niche similarities in the allopatric sister species <i>Lepus castroviejoi</i> and <i>L. corsicanus.</i> <i>Journal of Biogeography</i>, 41, 977-986. Altuna, J. (1970) Hallazgo de una liebre ártica (<i>Lepus timidus</i>) en el yacimiento prehistorico de Urtiga (Guipuzcoa). <i>Munibe</i>, 22, 165-168. Alves, P.C., Melo-Ferreira, J., Branco, M., Suchentrunk, F., Ferrand, N. & Harris, D.J. (2008b) Evidence for genetic similarity of two allopatric European hares (<i>Lepus corsicanus and L. castroviejoi</i>) inferred from nuclear DNA sequences. <i>Molecular Phylogenetics and Evolution</i>, 46, 1191-1197. Alves, P.C., Melo-Ferreira, J., Freitas, H. & Boursot, P. (2008a) The ubiquitous mountain hare mitochondria: multiple introgressive hybridization in hares, genus Lepus. <i>Philosophical Transactions of the Royal Society B</i>, 363, 2831-2839. Araújo, M.B., Ferri-Yáñez, F., Bozinovic, F., Marquet, P.A., Valladares, F. & Chown, S.L. (2013) Heat freezes niche evolution. <i>Ecology Letters</i>, 16, 1206-1219. Arnold, M.L. (2008) <i>Reticulate evolution and humans</i>. Oxford University Press, NY. Avise, J.C. (2000) <i>Phylogeography: the history and formation of species</i>. Harvard University Press, Cambridge, MA. Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S.P., Peterson, A.T., Soberón, J. & Villalobos, F. (2011) The crucial role of the accessible area 	9 10	398	Acevedo, P., Jiménez-Valverde, A., Melo-Ferreira, J., Real, R. & Alves, P.C. (2012c)
 on hares in Europe. <i>Global Change Biology</i>, 18, 1509-1519. Acevedo, P., Melo-Ferreira, J., Real, R. & Alves, P.C. (2014) Evidence for niche similarities in the allopatric sister species <i>Lepus castroviejoi</i> and <i>L. corsicanus</i>. <i>Journal of Biogeography</i>, 41, 977-986. Altuna, J. (1970) Hallazgo de una liebre ártica (<i>Lepus timidus</i>) en el yacimiento prehistorico de Urtiga (Guipuzcoa). <i>Munibe</i>, 22, 165-168. Alves, P.C., Melo-Ferreira, J., Branco, M., Suchentrunk, F., Ferrand, N. & Harris, D.J. (2008b) Evidence for genetic similarity of two allopatric European hares (<i>Lepus corsicanus</i> and <i>L. castroviejoi</i>) inferred from nuclear DNA sequences. <i>Molecular Phylogenetics and Evolution</i>, 46, 1191-1197. Alves, P.C., Melo-Ferreira, J., Freitas, H. & Boursot, P. (2008a) The ubiquitous mountain hare mitochondria: multiple introgressive hybridization in hares, genus Lepus. <i>Philosophical Transactions of the Royal Society B</i>, 363, 2831-2839. Araújo, M.B., Ferri-Yáñez, F., Bozinovic, F., Marquet, P.A., Valladares, F. & Chown, S.L. (2013) Heat freezes niche evolution. <i>Ecology Letters</i>, 16, 1206-1219. Arnold, M.L. (2008) <i>Reticulate evolution and humans</i>. Oxford University Press, NY. Avise, J.C. (2000) <i>Phylogeography: the history and formation of species</i>. Harvard University Press, Cambridge, MA. Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S.P., Peterson, A.T., Soberón, J. & Villalobos, F. (2011) The crucial role of the accessible area 	11 12	399	Parapatric species and the implications for climate change studies: a case study
 Acevedo, P., Melo-Ferreira, J., Real, R. & Alves, P.C. (2014) Evidence for niche similarities in the allopatric sister species <i>Lepus castroviejoi</i> and <i>L. corsicanus</i>. <i>Journal of Biogeography</i>, 41, 977-986. Altuna, J. (1970) Hallazgo de una liebre ártica (<i>Lepus timidus</i>) en el yacimiento prehistorico de Urtiga (Guipuzcoa). <i>Munibe</i>, 22, 165-168. Alves, P.C., Melo-Ferreira, J., Branco, M., Suchentrunk, F., Ferrand, N. & Harris, D.J. (2008b) Evidence for genetic similarity of two allopatric European hares (<i>Lepus corsicanus</i> and <i>L. castroviejoi</i>) inferred from nuclear DNA sequences. <i>Molecular Phylogenetics and Evolution</i>, 46, 1191-1197. Alves, P.C., Melo-Ferreira, J., Freitas, H. & Boursot, P. (2008a) The ubiquitous mountain hare mitochondria: multiple introgressive hybridization in hares, genus Lepus. <i>Philosophical Transactions of the Royal Society B</i>, 363, 2831-2839. Araújo, M.B., Ferri-Yáñez, F., Bozinovic, F., Marquet, P.A., Valladares, F. & Chown, S.L. (2013) Heat freezes niche evolution. <i>Ecology Letters</i>, 16, 1206-1219. Arnold, M.L. (2008) <i>Reticulate evolution and humans</i>. Oxford University Press, NY. Avise, J.C. (2000) <i>Phylogeography: the history and formation of species</i>. Harvard University Press, Cambridge, MA. Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S.P., Peterson, A.T., Soberón, J. & Villalobos, F. (2011) The crucial role of the accessible area 	13 14 15	400	on hares in Europe. Global Change Biology, 18, 1509-1519.
402similarities in the allopatric sister species Lepus castroviejoi and L. corsicanus.403Journal of Biogeography, 41, 977-986.404Altuna, J. (1970) Hallazgo de una liebre ártica (Lepus timidus) en el yacimiento405prehistorico de Urtiga (Guipuzcoa). Munibe, 22, 165-168.406Alves, P.C., Melo-Ferreira, J., Branco, M., Suchentrunk, F., Ferrand, N. & Harris, D.J.407(2008b) Evidence for genetic similarity of two allopatric European hares (Lepus408corsicanus and L. castroviejoi) inferred from nuclear DNA sequences.409Molecular Phylogenetics and Evolution, 46, 1191-1197.410Alves, P.C., Melo-Ferreira, J., Freitas, H. & Boursot, P. (2008a) The ubiquitous411mountain hare mitochondria: multiple introgressive hybridization in hares, genus412Lepus. Philosophical Transactions of the Royal Society B, 363, 2831-2839.413Araújo, M.B., Ferri-Yáñez, F., Bozinovic, F., Marquet, P.A., Valladares, F. & Chown,414S.L. (2013) Heat freezes niche evolution. Ecology Letters, 16, 1206-1219.415Armold, M.L. (2008) Reticulate evolution and humans. Oxford University Press, NY.416Avise, J.C. (2000) Phylogeography: the history and formation of species. Harvard417University Press, Cambridge, MA.418Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S.P., Peterson,419A.T., Soberón, J. & Villalobos, F. (2011) The crucial role of the accessible area	16 17	401	Acevedo, P., Melo-Ferreira, J., Real, R. & Alves, P.C. (2014) Evidence for niche
20 21403Journal of Biogeography, 41, 977-986.23404Altuna, J. (1970) Hallazgo de una liebre ártica (Lepus timidus) en el yacimiento24405prehistorico de Urtiga (Guipuzcoa). Munibe, 22, 165-168.26406Alves, P.C., Melo-Ferreira, J., Branco, M., Suchentrunk, F., Ferrand, N. & Harris, D.J.27406Alves, P.C., Melo-Ferreira, J., Branco, M., Suchentrunk, F., Ferrand, N. & Harris, D.J.28407(2008b) Evidence for genetic similarity of two allopatric European hares (Lepus30corsicanus and L. castroviejoi) inferred from nuclear DNA sequences.33409Molecular Phylogenetics and Evolution, 46, 1191-1197.36410Alves, P.C., Melo-Ferreira, J., Freitas, H. & Boursot, P. (2008a) The ubiquitous31mountain hare mitochondria: multiple introgressive hybridization in hares, genus411Lepus. Philosophical Transactions of the Royal Society B, 363, 2831-2839.413Araújo, M.B., Ferri-Yáñez, F., Bozinovic, F., Marquet, P.A., Valladares, F. & Chown,414S.L. (2013) Heat freezes niche evolution. Ecology Letters, 16, 1206-1219.415Arnold, M.L. (2008) Reticulate evolution and humans. Oxford University Press, NY.416Avise, J.C. (2000) Phylogeography: the history and formation of species. Harvard417University Press, Cambridge, MA.418Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S.P., Peterson,419A.T., Soberón, J. & Villalobos, F. (2011) The crucial role of the accessible area	18 19	402	similarities in the allopatric sister species Lepus castroviejoi and L. corsicanus.
 Altuna, J. (1970) Hallazgo de una liebre ártica (<i>Lepus timidus</i>) en el yacimiento prehistorico de Urtiga (Guipuzcoa). <i>Munibe</i>, 22, 165-168. Alves, P.C., Melo-Ferreira, J., Branco, M., Suchentrunk, F., Ferrand, N. & Harris, D.J. (2008b) Evidence for genetic similarity of two allopatric European hares (<i>Lepus</i> <i>corsicanus</i> and <i>L. castroviejoi</i>) inferred from nuclear DNA sequences. <i>Molecular Phylogenetics and Evolution</i>, 46, 1191-1197. Alves, P.C., Melo-Ferreira, J., Freitas, H. & Boursot, P. (2008a) The ubiquitous mountain hare mitochondria: multiple introgressive hybridization in hares, genus Lepus. <i>Philosophical Transactions of the Royal Society B</i>, 363, 2831-2839. Araújo, M.B., Ferri-Yáñez, F., Bozinovic, F., Marquet, P.A., Valladares, F. & Chown, S.L. (2013) Heat freezes niche evolution. <i>Ecology Letters</i>, 16, 1206-1219. Arnold, M.L. (2008) <i>Reticulate evolution and humans</i>. Oxford University Press, NY. Avise, J.C. (2000) <i>Phylogeography: the history and formation of species</i>. Harvard University Press, Cambridge, MA. Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S.P., Peterson, A.T., Soberón, J. & Villalobos, F. (2011) The crucial role of the accessible area 	20 21	403	Journal of Biogeography, 41 , 977-986.
 405 prehistorico de Urtiga (Guipuzcoa). Munibe, 22, 165-168. 406 Alves, P.C., Melo-Ferreira, J., Branco, M., Suchentrunk, F., Ferrand, N. & Harris, D.J. 407 (2008b) Evidence for genetic similarity of two allopatric European hares (<i>Lepus</i> 408 <i>corsicanus</i> and <i>L. castroviejoi</i>) inferred from nuclear DNA sequences. 409 <i>Molecular Phylogenetics and Evolution</i>, 46, 1191-1197. 410 Alves, P.C., Melo-Ferreira, J., Freitas, H. & Boursot, P. (2008a) The ubiquitous 411 mountain hare mitochondria: multiple introgressive hybridization in hares, genus 412 Lepus. <i>Philosophical Transactions of the Royal Society B</i>, 363, 2831-2839. 413 Araújo, M.B., Ferri-Yáñez, F., Bozinovic, F., Marquet, P.A., Valladares, F. & Chown, 414 S.L. (2013) Heat freezes niche evolution. <i>Ecology Letters</i>, 16, 1206-1219. 415 Arnold, M.L. (2008) <i>Reticulate evolution and humans</i>. Oxford University Press, NY. 416 Avise, J.C. (2000) <i>Phylogeography: the history and formation of species</i>. Harvard 417 University Press, Cambridge, MA. 418 Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S.P., Peterson, 419 A.T., Soberón, J. & Villalobos, F. (2011) The crucial role of the accessible area 	22 23 24	404	Altuna, J. (1970) Hallazgo de una liebre ártica (Lepus timidus) en el yacimiento
 Alves, P.C., Melo-Ferreira, J., Branco, M., Suchentrunk, F., Ferrand, N. & Harris, D.J. (2008b) Evidence for genetic similarity of two allopatric European hares (<i>Lepus</i> <i>corsicanus</i> and <i>L. castroviejoi</i>) inferred from nuclear DNA sequences. <i>Molecular Phylogenetics and Evolution</i>, 46, 1191-1197. Alves, P.C., Melo-Ferreira, J., Freitas, H. & Boursot, P. (2008a) The ubiquitous mountain hare mitochondria: multiple introgressive hybridization in hares, genus Lepus. <i>Philosophical Transactions of the Royal Society B</i>, 363, 2831-2839. Araújo, M.B., Ferri-Yáñez, F., Bozinovic, F., Marquet, P.A., Valladares, F. & Chown, S.L. (2013) Heat freezes niche evolution. <i>Ecology Letters</i>, 16, 1206-1219. Arnold, M.L. (2008) <i>Reticulate evolution and humans</i>. Oxford University Press, NY. Avise, J.C. (2000) <i>Phylogeography: the history and formation of species</i>. Harvard University Press, Cambridge, MA. Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S.P., Peterson, A.T., Soberón, J. & Villalobos, F. (2011) The crucial role of the accessible area 	25 26	405	prehistorico de Urtiga (Guipuzcoa). Munibe, 22, 165-168.
 407 (2008b) Evidence for genetic similarity of two allopatric European hares (<i>Lepus</i> 408 <i>corsicanus</i> and <i>L. castroviejoi</i>) inferred from nuclear DNA sequences. 409 <i>Molecular Phylogenetics and Evolution</i>, 46, 1191-1197. 410 Alves, P.C., Melo-Ferreira, J., Freitas, H. & Boursot, P. (2008a) The ubiquitous 411 mountain hare mitochondria: multiple introgressive hybridization in hares, genus 412 Lepus. <i>Philosophical Transactions of the Royal Society B</i>, 363, 2831-2839. 413 Araújo, M.B., Ferri-Yáñez, F., Bozinovic, F., Marquet, P.A., Valladares, F. & Chown, 414 S.L. (2013) Heat freezes niche evolution. <i>Ecology Letters</i>, 16, 1206-1219. 415 Arnold, M.L. (2008) <i>Reticulate evolution and humans</i>. Oxford University Press, NY. 416 Avise, J.C. (2000) <i>Phylogeography: the history and formation of species</i>. Harvard 417 University Press, Cambridge, MA. 418 Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S.P., Peterson, 419 A.T., Soberón, J. & Villalobos, F. (2011) The crucial role of the accessible area 	27 28	406	Alves, P.C., Melo-Ferreira, J., Branco, M., Suchentrunk, F., Ferrand, N. & Harris, D.J.
31408corsicanus and L. castroviejoi) inferred from nuclear DNA sequences.33409Molecular Phylogenetics and Evolution, 46, 1191-1197.36410Alves, P.C., Melo-Ferreira, J., Freitas, H. & Boursot, P. (2008a) The ubiquitous37411mountain hare mitochondria: multiple introgressive hybridization in hares, genus40412Lepus. Philosophical Transactions of the Royal Society B, 363, 2831-2839.413413Araújo, M.B., Ferri-Yáñez, F., Bozinovic, F., Marquet, P.A., Valladares, F. & Chown,445.L. (2013) Heat freezes niche evolution. Ecology Letters, 16, 1206-1219.415Arnold, M.L. (2008) Reticulate evolution and humans. Oxford University Press, NY.416Avise, J.C. (2000) Phylogeography: the history and formation of species. Harvard52417University Press, Cambridge, MA.53418Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S.P., Peterson,54419A.T., Soberón, J. & Villalobos, F. (2011) The crucial role of the accessible area	29 30	407	(2008b) Evidence for genetic similarity of two allopatric European hares (Lepus
34409Molecular Phylogenetics and Evolution, 46, 1191-1197.36410Alves, P.C., Melo-Ferreira, J., Freitas, H. & Boursot, P. (2008a) The ubiquitous38411mountain hare mitochondria: multiple introgressive hybridization in hares, genus40412Lepus. Philosophical Transactions of the Royal Society B, 363, 2831-2839.41412Lepus. Philosophical Transactions of the Royal Society B, 363, 2831-2839.42413Araújo, M.B., Ferri-Yáñez, F., Bozinovic, F., Marquet, P.A., Valladares, F. & Chown,44414S.L. (2013) Heat freezes niche evolution. Ecology Letters, 16, 1206-1219.46414S.L. (2008) Reticulate evolution and humans. Oxford University Press, NY.415Arnold, M.L. (2008) Reticulate evolution and humans. Oxford University Press, NY.416Avise, J.C. (2000) Phylogeography: the history and formation of species. Harvard51417University Press, Cambridge, MA.52418Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S.P., Peterson,56419A.T., Soberón, J. & Villalobos, F. (2011) The crucial role of the accessible area	31 32 33	408	corsicanus and L. castroviejoi) inferred from nuclear DNA sequences.
 Alves, P.C., Melo-Ferreira, J., Freitas, H. & Boursot, P. (2008a) The ubiquitous mountain hare mitochondria: multiple introgressive hybridization in hares, genus Lepus. <i>Philosophical Transactions of the Royal Society B</i>, 363, 2831-2839. Araújo, M.B., Ferri-Yáñez, F., Bozinovic, F., Marquet, P.A., Valladares, F. & Chown, S.L. (2013) Heat freezes niche evolution. <i>Ecology Letters</i>, 16, 1206-1219. Arnold, M.L. (2008) <i>Reticulate evolution and humans</i>. Oxford University Press, NY. Avise, J.C. (2000) <i>Phylogeography: the history and formation of species</i>. Harvard University Press, Cambridge, MA. Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S.P., Peterson, A.T., Soberón, J. & Villalobos, F. (2011) The crucial role of the accessible area 	34 35	409	Molecular Phylogenetics and Evolution, 46, 1191-1197.
 411 mountain hare mitochondria: multiple introgressive hybridization in hares, genus 411 412 Lepus. <i>Philosophical Transactions of the Royal Society B</i>, 363, 2831-2839. 413 414 413 414 414 414 414 414 414 414	36 37	410	Alves, P.C., Melo-Ferreira, J., Freitas, H. & Boursot, P. (2008a) The ubiquitous
 41 412 Lepus. <i>Philosophical Transactions of the Royal Society B</i>, 363, 2831-2839. 42 413 Araújo, M.B., Ferri-Yáñez, F., Bozinovic, F., Marquet, P.A., Valladares, F. & Chown, 44 5 414 S.L. (2013) Heat freezes niche evolution. <i>Ecology Letters</i>, 16, 1206-1219. 415 Arnold, M.L. (2008) <i>Reticulate evolution and humans</i>. Oxford University Press, NY. 416 Avise, J.C. (2000) <i>Phylogeography: the history and formation of species</i>. Harvard 51 University Press, Cambridge, MA. 53 54 418 Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S.P., Peterson, 55 419 A.T., Soberón, J. & Villalobos, F. (2011) The crucial role of the accessible area 	38 39	411	mountain hare mitochondria: multiple introgressive hybridization in hares, genus
 413 Araújo, M.B., Ferri-Yáñez, F., Bozinovic, F., Marquet, P.A., Valladares, F. & Chown, 414 S.L. (2013) Heat freezes niche evolution. <i>Ecology Letters</i>, 16, 1206-1219. 415 Arnold, M.L. (2008) <i>Reticulate evolution and humans</i>. Oxford University Press, NY. 416 Avise, J.C. (2000) <i>Phylogeography: the history and formation of species</i>. Harvard 51 51 51 51 51 56 419 A.T., Soberón, J. & Villalobos, F. (2011) The crucial role of the accessible area 	40 41 42	412	Lepus. Philosophical Transactions of the Royal Society B, 363, 2831-2839.
 45 414 S.L. (2013) Heat freezes niche evolution. <i>Ecology Letters</i>, 16, 1206-1219. 47 415 Arnold, M.L. (2008) <i>Reticulate evolution and humans</i>. Oxford University Press, NY. 48 49 416 Avise, J.C. (2000) <i>Phylogeography: the history and formation of species</i>. Harvard 51 52 417 University Press, Cambridge, MA. 53 54 418 Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S.P., Peterson, 55 56 419 A.T., Soberón, J. & Villalobos, F. (2011) The crucial role of the accessible area 	43 44	413	Araújo, M.B., Ferri-Yáñez, F., Bozinovic, F., Marquet, P.A., Valladares, F. & Chown,
 47 415 Arnold, M.L. (2008) <i>Reticulate evolution and humans</i>. Oxford University Press, NY. 49 416 Avise, J.C. (2000) <i>Phylogeography: the history and formation of species</i>. Harvard 51 52 417 University Press, Cambridge, MA. 53 54 54 54 55 56 419 A.T., Soberón, J. & Villalobos, F. (2011) The crucial role of the accessible area 	45 46	414	S.L. (2013) Heat freezes niche evolution. <i>Ecology Letters</i> , 16 , 1206-1219.
 416 Avise, J.C. (2000) <i>Phylogeography: the history and formation of species</i>. Harvard 51 52 417 University Press, Cambridge, MA. 53 54 418 Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S.P., Peterson, 55 56 419 A.T., Soberón, J. & Villalobos, F. (2011) The crucial role of the accessible area 	47 48	415	Arnold, M.L. (2008) Reticulate evolution and humans. Oxford University Press, NY.
 417 University Press, Cambridge, MA. 53 54 418 Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S.P., Peterson, 55 56 419 A.T., Soberón, J. & Villalobos, F. (2011) The crucial role of the accessible area 	49 50 51	416	Avise, J.C. (2000) Phylogeography: the history and formation of species. Harvard
54418Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S.P., Peterson,5556419A.T., Soberón, J. & Villalobos, F. (2011) The crucial role of the accessible area575757	52 53	417	University Press, Cambridge, MA.
56419A.T., Soberón, J. & Villalobos, F. (2011) The crucial role of the accessible area5750	54 55	418	Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S.P., Peterson,
6Y	56 57 58	419	A.T., Soberón, J. & Villalobos, F. (2011) The crucial role of the accessible area
50 59 60 18	59 60		18

420	in ecological niche modeling and species distribution modeling. Ecological
421	Modelling, 222 , 1810-1819
422	Bates, D., Maechler, M. & Bolker, B. (2012) lme4: Linear mixed-effects models using
423	S4 classes. R package version 0.999999-0. http://CRAN.R-
424	project.org/package=lme4
425	Bermingham, E. & Moritz, C. (1998) Comparative phylogeography: concepts and
426	applications. <i>Molecular Ecology</i> , 7 , 367-369.
427	Braconnot, P., Otto-Bliesner, B., Harrison, S. et al. (2007) Results of PMIP2 coupled
428	simulations of the Mid-Holocene and Last Glacial Maximum - Part 1:
429	experiments and large-scale features. Climate of the Past, 3, 261-277.
430	Campbell, S.K. (2004) Flaws and fallacies in statistical thinking. Dover Publications,
431	Inc., NY.
432	Carnaval, A.C. & Moritz, C. (2008) Historical climate modelling predicts patterns of
433	current biodiversity in the Brazilian Atlantic forest. Journal of Biogeography,
434	35, 1187-1201.
435	Currat, M., Ruedi, M., Petit, R.J. & Excoffier, L. (2008) The hidden side of invasions:
436	massive introgression by local genes. Evolution, 62, 1908-1920.
437	de Lima, N.E., Lima-Ribeiro, M.S., Tinoco, C.F., Terribile, L.C. & Collevatti, R.G.
438	(2014) Phylogeography and ecological niche modelling, coupled with the fossil
439	pollen record, unravel the demographic history of a Neotropical swamp palm
440	through the Quaternary. Journal of Biogeography, 4, 673-686.
441	Diniz-Filho, J.A.F., Gouveia, S.F. & Lima-Ribeiro, M.S. (2013) Evolutionary
442	macroecology. Frontiers of Biogeography, 5.3
443	Elith, J., Kearney, M., Phillips, S. (2010) The art of modelling range-shifting species.
444	Methods in Ecology and Evolution, 1, 330-342.

Journal of Biogeography

445	Guisan, A. & Zimmermann, N.E. (2000) Predictive habitat distribution models in
446	ecology. Ecological Modelling, 135, 147-186.
447	Heiberger, R.M. (2012) HH: Statistical analysis and data. Display: Heiberger and
448	Holland. R package version 2.3-27. http://CRAN.R-project.org/package=HH
449	Hewitt, G. (2000) The genetic legacy of the Quaternary ice ages. <i>Nature</i> , 405 , 907e913
450	Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2005) Very high
451	resolution interpolated climate surfaces for global land areas. International
452	Journal of Climatology, 25 , 1965-1978.
453	Hosmer, D.W. & Lemeshow, S. (1989) Applied logistic regression. John Wiley and
454	Sons, NY.
455	Jiménez-Valverde, A., Acevedo, P., Barbosa, A.M., Lobo, J.M. & Real, R. (2013)
456	Discrimination capacity in species distribution models depends on the
457	representativeness of the environmental domain. Global Ecology and
458	<i>Biogeography</i> , 22 , 508-516.
459	Kidd, D.M. & Ritchie, M.G. (2006) Phylogeographic information systems: putting the
460	geography into phylogeography. Journal of Biogeography, 33, 1851-1865.
461	Lemeshow, S. & Hosmer, D.W. (1982) A review of goodness of fit statistics for use in
462	the development of logistic regression models. American Journal of
463	<i>Epidemiology</i> , 115 , 92-106.
464	Lomolino, M.V. (2004) Conservation biogeography. In: Frontiers of biogeography:
465	new directions in the geography of nature (ed. by M.V. Lomolino and L.R.
466	Heaney), PP. 293–296. Sinauer Associates, Sunderland, MA.
467	Lopez-Martinez, N. (1980) Les lagomorphs (Mammalia) du pléistocène supérieur de
468	Jaurens. Nouvelles Archives du Museum d'Histoire Naturelle de Lyon, 18, 5-16.

1 NT 0 D

(D (2000) TI

TT D

....

•

т А 1

469	Melo-Ferreira, J., Alves, P.C., Freitas, H., Ferrand, N. & Boursot, P. (2009) The
470	genomic legacy from the extinct Lepus timidus to the three hare species of
471	Iberia: contrast between mtDNA, sex chromosomes and autosomes. Molecular
472	<i>Ecology</i> , 18 , 2643-2658.
473	Melo-Ferreira, J., Alves, P.C., Rocha, J., Ferrand, N. & Boursot, P. (2011) Interspecific
474	X-chromosome and mitochondrial DNA introgression in the Iberian hare:
475	selection or allele surfing? Evolution, 65, 1956-1968.
476	Melo-Ferreira, J., Boursot, P., Carneiro, M., Esteves, P.J., Farelo, L. & Alves, P.C.
477	(2012) Recurrent introgression of mitochondrial DNA among hares (Lepus spp.)
478	revealed by species-tree inference and coalescent simulations. Systematic
479	<i>Biology</i> , 61 , 367-381.
480	Melo-Ferreira, J., Boursot, P., Randi, E., Kryukov, A., Suchentrunk, F., Ferrand, N. &
481	Alves, P.C. (2007) The rise and fall of the mountain hare (Lepus timidus) during
482	Pleistocene glaciations: expansion and retreat with hybridization in the Iberian
483	Peninsula. Molecular Ecology, 16, 605-618.
484	Melo-Ferreira, J., Boursot, P., Suchentrunk, F., Ferrand, N. & Alves, P.C. (2005)
485	Invasion from the cold past: extensive introgression of mountain hare (Lepus
486	timidus) mitochondrial DNA into three other hare species in northern Iberia.
487	<i>Molecular Ecology</i> , 14 , 2459-2464.
488	Melo-Ferreira, J., Farelo, L., Freitas, H., Suchentrunk, F., Boursot, P. & Alves, P.C.
489	(2014a) Home-loving boreal hare mitochondria survived several invasions in
490	Iberia: the relative roles of recurrent hybridisation and allele surfing. Heredity,
491	112 , 265-273.
492	Melo-Ferreira, J., Vilela, J., Fonseca, M.M., da Fonseca, R., Boursot, P. & Alves, P.C.
493	(2014b) The elusive nature of adaptive mitochondrial DNA evolution of an

Journal of Biogeography

494	arctic lineage prone to frequent introgression. Genome Biology and Evolution, 6,
495	886-896
496	Merow, C., Smith, M.J., Edwards, T.C. Jr, Guisan, A., McMahon, S.M., Normand, S.,
497	Thuiller, W., Wüest, R.O., Zimmermann, N.E. & Elith, J. (2014) What do we
498	gain from simplicity versus complexity in species distribution models?
499	<i>Ecography</i> , 37 , 1267-1281.
500	Mitchell-Jones, A.J., Amori, G., Bogdanowicz, W. et al. (1999) The atlas of european
501	mammals. T & AD Poyser Ltd, London.
502	Montgomery, D.C. & Peck, E.A. (1992) Introduction to linear regression analysis.
503	Wiley, NY.
504	Muñoz, A.R., Real, R., Barbosa, A.M. & Vargas, J.M. (2005) Modelling the distribution
505	of Bonelli's eagle in Spain: implications for conservation planning. Diversity
506	and Distributions, 11, 477-486.
507	Nogués-Bravo, D. (2009) Predicting the past distribution of species climatic niches.
508	Global Ecology and Biogeography, 18, 521-531.
509	Pearce. J. & Ferrier, S. (2000) Evaluating the predictive performance of habitat models
510	developed using logistic regression. <i>Ecological Modelling</i> , 133 , 225-245.
511	Peterson, A.T., Soberón, J. & Sánchez-Cordero, V. (1999) Conservatism of ecological
512	niches in evolutionary time. Science, 285, 1265-1267.
513	Richards, C.L., Carstens, B.C. & Knowles, L.L. (2007) Distribution modelling and
514	statistical phylogeography: an integrative framework for generating and testing
515	alternative biogeographical hypotheses. Journal of Biogeography, 34, 1833-
516	1845.

2
3
4
5
5
6
7
8
0
9
10
11
10
12
13
14
15
10
16
17
18
10
19
20
21
22
~~
23
24
25
26
20
27
28
20
29
30
31
32
02
33
34
35
26
30
37
38
30
40
40
41
42
12
43
44
45
46
40
47
48
49
50
50
51
52
52
55
54
55
56
50
57
58
59
60
00

517	Ruegg, K.C., Hijmans, R.J. & Moritz, C. (2006) Climate change and the origin of
518	migratory pathways in the Swainson's thrush, Catharus ustulatus. Journal of
519	<i>Biogeography</i> , 33 , 1172-1182.
520	Sing, T., Sander, O., Beerenwinkel, N. & Lengauer, T. (2009) ROCR: visualizing the
521	performance of scoring classifiers. R package version 1.0-4. Available at:
522	http://CRAN.Rproject.org/package=ROCR (accessed January 2011).
523	Smith, A.T. & Johnston, C.H. (2008) Lepus timidus. In: IUCN 2013. IUCN Red List of
524	Threatened Species. Version 2013.2. <www.iucnredlist.org>. Downloaded on 21</www.iucnredlist.org>
525	January 2014.
526	Soberón, J. (2007) Grinnellian and Eltonian niches and geographic distributions of
527	species. <i>Ecology Letters</i> , 10 , 1115-1123.
528	Stamatis, C., Suchentrunk, F., Moutou, K.A., et al. (2009) Phylogeography of the brown
529	hare (Lepus europaeus) in Europe: a legacy of southeastern Mediterranean
530	refugia? Journal of Biogeography, 36, 515-528.
531	Svenning, J.C., Fløjgaard, C., Marske, K.A., Nógues-Bravo, D. & Normand, S. (2011)
532	Applications of species distribution modeling to paleobiology. Quaternary
533	Science Reviews, 30 , 2930-2947.
534	Thuiller, W., Lavorel, S. & Araújo, M.B. (2005) Niche properties and geographical
535	extent as predictors of species sensitivity to climate change. Global Ecology and
536	<i>Biogeography</i> , 14 , 347-357.
537	Thulin, CG. (2003) The distribution of mountain hares Lepus timidus in Europe: a
538	challenge from brown hares L. europaeus? Mammal Review, 33, 29-42.
539	Wickham, H. (2009) ggplot2: elegant graphics for data analysis. Springer, NY.

Journal of Biogeography

2 3	540	Wielstra, B. & Arntzen, J.W. (2012) Postglacial species displacement in Triturus newts
4 5 6	541	deduced from asymmetrically introgressed mitochondrial DNA and ecological
7 8	542	niche models. BMC Evolutionary Biology, 12, 161.
9 10	543	Wiens, J.J. & Graham, C.H. (2005) Niche conservatism: integrating evolution, ecology,
11 12	544	and conservation biology. Annual Review of Ecology, Evolution, and
13 14	545	<i>Systematics</i> , 36 , 519-539.
15 16	546	
17 18		
19 20		
21 22		
23 24		
25		
26 27		
28		
29		
30 31		
32		
33		
34 35		
36		
37		
38 30		
40		
41		
42 43		
44		
45		
46 47		
48		
49		
50 51		
52		
53		
54 55		
55 56		
57		
58 50		
ວອ 60		24

547 SUPPORTING INFORMATION

548 Additional Supporting Information may be found in the online version of this article:

- 549 Appendix S1 Assessing the reliability of the past model predictions: comparative
- 550 analyses of seven plus an ensemble of forecasts techniques .
- 551 Appendix S2 Introgression frequencies at the population level used in this manuscript.
- 552 As a service to our authors and readers, this journal provides supporting information
- 553 supplied by the authors. Such materials are peer-reviewed and may be re-organized for
- online delivery, but are not copy-edited or typeset. Technical support issues arising
- from supporting information (other than missing files) should be addressed to the
- authors.

BIOSKETCH

559 Pelayo Acevedo is a researcher at the Instituto de Investigación en Recursos

560 Cinegéticos. His interests include the integration of macroecology and genomics to

561 extract further insights for conservation biology. In addition, he studies the factors

affecting the distribution and abundance of pathogens, and their hosts and vectors,

through fragmented habitats.

Author contributions: P.A., J.M.-F. and P.C.A. conceived the ideas; J.M.-F., L.F. and
R.C. compiled introgression data and performed the genetic analyses; P.A. calibrated
the niche models and carried out the statistical analyses; P.A., J.M.-F., L.F., B.B., R.R.,
R.C. and P.C.A. participated in the discussion of the results and wrote the manuscript.

570 Editor: Miles Silman

- **Table 1**. Results of the model developed for the current distribution of *Lepus timidus*.
- 573 Predictors are listed following the order of entrance (the first at the top) in the stepwise
- 574 procedure. *B* parameter coefficient and its standard error (*SE*), *z*-value test statistics. All
- 575 coefficients are significant at P < 0.01.

Predictor	B (SE)	z-value
Max temperature of warmest month	-0.067 (0.005)	-13.121
Isothermality	-0.207 (0.024)	-8.766
Mean diurnal range	0.097 (0.012)	8.171
Mean temperature of driest quarter	0.001 (1E-4)	5.274
Precipitation seasonality	0.038 (0.013)	2.931
Precipitation of warmest quarter	-0.008 (0.002)	-4.314
Precipitation of coldest quarter	0.007 (0.002)	4.232
Intercept	12.162 (1.136)	10.704

578 FIGURE LEGENDS

Figure 1. (a) Current distribution of *Lepus timidus* in Western Europe; presence data

580 were referred to UTM 50×50 km grid cells and were taken from Mitchell-Jones *et al.*

581 (1999). The arena for modelling that was delimited according to trend surface analysis

582 (TSA) using a third-degree polynomial of the spatial coordinates applied to the

583 occurrence localities of *L. timidus* (see Acevedo *et al.*, 2012b. (b) Distribution of the

584 studied populations of *L. granantensis* and *L. europaeus* is shown.

585 Figure 2. (a) Probability of *Lepus timidus* occurrence in Western Europe for the present

586 according to the climate niche of the species presented in Table 1. (b) Calibration plots

587 showing the relationship between the predicted probability of occurrence for the model

588 and the observed proportion of evaluation localities currently occupied by *L. timidus*.

589 The number of evaluation localities in each interval of probability is also shown.

590 Figure 3. (a) Probability of *Lepus timidus* occurrence in Western Europe during the last

591 glacial maximum (LGM; ~21 ky before the present) according to the climate niche of

the species presented in Table 1. Territories with climatic conditions in the LGM

593 beyond those considered when modelling the climate niche of *L. timidus* were delimited

594 by means of a multivariate environmental similarity surface (MESS; see Elith *et al.*,

595 2010) and were not used to represent the probability of species occurrence. (b)

596 Frequencies of the *L. timidus* mtDNA lineages (section in black) in populations with a

sample size of \geq 10; only the presence (grey boxes) or absence (white boxes) of *L*.

timidus mtDNA lineage is shown for the remaining sample populations.

Fig. 2

Fig. 3

Supplementary material – Journal of Biogeography

Range dynamics driven by Quaternary climate oscillations explain the distribution of introgressed mtDNA of *Lepus timidus* origin in hares on the Iberian Peninsula P. Acevedo, J. Melo-Ferreira, L. Farelo, B. Beltran-Beck, R. Real, R. Campos, P. C. Alves

Appendix S1. Assessing the reliability of the past model predictions: comparative analyses of seven – plus an ensemble of forecasts – techniques.

When modelling species distribution discrepancies among predictions obtained from different techniques can be produced. An operational solution to account for this variability is to simultaneously apply more than one technique and/or to fit ensembles of forecasts and analyze the resulting range of uncertainties with consensus methodologies (e.g. Araújo and New, 2007). We here showed the consistency of the predictions obtained from logistic regression when they are compared with those derived from seven different techniques widely used in species distribution modelling (namely Generalized Additive Model [GAM], Boosted Regression Trees [GBM], Classification Tree Analysis [CTA], Artificial Neural Network [ANN], BIOCLIM and Flexible Discriminant Analysis [FDA]) and, in addition, an ensemble of their forecasts. Analyses were performed with biomod2 using default specifications for each technique (for further details see e.g. Thuiller *et al.*, 2009, 2014).

We have followed the same analytical design described in the main text. Briefly, previous to modelling we have delimited the geographical background using a Trend Surface Analyses (Acevedo *et al.*, 2012). The same background-delimited arena was used for parameterizing models from all techniques. Data were randomly split in calibration (80%) and validation (20%). Results suggested that all single techniques,

except BIOCLIM, performed adequately according to discrimination measures, concretely Cohen's Kappa, true kill statistic [TSS] and AUC (see Table S1). Only techniques with TSS>0.6 were considered for ensemble and the predictive performance of ensemble was similar to that achieved by other techniques.

Table S1. Predictive performance measures of each technique when they were assessed

 on the independent validation dataset.

Technique/Parameter	Карра	TSS	AUC
Logistic regression	0.855	0.856	0.975
GBM	0.867	0.868	0.984
GAM	0.927	0.928	0.994
СТА	0.809	0.811	0.915
ANN	0.836	0.837	0.956
BIOCLIM	0.400	0.398	0.699
FDA	0.858	0.859	0.974
Ensemble of forecasts	0.885	0.886	0.987

Fig. S1. Climatic suitability for *Lepus timidus* occurrence in Western Europe during the Last Glacial Maximum (LGM). Territories with climatic conditions in the LGM beyond those considered when modelling the climate niche of *L. timidus* were delimited (greyareas) by MESS (Elith *et al.*, 2010) and excluded of the analyses.

Cartographically, there is also a strong consistency when models were hindcasted to the Last Maximum Glacial (LGM; see Fig. S1). After the exclusion of territories with climatic conditions in the LGM beyond those considered when modelling the climate niche of *Lepus timidus* – defined by means of a multivariate environmental similarity surface (MESS; see Elith *et al.*, 2010) – predictions of species favourability from the different techniques were strongly correlated (Table S2).

Table S2. Pearson's correlation coefficients among predictions for LGM from different techniques on the area do not excluded after MESS analyses (n=949; P<0.001 in all cases). BIOCLIM did not achieve the threshold of TSS>0.6 and therefore it was not included in the ensemble and was excluded of these analyses.

Technique	GBM	GAM	СТА	ANN	FDA	Ensemble of forecasts
Logistic regression (main text)	0.832	0.679	0.763	0.755	0.607	0.863
GBM	-	0.701	0.964	0.807	0.605	0.909
GAM		-	0.622	0.694	0.774	0.886
СТА			-	0.750	0.497	0.845
ANN				-	0.600	0.863
FDA					-	0.828

Overall, the results showed that the logistic regression is as robust as obtained by other methods and the predicted pattern for LGM from logistic regression is consistent with the obtained for most explored methods. As model's dimensionality (Peterson, 2011) and complexity (e.g. Merow *et al.*, 2014) limit the capability of models to be projected, in our study we opted to show results from logistic regression as a simpler, well-known technique able to produce robust inference.

References

Acevedo, P., Jiménez-Valverde, A., Lobo, J.M. & Real, R. (2012b) Delimiting the geographical background in species distribution modelling. *Journal of Biogeography*, 39, 1383-1390.

Araújo, M.B. & New, M. (2007) Ensemble forecasting of species distributions. *Trends in Ecology & Evolution*, 22, 42-47.

Elith, J., Kearney, M., Phillips, S. (2010) The art of modelling range-shifting species. *Methods in Ecology and Evolution*, 1, 330-342.

Merow, C., Smith, M.J., Edwards, T.C. Jr, Guisan, A., McMahon, S.M., Normand, S., Thuiller, W., Wüest, R.O., Zimmermann, N.E. & Elith, J. (2014) What do we gain from simplicity versus complexity in species distribution models? *Ecography*, 37, 1267-1281.

Peterson, A.T. (2011) Ecological niche conservatism: a time-structured review of evidence. *Journal of Biogeography*, 38, 817-827

Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M.B. (2009) BIOMOD – a platform for ensemble forecasting of species distributions. *Ecography*, 32, 369-373.

Thuiller, W., Georges, D. & Engler, R. (2014). biomod2: Ensemble platform for species distribution modeling. R package version 3.1-48. http://CRAN.R-project.org/package=biomod2.

Appendix S2. Raw data for the number of individuals of *Lepus granatensis* (LGR) and *Lepus europaeus* (LER) with mtDNA of *Lepus granantensis* lineage (GRA), *Lepus timidus* lineage (TIM) and *L. europaeus* lineage (EUR). The number of individuals that were published in previous studies (PUB data) and those which are new for this study (NEW data) are also shown.

Spacias	Codo	VCOORD	VCOOPD	mtDNA lineage Sour			urce		
species	Code	ACOORD	TCOORD	5120	GRA	тім	EUR	PUB data	NEW data
LGR	ALA1	-2.698387	42.910000	15	11	4	0	15	0
LGR	ALA1	-2.554819	42.550332	44	27	17	0	44	0
LGR	ALB	-1.858542	38.994350	3	3	0	0	3	0
LGR	ALB	-2.156911	39.207123	4	4	0	0	4	0
LGR	ALB	-1.797291	39 .23 7885	6	6	0	0	6	0
LGR	ALB	-2.603424	38.700745	12	11	1	0	12	0
LGR	ALC	-0.133537	41.051037	24	5	19	0	24	0
LGR	ALI	-0.490686	38.345997	20	18	2	0	20	0
LGR	ALJ	-8.164983	37.876057	25	25	0	0	25	0
LGR	AMD	-6.840460	40.619846	3	1	2	0	3	0
LGR	AMD	-6.886843	40.803907	15	10	5	0	8	7
LGR	ARR	-7.986761	38.723221	21	21	0	0	21	0
LGR	BEN	-5.814288	42.010277	25	4	21	0	25	0
LGR	BRG	-6.756738	41.806114	11	2	9	0	11	0
LGR	CAC	-6.370961	39.471329	20	20	0	0	20	0
LGR	CBR	-7.172305	39.934232	24	24	0	0	24	0
LGR	CHV	-7.473165	41.741779	1	1	0	0	0	1
LGR	CHV	-7.306936	41.828781	3	0	3	0	0	3
LGR	CHV	-7.423473	41.790836	2	0	2	0	0	2
LGR	CRD	-4.485322	37.405640	6	6	0	0	6	0
LGR	CRE	-3.642048	38.910183	2	2	0	0	2	0
LGR	CRE	-3.374207	38.995762	12	12	0	0	12	0
LGR	CRE	-3.562719	38.521481	8	8	0	0	8	0
LGR	CRE	-3.910044	38.980040	11	11	0	0	3	8
LGR	CRN	-8.133835	43.000793	4	4	0	0	4	0
LGR	CRN	-8.408066	43.076374	2	2	0	0	2	0
LGR	CUE	-2.381535	39.690079	20	19	1	0	20	0
LGR	FCR	-6.942384	40.971539	1	1	0	0	1	0
LGR	FCR	-7.087496	40.877239	3	0	3	0	3	0
LGR	GER	2.765149	42.118183	1	1	0	0	0	1
LGR	GRN	-3.598557	37.177338	25	25	0	0	25	0
LGR	GRN	-2.929444	37.428333	1	1	0	0	0	1
	GKN	-3.061281	37.182/58	3	3	0	0	0	3
LGR	GKN	-2.780160	37.795662	1	1	0	0	0	1
	GKN	-2.851806	37.790000	1	1	0	0	0	1
	GKN	-2.92/338	37.60/6/4	1	1	0	0	0	1
	GKN	-2.908233	37.529099	1	1	0	0	0	2
		-0.944/22	37.201421	2	2	0	0	0	2
	HUE	800090	42.2/5848	2	0	2	0	2	0
LGK	HUE	-0.433141	42.018589	5	1	5	0	5	0
	JAE	-3.3/1246	38.011425	1	1	0	0	0	1
LGK		-0.009//0	37.102550	0	0	0	10	0 0	10
LGK	LKD	0.538652	41.500664	10	U	U	10	U	10

2	
3	
4	
5	
5	
6	
7	
8	
ō	
3	~
1	0
1	1
1	2
4	2
	3
1	4
1	5
1	6
4	2
1	1
1	8
1	9
0	õ
2	0
2	1
2	2
2	З
2	4
2	4
2	5
2	6
2	7
~	~
2	8
2	9
3	0
2	4
3	
3	2
3	3
3	4
2	
3	5
3	6
3	7
2	0
0	0
3	9
4	0
4	1
т Л	ว
4	2
4	3
4	4
Δ	5
4	2
4	6
4	7
4	8
1	ā
4	3
5	U
5	1
5	2
5	2
S	3
5	4
5	5
5	6
5	7
5	1
E	0
Э	8

60

Journal of Biogeography

1	
2	
3	
4	
5	
6	
7	
1	
8	
9	
10	
11	
10	
12	
13	
14	
15	
16	
17	
12	
10	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
20	
20	
29	
30	
31	
32	
33	
33	
34	
35	
36	
37	
28	
20	
39	
40	
41	
42	
43	
11	
44	
45	
46	
47	
48	
40	
50	
51	
52	
53	
54	
55	
55	
20	
57	

58	
50	

LGR	LUG	-7.556758	43.009739	1	1	0	0	0	1
LGR	MAD	-3.351601	40.232246	3	3	0	0	3	0
LGR	MAD	-3.523562	40.650913	22	8	14	0	22	0
LGR	MER	-7.660666	37.641514	12	12	0	0	12	0
LGR	MNT	-7.732006	41.850042	8	8	0	0	0	8
LGR	MOS	-0.449361	40.362770	1	0	1	0	0	1
LGR	MUR	-1.243637	38.033028	7	7	0	0	7	0
LGR	NAV1	-1.640235	41.974884	10	1	9	0	0	10
LGR	NAV1	-1.482148	42.187229	3	0	3	0	0	3
LGR	NAV1	-1.442261	42.378651	7	0	7	0	0	7
LGR	NAV1	-1.573341	42.319778	3	1	2	0	0	3
LGR	NAV1	-2.082455	42.476921	25	1	24	0	25	0
LGR	NAV1	-1.258404	41.922241	10	0	8	2	0	10
LGR	NAV1	-1.612827	42.064831	1	0	1	0	0	1
LGR	NAV1	-1 653248	42 119507	6	0	6	0	0	6
LGR	NAV1	-1.798200	42.101800	17	11	6	0	0	17
LGR	NAV1	-1.765864	42,277707	28	5	23	0	0	28
IGR	NAV1	-1.490363	41,999619	22	1	20	1	0	22
LGR	PAN	-8.901123	38,793315	29	29	0	0	29	0
LGR	PTM	-8.515796	37,169695	13	13	0	0	13	0
LGR	POI	-6.611051	43,271709	1	0	1	0	0	1
LGR	SAL	-5 184983	41 174939	8	6	2	0	8	0
	SAL	-5 260701	41 047848	2	2	0	0	2	0
LGR	SAL	-6 359504	40 801659	1	1	0	0	1	0
LGR	SAL	-5 89739/	40.001033	1	1	0	0	1	0
	SAL SAL	-5.857354	41.200012	1	0	1	0	1	0
	SAL	0.539532	20 226660	16	16	1	0	16	0
	SAN	-0.0009994	39.230000	10	10	1	0	10	0
		-0.2/1251	41.499542	1	1	1	0	1	0
		-0.303043	41.307781	2	1	2	0	2	0
		-0.606799	41.090080	3 16	1	2	0	5 16	0
	SEIN	-0.431105	41.415914	10	15	1	0	10	0
LGR	SES	-7.025550	40.298332	3	3	0	0	3	0
LGR	SES	-7.266131	40.538349	1	1	0	0	1 C	0
LGK	SES	-7.089524	40.351662	6	4	2	0	6	0
LGR	SES	-7.392667	40.514511	2	2	U	0	2	U
LGR	SEV	-5.764025	37.840450	1	1	0	0		0
LGK	SEV	-5.344389	37.711113	/	/	U	0		U
LGR	SOR	-2.463772	41./64431	1	0	1	0	1	0
LGR	SOR	-2.2/2888	41.308670	2	0	2	0	2	0
LGR	SOR	-2.365938	41.552589	1	0	1	0	1	0
LGR	SOR	-2.599558	41.474736	1	0	1	0	1	0
LGR	SOR	-2.458889	41.830002	1	0	1	0	1	0
LGR	SOR	-2.743580	41.634573	8	4	4	0	8	0
LGR	SOR	-2.457360	41.242658	4	0	4	0	4	0
LGR	SOR	-2.095995	41.648623	6	2	4	0	6	0
LGR	SOR	-2.392854	41.923808	2	0	2	0	2	0
LGR	TAR	0.480001	40.544415	3	0	3	0	0	3
LGR	TAR	0.373882	40.734818	10	1	9	0	0	10
LGR	TCA	-4.976654	42.049622	13	6	7	0	13	0
LGR	TCA	-4.780810	41.915787	1	1	0	0	1	0
	TCA	-4.969508	41.855160	8	2	6	0	8	0

Journal of Biogeography

LGR TER -1.103675 40.341839 1 0 1 0 1	0
LGR TOL -4.027323 39.862831 26 19 7 0 26	0
LGR TOR -4.995759 41.504719 22 17 5 0 22	0
LGR VAL -0.376288 39.469910 5 4 1 0 5	0
LGR VLP -7.329707 41.569266 49 18 31 0 0	49
LGR VLP -7.431022 41.439006 1 1 0 0 0	1
LGR VLP -7.417325 41.675739 1 1 0 0 0	1
LGR VLP -7.467154 41.571795 22 21 1 0 0	22
LGR VLP -7.291761 41.706713 8 7 1 0 0	8
LGR ZAM -5.745313 41.507324 1 0 1 0 1	0
LGR ZAM -5.557500 41.351877 14 14 0 0 14	0
LGR ZAR -0.889581 41.648792 1 0 1 0 1	0
LGR ZAR -1.244587 41.438297 7 2 5 0 7	0
LGR ZAR -0.875759 41.257969 10 0 10 0 10	0
LGR ZAR -1.192911 42.249786 1 1 0 0 1	0
LGR ZAR -1.616740 41.395985 1 1 0 0 1	0
LGR ZAR -1.144898 41.385502 5 0 5 0 5	0
LGR ZAR -0.526964 41.488827 14 0 11 3 11	3
LER ALA2 -2.860516 42.727879 1 0 1 0 1	0
LER ALA2 -2.352369 42.669483 2 0 0 2 2	0
LER ALA2 -2.992245 42.846432 1 0 1 0 1	0
LER ALA2 -2.918374 42.712128 1 0 1 0 1	0
LER ALA2 -3.098279 42.848080 1 0 1 0 1	0
LER ALA2 -2.581248 42.882163 61 17 44 0 61	0
LER ALA2 -2.583586 42.625389 11 11 0 0 11	0
LER BAR 1.975309 42.244564 4 0 0 4 0	4
LER BAR 1.818061 42.203552 4 0 0 4 0	4
LER BAR 1.872023 42.080879 8 0 0 8 0	8
LER CAN -3.983120 43.183715 15 0 10 5 15	0
LGR CAN -3.921429 43.394523 1 0 1 0 0	1
LER GER 2.103915 42.316177 1 0 0 1 0	1
LER GER 2.874128 41.889561 5 0 0 5 0	5
LER GER 3.056821 42.197102 4 1 0 3 0	4
LER GER 2.365142 42.313667 4 0 0 4 0	4
LER HUE 0.035862 42.230381 1 0 0 1 0	1
LER JAC -0.547055 42.571716 3 0 3 0 3	0
LER JAC -0.983557 42.586388 3 0 3 0 3	0
LER JAC -0.677305 42.627350 1 0 1 0 1	0
LER JAC -0.889167 42.641388 5 0 4 1 5	0
LER LRD 0.899247 41.575160 8 0 0 8 0	8
LER NAV2 -1.370966 42.786083 3 0 3 0 3	0
LER NAV2 -1.645104 42.733093 1 0 1 0 1	0
LER NAV2 -2.170814 42.895634 1 0 1 0 1	0
LER NAV2 -1.002983 42.720951 1 0 0 1 1	0
LER VLC -3.572031 42.938454 28 0 28 0 28	0