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Insights into the development of Ixodes
scapularis: a resource for research on a
medically important tick species
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Abstract

Ticks (Acari: Ixodida) are arthropod ectoparasites dependent on a bloodmeal from a vertebrate host at each
developmental stage for completion of their life cycle. This tick feeding cycle impacts animal health by causing
damage to hides, secondary infections, immune reactions and diseases caused by transmission of pathogens. The
genus Ixodes includes several medically important species that vector diseases, including granulocytic anaplasmosis
and Lyme disease. I. scapularis, commonly called the black-legged or deer tick, is a medically-important tick species
in North America and therefore was the first tick genome to be sequenced, thus serving as an important resource
for tick research. This Primer focuses on the normal developmental cycle and laboratory rearing of I. scapularis.
Definition of normal morphology, along with a consistent source of laboratory-reared I. scapularis, are fundamental
for all aspects of future research, especially the effects of genetic manipulation and the evaluation of tick vaccine
efficacy. Recent research important for the advancement of tick research, namely the development of tick cell
culture systems for study of ticks and tick-borne pathogens, RNA interference for genetic manipulation of ticks and
discovery of candidate antigens for development of tick vaccines, are briefly presented along with areas to target
for future research.

Keywords: Ixodes scapularis, Ticks, Tick-borne pathogens, Deer tick, Black-legged tick

Why are ticks important?
Ticks (Acari: Ixodidae) are obligate hematophagous ar-
thropods distributed worldwide. As blood sucking ecto-
parasites, ticks affect humans and animals by causing
allergic reactions, damage to hides, decreased animal
production, secondary infections, and by transmission of
disease-causing pathogens [1–4]. Ticks have few natural
enemies and, despite ongoing control efforts, they con-
tinue to be a serious threat to human and animal health.
Traditional control methods, based on chemical acari-
cides, have been only partially successful [5, 6], and
chemical residues often contaminate the environment
and milk and meat products. Importantly, intensive use
of acaricides has resulted in the selection of acaricide-
resistant ticks [7, 8], a growing problem affecting cattle
production worldwide [9–12] and the high cost of

developing new acaricides discourages industry produc-
tion [12]. New control strategies for ticks are therefore
needed, and tick vaccines appear to be a promising and
sustainable control approach [6, 8, 14–20]. However, de-
velopment of new and novel vaccines for control of ticks
and tick-borne pathogens will require definition of the
molecular basis for tick biology and tick-pathogen inter-
actions for discovery of genes/gene products that could
be targeted as candidate vaccine antigens [20].

Why focus research efforts on I. scapularis?
Tick and tick-borne disease research is a priority be-
cause of the increasing global burden of infectious dis-
eases and the one-health approach for developing
control strategies for zoonotic diseases. Notably, I.
scapularis is a major vector of pathogens in North
America that cause diseases in humans and animals, in-
cluding Borrelia burgdorferi (Lyme disease), Anaplasma
phagocytophilum (animal and human granulocytic ana-
plasmosis, HGA), Babesia microti (rodent and human
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babesiosis), Babesia odocoilei (cervid babesiosis) and
Powassan encephalitis virus (PWE) [21]. I. scapularis,
commonly called the black-legged or deer tick, is a 3-host
tick, and the larva, nymph and adult stages feed on separ-
ate hosts [22–27]. I. scapularis is distributed in North
America from southeastern Canada to Saskatchewan,
along the Atlantic coast and throughout the Eastern half
of the U.S. to eastern Texas, Oklahoma and Florida, and a
second species, I. pacificus, is found on the west coast.
Other Ixodes spp. are common in Europe and other areas
of the world. For example, in Europe, I. ricinus transmits
A. phagocytophilum, the etiologic agent of tick-borne fever
in sheep and other ruminants, and also the emerging dis-
ease of humans, HGA [21, 22]. In the U.S. I. scapularis
has a two-year life cycle that varies between geographic re-
gions [23–27]. In the northeastern U.S., nymphs are active
during late spring and early summer when they are most
likely to transmit pathogens to humans [28], while in
the southcentral U.S. I. scapularis is active in the fall
and the immature stages feed predominantly on liz-
ards which are not as likely to serve as reservoir
hosts for pathogens [24, 25]. In all regions, adult ticks
feed on larger mammals, including deer, livestock,
carnivores and humans [23–28]. The 2-year I. scapu-
laris life cycle in the northeastern U.S. begins in late
summer when larval ticks feed on small mammals
and then overwinter and feed as nymphs during the
following spring. The adults then feed on large mam-
mals in the fall of the same year [27].
The importance of I. scapularis as a vector of pathogens

has led to this tick species being a primary focus for re-
search. The selection of I. scapularis as the first tick gen-
ome to be fully sequenced contributes to this research
focus, and the findings from this genomic information and
its analysis serve as a model for research on other Ixodes
spp., most notably I. ricinus, the medically important tick
counterpart in Europe. Current research on I. scapularis
includes definition of the genetic basis of tick-pathogen in-
teractions, acaricide resistant genotypes, development of
genetic transformation systems, selection of candidate vac-
cine antigens and development of tick vaccines [20].
Laboratory-reared I. scapularis are essential for research

in order to provide a source of uniform, pathogen free
ticks. Rickettsial pathogens that infect I. scapularis are
transmitted from stage to stage (transstadial transmission)
but not by transovarial transmission via eggs. Therefore,
subsequent generations of laboratory reared ticks will be
pathogen free. While I. scapularis is considerably more
difficult to rear, the life cycle can be completed faster in
the laboratory (7.5 months as opposed to two years in
nature, Fig. 1). The Centralized Tick Rearing Facility,
Department of Entomology and Plant Pathology,
Oklahoma State University, have devised methods for
large-scale production of I. scapularis.

Knowledge of the normal development cycle of I. sca-
pularis is essential in order to fully assess the effects of
experimental and genetic tick manipulations. For this
reason, we documented the normal developmental cycle
of I. scapularis from mating, oviposition and egg hatch-
ing, through the feeding, engorgement and molting of
each life stage.

Developmental cycle of I. scapularis
Morphologic details of the I. scapularis developmental
stages are presented in the Additional files 1 and 2 in
both a poster and video format.

Mating and engorgement
While many species of male ixodid ticks feed intermit-
tently on the host preceding mating, a bloodmeal is not
a prerequisite for I. scapularis mating, and mating can
occur off host. Males copulate multiple times with the
same or different females, and often stay attached to the
female ticks throughout the 6–11 day feeding period.
During mating, the male tick inserts the hypostome and
chelicerae into the female’s genital opening for transfer
of the spermatophore, while the palps are splayed to the
sides. Successful mating is required for the onset of the
rapid stage of engorgement, after which the female drops
from the host. In the absence of males, unmated females
remain on host and feed slowly for longer periods [23].

Oviposition and emergence of larval ticks
After female ticks complete mating and the rapid stage of
engorgement, they drop off the host. Oviposition then
commences and is completed within 14 days. Multicellular

Fig. 1 Time sequence for rearing I. scapularis in the laboratory
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eggs are expelled from the genital pore on the ventral side
of the female and are passed over the capitulum where
they are coated with wax extruded from two porous areas
on the base of the capitulum. The wax protects the eggs
from drying and also loosely binds the eggs together to
form an egg mass. Within 35 days the eggs embryonate
and prior to hatching the larval body and legs can be seen
through the transparent shell. Hatching occurs rapidly as
the egg shell ruptures along a suture line. The legs and
mouthparts of the newly-hatched larvae are initially trans-
parent, but after 14 days of maturation become scleroti-
nized. The larvae then quest together in groups for hosts.

Feeding, molting and emergence of nymphs and adults
Larvae feed 4 days after which they engorge, drop off
host and then molt in approximately 28 days to the
nymphal stage. The exoskeleton opens on a rupture line
at the base of the capitulum. The legs are the last to
detach from the exoskeleton. The legs and mouthparts
of the newly-molted nymphs are transparent but darken
during the 14 day maturation period as sclerotin forms
and causes stiffening of the cuticle. After this period, the
nymphs quest, attach and feed on the host. Nymphs feed
for 4–6 days, after which they drop off the host and molt
to the adult (male or female) stage, a process that
requires 4–5 weeks. After a maturation time of 14 days,
the cuticle stiffens with the formation of sclerotin and
the males are able to mate with females either off host
or during the feeding cycle on large mammals.

Current advances and future research
General advances on ticks and tick-borne pathogens and
targeted areas for future research are presented because
of their implications for ixodid tick species.

Ticks and tick-borne diseases -Three advances
made in the last decade
Development of tick cell cultures for study of ticks and
tick-borne pathogens
Establishment of continuous tick cell lines was first re-
ported by Varma et al. [31] and subsequently over 40 cell
lines are now reported including ones from several tick
species [32–35]. Development of these tick cell lines has
been an important breakthrough because they have pro-
vided a venue for in vitro studies on tick biology and tick-
pathogen interactions and also have reduced the
dependence on animals for research on ticks and tick-
borne pathogens. Cell lines derived from I. scapularis were
the first to be used for propagation of several important
tick-borne pathogens, including Anaplasma, Borrelia,
Ehrlichia, Rickettsia, and many viruses [34]. Interestingly,
Ixodes-derived cell lines were found to support the growth
of pathogens for which this tick is not the natural vector,
such as A. marginale [32, 35]. Tick cell culture has been

recently applied to gene silencing and genetic transform-
ation studies, and for characterization of tick-pathogen
interactions using omics technologies [20, 34–37].

RNA interference for genetic manipulation of ticks and
analysis of the impact gene expression on tick biology
and tick-host-pathogen interactions
Tick gene silencing by RNA interference (RNAi), first
demonstrated by Aljamali et al. [38], is currently the
only means of genetic manipulation of ticks. RNAi
has been adapted for use in ticks and tick cell culture
[39–41], and has become a valuable tool for functional
analyses of tick genes, characterization of the tick-
pathogen and tick-host interface and for screening for tick
protective antigens [20, 41, 43]. RNAi used in combination
with transcriptomics and proteomics has also allowed for
identification of genes differentially regulated in ticks in
response infection with pathogens [36, 39].

Discovery of candidate antigens for development of
vaccines against ticks and tick-borne pathogens
Ticks vaccines, thus far developed for cattle, have been
identified as an important component of future control
strategies for both ticks and tick-borne pathogens [20].
The tick-protective antigen, BM86, was first used to de-
velop and market the first cattle vaccine for control of
Rhipicephalus spp., thus demonstrating the utility of tick
vaccines [15–20]. Fundamental toward further develop-
ment of tick vaccines is the discovery of candidate vaccine
antigens [19, 20]. While new candidate antigens are being
tested in cattle [20], the continued search for vaccine anti-
gens has been augmented by the availability of genomic
sequence information. The genome of I. scapularis was
the first tick genome to be sequenced but will soon be
followed by genomes of other important tick species, in-
cluding that of Rhipicephalus microplus [42], contributing
to the discovery of many promising antigens [20, 42, 43].
For example, Subolesin, discovered by expression library
immunization and then characterized by RNAi [41, 44]
was found to be the ortholog of insect and vertebrate
Akirin [45, 46], a transcription factor required for NF-kB-
dependent gene expression and regulation of the innate
immune response to pathogen infection [37]. The silen-
cing of Subolesin by RNAi resulted in reduced female
weight gains, rendered males sterile, and the failure of fe-
males to complete mating and feeding reduced or blocked
oviposition [46–48] and also interfered with pathogen in-
fection, development and transmission [49, 50]. Molecular
interactions between ticks and pathogens are being de-
fined and will increase the range of candidate vaccine anti-
gens that impact both tick biology and tick pathogen
infection and transmission, thus providing the opportunity
for development of ‘dual target’ vaccines that target ticks
and tick-borne pathogens [20, 51–59].
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Ticks and tick-borne diseases -Three areas ripe for
research
Analyses of genome sequence and omics data bases and
a systems biology approach for discovery of candidate
vaccine antigens
Future vaccines will be dependent on inclusion of key
molecules important for tick biology and protective
mechanisms. A systems biology approach using the large
data bases generated from genomic, proteomic, tran-
scriptomic and metabolomic analyses provides the op-
portunity to comprehensively define the molecular
biology of the tick-host cell interface [20, 42, 60]. These
data can then be a resource for discovery of a new and
expanded generation of biomarkers and candidate vac-
cine antigens [35]. In addition, when sequences of mul-
tiple tick genomes become available, comparative studies
across tick species can be conducted toward develop-
ment of both species-specific vaccines and those cross-
protective among multiple tick species. However, while
these data bases are presently becoming a valuable
resource, limitations in genome sequence information,
assembly and annotation provide challenges for future
research involving the comprehensive characterization
of the molecular events at the tick-pathogen interface
[20]. Design of experiments combining tick transcripto-
mics and proteomics will be dependent on integration of
these large datasets for assessing global transcriptome
and proteome changes of specific pathways, such as
immune response and apoptosis required for pathogen
infection and transmission by ticks [49–51].

Development of dual target vaccines for control
of ticks and tick-borne pathogens
Recent results have clearly demonstrated molecular
interactions between ticks and the pathogens that
they transmit. Candidate tick antigens have been
identified that reduce pathogen infection and trans-
mission while also affecting tick infestations [49–59,
61–64]. Therefore, the development of dual target
vaccines that reduce both tick infestations and patho-
gen infection and transmission appears to be an
achievable goal, and the combination of tick- and
pathogen-derived antigens should result in deve-
lopment of vaccines for ticks and tick-borne diseases
[5, 8, 20, 55].

Characterization of tick microbiomes
Descriptive characteristics of the tick microbiome, which
is the collection of commensal, symbiotic and patho-
genic microorganisms that occupy each tick species,
were recognized years ago but the ability to fully define
and characterize these communities is becoming
possible because of rapidly-evolving molecular techno-
logies [65]. The developmental cycles of pathogens are

complex and pathogens acquired via the blood meal first
must infect gut cells and eventually colonize other tis-
sues, some of which are important for transmission dur-
ing feeding by subsequent stages. Ticks are also infected
with endosymbionts which likely impact tick biology and
pathogen infections. The understanding of tick micro-
biomes and their impact on tick survival and vector
competency will enhance the search for candidate vac-
cine antigens within and among tick species and broadly
across arthropod groups [65].

Conclusions
The genus Ixodes includes several species of ticks that
are medically important worldwide. Their populations
and the pathogens they transmit are expanding posing
increased threat to human and animal health. I.
scapularis is one of the most medically important
ticks in the U.S. and has been the first tick genome
to be sequenced, providing an important resource for
tick and tick-borne pathogen research. Fundamental
for future research is a source of laboratory-reared
ticks and an understanding of this tick’s normal de-
velopmental cycle. In this Primer we detailed the I.
scapularis developmental cycle, recent advances to-
ward the understanding of I. scapularis biology, its
role as a vector of pathogens and vaccines develop-
ment for control of ticks and tick-borne pathogens
and areas to target for future research. As part of
integrated control programs, tick vaccines promise to
be an effective intervention that will reduce the use
of acaricides and the selection of acaricide resistant
ticks. Because tick species parasitize several vertebrate
hosts and share habitat and hosts, development of
vaccines cross protective against multiple tick stages,
hosts and pathogens should be possible using genome
screening and omics technologies to target relevant
biological processes for discovery of novel candidate
vaccine antigens.
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