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Finite-size scaling exponents in the interacting boson model
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We investigate the finite-size scaling exponents for the critical point at the shape-phase transition from U(5)
(spherical) to O(6) (deformed γ -unstable) dynamical symmetries of the interacting boson model, making use
of the Holstein-Primakoff boson expansion and the continuous unitary transformation technique. We compute
exactly the leading-order correction to the ground-state energy, the gap, the expectation value of the d-boson
number in the ground state and the E2 transition probability from the ground state to the first excited state and
determine the corresponding finite-size scaling exponents.
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The interest in the study of quantum phase transitions
(QPT) has kept growing in the last years in different branches
of quantum many-body physics, ranging from macroscopic
systems such as quantum magnets, high-Tc superconductors
[1] or dilute Bose and Fermi gases [2] to mesoscopic systems
such as atomic nuclei or molecules [3]. Although, strictly
speaking, QPT occurs only in macroscopic systems, there is
a renewed interest in studying structural changes in finite-
size systems where precursors of the transition are already
observed [4]. The understanding of the modifications on the
characteristics of the QPT induced by finite-size effects is of
crucial importance to extend the concept of phase transitions
to finite systems.

In the present study, we analyze these finite-size corrections
in the interacting boson model (IBM) of nuclei [5], but the same
technique can be applied to other boson systems, for instance,
to the molecular vibron model [6] or to a multilevel boson
model of Bose-Einstein condensates where similar QPT take
place [7].

The IBM is a two-level boson model that includes an
angular momentum L = 0 boson (scalar s boson) and five
angular momentum L = 2 bosons (quadrupole d-bosons)
separated by an energy gap. The s and d bosons represent s- and
d-wave idealized Cooper nucleon pairs. The algebraic structure
of this model is governed by the U(6) group and the model has
three dynamical symmetries in which the Hamiltonian, written
in terms of the invariant (Casimir) operators of a nested chain
of subgroups of U(6), is analytically solvable. The dynamical
symmetries are named by the first subgroup in the chain: U(5),
SU(3), and O(6). The classical or thermodynamic limit of the
model was investigated by using an intrinsic state formalism
that introduces the shape variables β and γ [8–10]. Within
this geometric picture the U(5), SU(3), and O(6) dynamical
symmetries correspond to spherical, axially deformed, and
deformed γ -unstable shapes, respectively. Transition between
two of these dynamical symmetry limits are described in

terms of a Hamiltonian with a control parameter that mixes
the Casimir operators of the two dynamical symmetries. As a
function of the control parameter, the system crosses smoothly
a region of structural changes in the ground-state wave function
for finite number N of bosons. In the large N limit, the smooth
crossover turns into a sharp QPT between two well-defined
shape phases [9,11–14]. In particular, the transition from U(5)
to O(6) has been intensively studied in recent years because
it has a unique second-order QPT [13–15] associated with a
triple point in the IBM parameter space [14]. Furthermore,
it was early recognized that the IBM Hamiltonian along
this transition was fully integrable [16] and exactly solvable
[17,18].

Unfortunately, it is difficult to use the exact solution to
compute finite-size corrections analytically. Thus, we follow
a different route that is based on the continuous unitary
transformations (CUTs) [19–21]. Within this framework, we
compute the first correction beyond the standard random phase
approximation (RPA) [22], which already contains the key
ingredients to analyze the critical point. As already observed
in a similar context, [23–25], this 1/N expansion becomes,
at this order, singular when approaching the critical region so
that one gets nontrivial scaling exponents for the physical
observables (ground-state energy, gap, occupation number,
transition rates). In a second step, we take advantage of the
exact solvability of the model to obtain numerical results for
large number of bosons that allows us to check our analytical
predictions.

Let us consider the U(5)-O(6) transitional Hamiltonian

H = xnd + 1 − x

4(N − 1)
(P †

d − P †
s )(Pd − Ps), (1)

where nd

∑
µ d†

µdµ (with µ = −2,−1, 0, 1, 2) is the d-boson

number operator, P
†
s = s†

2
, P

†
d = ∑

µ(−1)µd†
µd

†
−µ, and x is

the control parameter that mixes the U(5) linear Casimir
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operator (x = 1) with the O(6) quadratic Casimir operator
(x = 0). The system undergoes a QPT at xc = 1/2, between a
U(5) (spherical) phase for 1/2 � x � 1 and a O(6) (deformed
γ -unstable) phase for 0 � x � 1/2, when N → ∞ [13–15].

In the following, we restrict our analysis to the spherical
(symmetric) phase that allows us to investigate the critical point
more simply than from the deformed phase. The Holstein-
Primakoff boson expansion of one-body boson operators is
especially well-suited to perform a 1/N expansion of the boson
Hamiltonian (1). In the present case, it reads [26,27]

d†
µdν = b†µbν, (2a)

s†s = N −
∑

µ

d†
µdµ = N −

∑
µ

b†µbµ = N − nb, (2b)

d†
µs = N1/2b†µ(1 − nb/N)1/2 = (s†dµ)†. (2c)

Keeping terms of order (1/N)0 in the Hamiltonian expressed
in terms of the new b’s yields a quadratic Hamiltonian that can
be diagonalized via a Bogoliubov transformation. One then
recovers RPA results [22,28]. At the next order (1/N )1, the
Hamiltonian is quartic and diagonalizing it clearly requires a
more sophisticated method. To achieve this goal, we used the
CUTs technique [19–21]. For an introduction to this method,
we refer the reader to Refs. [23–25] where CUTs were applied
in a similar context. One introduces a running Hamiltonian

H (l) = E0(l) + �(l)nb + V (l) : n2
b : +W (l)P †

b Pb

+�(l)(P †
b + Pb ) + �(l)(P †

b nb + nbPb ), (3)

which is related to the initial Hamiltonian H (0) through a
unitary transformation, namely H (l) = U †(l)H (0)U (l). This
transformation U is chosen such that H (∞) commutes with
nb. In Eq. (3), : O : denotes the normal ordered form of the
operator O, and the notations for the b’s are the same as
for the d’s. The evolution of the running Hamiltonian is
obtained from the flow equation ∂lH (l) = [η(l),H (l)], where
η(l) = ∂lU

†(l)U (l) is the anti-Hermitian generator of the
unitary transformation. For the problem at hand, we consider
the so-called quasiparticle conserving generator [29],

η(l) = �(l)(P †
b − Pb ) + �(l)(P †

b nb − nbPb ), (4)

designed to ensure H (∞) commutes with nb [i.e. �(∞) =
�(∞) = 0].

The flow equations can be solved exactly, order by order in
1/N , and the coefficients of the final Hamiltonian are found
to be as follows:

E0(∞) = N (1 − x)

4
+ 5

2

[
1

2
(1 − 3x) + 	(x)1/2

]
(5)

+ 5x(1 − x)

N

[
25x − 9

16	(x)
− 1

	(x)1/2

]
,

�(∞) = 	(x)1/2 + x(1 − x)

N

[
9x − 1

4	(x)
− 2

	(x)1/2

]
, (6)

V (∞) = x2(1 − x)

4N	(x)
, (7)

W (∞) = x(1 − x)(3x − 1)

8N	(x)
, (8)
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FIG. 1. (Color online) Comparison between analytical results
(solid and dotted lines) and the numerical results (circle, triangle
and square symbols) for the first excitation energies, with N = 40.

where 	(x) = x(2x − 1). One can then straightforwardly
analyze the low-energy spectrum.

The ground state of H (∞) is the state |0〉 with zero b
bosons, whose energy is E0(∞). The first excited state is
fivefold degenerate and corresponds to one quadrupole
boson b†µ|0〉, whose excitation energy is �(∞). These are
the five components of the first 2+ excited state. For the
two-boson states, things are a bit more complicated because
of the W term, which is not diagonal in the basis of
states {b†µb†ν |0〉} with µ, ν = −2,−1, 0, 1, 2. It is, however,

easy to see that P
†
b Pb has a nontrivial action only in the

subspace {b†2b†−2|0〉, b†1b†−1|0〉, 1√
2
b
†
0

2|0〉}. The corresponding
3 × 3 matrix has eigenvalues 0 (twice) and 10. One thus
finds that there are 14 degenerate states with excitation
energy 2[�(∞) + V (∞)], and one 0+ state that is given by

1√
10

P
†
b |0〉 with energy 2[�(∞) + V (∞) + 5W (∞)]. Let us

emphasize that the degeneracy is lifted at order (1/N)1, an
effect missed at the RPA order. The 14 degenerate states are
the nine components of the first excited 4+ state and the five
components of the second excited 2+ state. These 4+

1 and 2+
2

states are degenerate along the whole transition line because
of the common O(5) structure. Note also that, at fixed N, the
0+

2 state degenerates with the 4+
1 and 2+

2 in the U(5) limit.
This low-energy spectrum is depicted in Fig. 1 for N = 40.
The agreement between numerics and analytical results is
pretty good and has been checked to improve when N gets
bigger, as long as one is sufficiently far away from the critical
point. Indeed, as can be seen in Eqs. (5)–(8), the 1/N order
corrections diverge at x = 1/2. This singular behavior already
found in other models [23–25] is a signature of the noninteger
scaling exponents [30] that we discuss below.

The main strength of the CUTs is to allow the computation
of expectation values of observables as well as transition am-
plitudes. Thus, one has to perform the unitary transformation of
the observables in which one is interested. In the present case,
all observables can be deduced from the knowledge of the flow
of the operator b†µ(l) = U †(l)b†µU (l). For example, the average
number of d bosons in the ground state of the Hamiltonian
H is found as 〈nd〉 = 〈0| ∑µ b†µ(∞)bµ(∞)|0〉. This quantity
can also be computed using the Hellmann-Feynman theorem,
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FIG. 2. (Color online) Comparison between analytical results
(solid dotted lines) and the numerical results (circles) for the B(E2)
transition probability, with N = 40.

which yields 〈nd〉 = ∂/∂y[(1 + y)E0] with y = x/(1 − x).
One then gets the following

〈nd〉 = 5

2

[
3x − 1

2	(x)1/2
− 1

]

+5x(1 − x)2

16N

[
− 7x

	(x)2
+ 8

	(x)3/2

]
. (9)

However, this theorem cannot be applied to compute nondiago-
nal matrix elements such as transition amplitudes. To illustrate
the power of the CUTs for such a task, we focus on the B(E2)
transition probability between the ground state and the first
excited state that is defined as B(E2) = 5|〈2, 0|Q(2)

0 |0, 0〉|2 in
the standard |J,M〉 basis, with Q

(2)
0 = s†d0 + d

†
0s. The flow

equations for b†µ(l) can still be exactly integrated out order by
order in 1/N and leads to the following:

B(E2) = N
5x

	(x)1/2

+ 5x2

[
−27x2 − 20x + 5

4	(x)2
+ 4x − 1

	(x)3/2

]
. (10)

The comparison between analytical and the numerical B(E2)
transition probabilities for a system of N = 40 bosons, is
shown in Fig. 2.

As for the excitation energies, there are divergences in the
B(E2) values at the critical point, although they now appear
even at the RPA order [28]. However, at finite N values no
divergence should appear in the physical magnitudes or their
derivatives with respect to the control parameter x, even at the
critical point. This obvious remark allows us to determine the
nontrivial scaling exponents. Such an analysis was proposed
in Refs. [23–25], and we now briefly recall how it works.
The 1/N expansion of any physical quantity 
 has two
contributions, the regular (reg) and singular (sing) respectively,
when x approaches the critical value xc = 1/2:


N (x) = 

reg
N (x) + 


sing
N (x). (11)

A close analysis of the singular part in the vicinity of the
critical point xc shows that the singular part scales as follows:



sing
N (x) � 	(x)ξ


Nn

F
[N	(x)3/2], (12)

TABLE I. Scaling exponents for the ground-state energy E0, the
gap �, the number of d bosons in the ground-state 〈nd〉GS, and the
B(E2) transition probability.


 ξ
 n
 −(n
 + 2ξ
/3)

E0 1/2 0 −1/3
� 1/2 0 −1/3
〈nd〉 −1/2 0 1/3
B(E2) −1/2 1 4/3

where F
 is a function depending on the scaling variable
N	(x)3/2 only. To compensate the singularity coming from
	(x)ξ
 (or its derivative), one thus must haveF
(x) ∼ x−2ξ
/3

so that 

sing
N (xc) ∼ N−(n
+2ξ
/3). In Table I the computed

scaling exponents for the low-energy physical quantities
studied are summarized.

To check these results, it is important to analyze the large
N behavior of 
N . Therefore, we have numerically solved
the problem by diagonalizing the boson Hamiltonian (1)
up to N = 1000. Details of this calculation will be given
in a forthcoming publication [31]. As shown in Fig. 3, an
excellent agreement is found between the exponents predicted
analytically and the numerical results.

Let us underline that the scaling exponent for the ground-
state energy has been recently obtained by Rowe et al. [30] by
using the collective model associated to the IBM Hamiltonian
[32]. This mapping onto a quartic potential also explains why
we found the same finite-size scaling exponent for the ground-
state energy and the gap (1/3) in other similar models [23–25].
However, such an approach does not allow to simply compute
the finite N corrections and may not be suitable to obtain the
behavior for observables such as B(E2). The CUTs method is
thus, in this context, a very useful tool.

In the present work, we have exactly computed finite-size
corrections beyond the RPA in the symmetric phase of the IBM
model. We have shown that the spectral properties at the critical
point in the U(5)-O(6) transition have well-defined asymptotic
limits and we have calculated the N-dependent scale factors.
A natural extension of this work would be to investigate the
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FIG. 3. (Color online) Plot of the singular parts of E0, �, 〈nd〉,
and B(E2)/(5N ) at the critical point xc = 1/2, in a log10 - log10

scale.
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broken phase (x < 1/2) but the presence of Goldstone modes
in the low-energy spectrum (at the RPA level) makes it more
involved [31].

The study of the scaling properties at the critical point of
a QPT of a finite-N particle model is of primer interest in
several mesoscopic systems such as nuclei, molecules, and
other physical systems. The present results provide a tool to
tackle such a study and to characterize the approach of the

system to the critical regions as the number of particles goes
to infinity.
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