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Prologue

The main motivation of this thesis is to study the distant Universe through al-

ternative windows which are emerging in the most recent years. At high red-

shift, the large scale structure (LSS) undergoes an interesting phase called the

reinoziation where the neutral matter gets ionized around the first generation

of stars. This ionized medium can emit interesting signals among which I am

interested in the weak free-free emission from diffuse gas and galaxy clusters

present in the Universe after the era of the reionization. N-body simulations

of this distant epoch can help understand the properties of the free-free and

other siganls emerging from the reionization time. The free-free emission has

been largely ignored in the literature with very few works paying attention to

it. Part of this thesis will focus also on synchrotron signal from normal galax-

ies. Recent developements in technology start to reach the sensitivity needed to

discern this weak signals from other more predominant ones. Also, my thesis

will focus on the possible observational evidence of this signal, in particular in

the excess signal found by the ARCADE2 experiment at radio wavelengths that

could be partially explained by free-free emission from the reionization time.

ARCADE2 is a balloon-borne mission whose goal is to measure the radioback-

ground at frequencies lower than thiose explored by past and current Cosmic

Microwave Background experiments. This regime of low frequencies are sensi-

tive to interesting physical phenomena including some that coccured after the

inflationary time and before the matter-radiation decoupling. The results of the

ARCADE2 are surprising, with a significant excess of signal over previous es-

timations of the microwave-radio background temperature distortion (as mea-

sured by COBE/FIRAS). The authors claim that the results are free from sys-

tematics and that the excess signal is purely extragalactic, suggesting that free-

free and synchrotron emissions could be the cause. This thesis explores both

possibilities and throughs some light into this unsolved puzzle. The physics
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involved in the sysnchrotron is far more complicated than in the free-free caee,

needing a specific model for the Initial Mass Function (IMF), for the cosmic

star formation rate (SFR), the rate of supernovae production and how they con-

tribute to the magnetic field in galaxies. For these reasons, I concentrate my

efforts on building a phenomenological model for the synchrotron emission,

who shares some underlying mechanisms with the free-free model. The model

is the first one (or one of the first ones) that uses the SFR to estimate the signal

observed by ARCADE2 .

To achieve my goals, I make use of both analytical models (like the mass func-

tions of Press-Schecther and Sheth-Tormen) and numerical simulations (mak-

ing my own simulations with the GADGET-2 code).

The study of the radio Universe in the low GHz band offers a new window to

explore the high redshift Universe. The results of my thesis will be relevant for

future facilities such as ALMA as it deals with signals that could be potentially

be studied with this facility.

My thesis work is completed with a study of the lensing problem. Gravitational

lenses are an interesting tool to understand our Universe. On one hand they

offer one of the best scenarios to see dark matter through their gravitational

effects and on the other hand thay act as magnifying lenses that enhanced the

flux of the background galaxies making it easier to detect them. This second

feature is particularly interesting to study the first population of galaxies that

emerge after the reionization time. I explore the capabilities of the gravitational

mass reconstruction by studying one partiocular case that has triggered great

debate in the last years, the galaxy cluster CL00254 and its alleged ring of dark

matter. I explore the possible systematics in the lensing reconstruction of this

cluster.

The work is organized as follows: in Chapter 1, I will give a short review of the

basic cosmological concepts, the notions of the different distances involved, the

mechanisms for the thermal and non-thermal emissions and a description of the

standard geometry underlying the gravitational lensing. In the same chapter,

I will provide an introduction to cosmological simulations and the codes used.

In Chapter 2, I will treat the free-free emission, with the comparison between

the N-body simulations and the analytical approach. Chapter 3 will extend

radio signal with the synchrotron emission. Chapter 4 will be entirely dedicated

to non-parametric cluster mass reconstruction using strong and weak lensing.
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Finally, in Chapter 5, I will present the conclusions for the previous chapters. At

the end of the thesis, a summary in idióma castellano, about the most important

aspects and results, is given.
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CHAPTER 1

Introduction

The first chapter of this thesis has the task to introduce the most important argu-

ments that are necessary to understand the works presented in Chapter 2, 3 and

4. The task is non-trivial, because the topics in cosmologly and astrophysics are

larger in number ans strictly correlated each others. I prefer to focus on the for-

mation of structures, with a minor description of the radiation component and

to leave outside all the properties of the anisotropies of the Cosmic Microwave

Background.

I have found in the book of Peebles Principles of Physical Cosmology, [1], a bal-

anced compromise between easiness and accuracy, with a very deep excursus

in the history of cosmology. Naturally, some arguments have been integrated

with other sources, [2–6].

The Chapter starts with the concept of the Large Scale Structure with some his-

torical remarks. It follows with the introduction of the space-time metric de-

scribing distances in a static universe, then the same concepts are applied to

a dynamical universe with different components. Will be given a syntetic de-

scription of the thermal history of the Universe, with the role of radiation and

the introduction to the Cosmic Microwave Background. A section will be ded-

icated to the dark matter paradigm and to alternative theories. After the dis-

cussion on dark matter, the statistic of the density field is is introduced, along

with the halo function and the basics to understand a cosmological simulation.

A brief section is dedicated to the basic concpets of gravitational lensing, while

the last section will focus on the radiation processes from ionized medium.
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CHAPTER 1: INTRODUCTION

1.1 The Large Scale Structure of the Universe

This first section is introducing the Large Scale Structure through the historical

remarks that arose at the beginning of the Twentieth century. That was not a

case that the knowledges about the nature of the Universe were expanding first

under the pulse of the theory of General Relativity and then with the discov-

ering of distant galaxies. The observations were the proof for the theory and

the theory was changing after the feedbacks from observations. Nowadays, the

Large Scale Structure is well understood within the Standard Model for struc-

ture formations, that relies on accepted paradigms like inflation, dark matter

and dark energy.

1.1.1 The meaning of Large Scale Structure

The term Large Scale Structure was introduced in astronomy in the second decade

of the twentieth century. At that time astronomers were only familiar with the

concept of local Universe, since their observations were limited to the Milky Way.

At the beginning of the past century, Albert Einstein proposed his theory on

the general gravitation, General Relativity (GR). He was strongly influenced

by Ernst Mach (1838 - 1916) who claimed the non-existence of the Newtonian

concept of the absolute motion. An observer could only sense an inertial frame

in the presence of a fixed reference frame. Apparent forces produced by the

inertia have not an absolute character, but related to fixed masses. In General

Relativity, this was the concept of the line element connecting two events,

ds2 = ∑
ij

gijdxidxj (1.1.1)

where the differences in the space-time dxi, dxj and the metric tensor gij depend

on the coordinate labels. The metric tensor has ten independent functions, and

these are known as Einstein’s field equation, describing the matter distribution

acting like the generator of the space-time curvature.

A special case of the metric tensor are the Minkowski coordinates,

ηij = (1,−1,−1,−1) (1.1.2)

for i = j and 0 elsewhere. This metric locally describes a Newtonian inertial

frame and, more importantly, is the unique non-singular spherically symmetric

2



CHAPTER 1: INTRODUCTION

solution to Einstein’s field equations in absence of matter. That is, the metric can

extend indefinitely far away from the matter, defining absolute inertial frames.

This contradiction was slowly solved with the help of Willem de Sitter in 1916,

that suggested to Einstein a way to pass from the Minkowski form gij ∼ ηij to a

metric tensor that would not define an inertial frame far from matter. But where

is it supposed to exist such passage? De Sitter argued that there is no change

due to the fixed stars and the objects called at that time spiral nebulae, since

there were no gravitational effects observed in their spectra. Einstein accepted

the ideas of de Sitter, but he was brought to think to the existence of exotic

matter at the boundaries of the Universe, that was not observed. But soon, he

proposed another scheme: there was no mass at the boundaries of the Universe,

but the whole Universe is filled, homogeneously, with matter. The matter density

itself is responsible to curve the space-time and leave, locally the Minkowski

form, unchanged.

That was a ground-breaking idea for the astronomers. The concept of the Uni-

verse and its size and geometry was strongly limited by the observations. For

example, Eddington in 1914 titled his book Stellar Motions and the Structure of
the Universe and described the main features of the Milky Way, considered like

a structure filled with stars but alone in an empty space. The objects referred as

spiral nebulae where thought to belong to the same structure, and only in a later

moment they were identified as galaxies, replicas of the Milky Way. Nonethe-

less, the following two decades were critical for the affirmation of the concept of

homogeneous Universe on large scale: surveys revealed a larger number of ob-

jects in increasing distance, that were definitely recognized as galaxies of stars

(e.g. Fig. 1.1 where is shown the map of Charlier 1922, [7]). Alongside, an uni-

form and extended matter distribution drastically simplified the mathematical

problem of solving the field equations of GR.

A complementary concept that came embodied in the homogeneity of the Uni-

verse and not violating Mach’s principle is the one regarding the isotropy: there

is no observer in privileged reference systems, nor absolute direction for the

bulk motion of the galaxies. The Einstein’s Cosmological Principle (Milne, 1935) is

nowadays accepted as a condition that is consistent with the observations.

3



CHAPTER 1: INTRODUCTION

Figure 1.1 Map of the nebulae, from Charlier (1922), [7].

1.1.2 The Hubble’s experience

Common sense would suggest us a question: how is it possible to obtain a space

distribution of matter if we can only observe a two-dimensional picture? The

empirical law that links the flux of an object to its distance from us, is due to

Edwin Hubble (1889 - 1953). Hubble applied basic concepts from surveys of

stars to galaxies, essentially the relation between the intrinsic luminosity of the

source and the observed energy flux:

f =
L

4πr2 , (1.1.3)

where r denotes the distance from the observer. If galaxies had the same bright-

ness L, then higher fluxes f would correspond to closer distances r. In astron-

omy, fluxes and brightnesses are expressed through the quantity magnitude:

m = −2.5 log f + constant (1.1.4)

is the apparent magnitude and

M = −2.5 log L + constant (1.1.5)

is the absolute magnitude. From 1.1.3 one could derive the relation called the

distance modulus:

m − M = 5 log rMpc + 25. (1.1.6)
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CHAPTER 1: INTRODUCTION

Hubble thought, as opposedto stars, galaxies were distributed uniformly on

average. The number of galaxies emitting fluxes higher than f is proportional

to f :

N(> f ) ∝ f−3/2, (1.1.7)

that combined with the Eq. 1.1.4 yields the differential counts for homogeneous

mean distribution of galaxies:

dN(m)
dm

∝ 100.6m. (1.1.8)

Hubble, [8], proved that the galaxies counts agree with the power law of Eq.

1.1.7, demonstrating the uniform distribution on large scales.

1.1.3 The standard definition of the Redshift

The concept of redshift is fundamental for the description of cosmological dis-

tances and times. The basic formulation, indeed, relies on the observed fre-

quencies. The redshift z of an object is the fractional Doppler shift of its emitted

light resulting from radial motion, [5]

z ≡ νe

ν0
− 1 =

λ0

λe
− 1 (1.1.9)

where νe and λe are the emitted frequency and wavelength, and ν0 and λ0 are

the observed ones. In Special Relativity, the redshift is related to the radial

velocity of an object:

1 + z =
√

1 + v/c√
1 − v/c

. (1.1.10)

The radial velocity v is the sum of two components: the peculiar velocity vpec,

that is related to the proper motion of an object respect other objects in the

neighborhood and the Hubble flow motion, due to the stream caused by the ex-

pansion of the Universe. The velocity due to the mean flow is directly propor-

tional to the distance, with a factor known as the Hubble constant, H0:

v = H0d (1.1.11)

The Hubble constant H0 refers to the value it has at the present time (the sub-

script 0 is always referred to the present time, except where differently stated),

as it is expected to change with time. The velocity v is expressed in km s−1, the

distance d is expressed in Mpc, hence H0 is expressed in units of km s−1 Mpc−1.
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Usually, in the literature, any observable related to H0 is given as a function of

a dimensionless constant, h

h =
H0

100 km sec−1 Mpc−1 . (1.1.12)

In the last few decades, the value of H0 has been constantly refined, due to the

possibilities to measure it with different techniques (measurement of Cepheid

variable stars, gravitational lensing, rich catalogs of distant objects, microwave

relic radiation). All the techniques point to a concordance value for H0, that is

H0 = 72 km sec−1 Mpc−1 (e.g. the value reported by the released 7-year WMAP

data is h = 0.71 ± 0.025, [9]). Two related constants can be easily derived from

H0: the Hubble time

tH ≡ 1
H0

= 9.78 × 109 h−1 yr (1.1.13)

and the Hubble distance

DH ≡ c
H0

= 3000 h−1 Mpc. (1.1.14)

In next section I will give the notion of redshift as related to the expansion of the

Universe, that is not possible to introduce without the introduction of the metric

describing the topography. Nonetheless, the notion of redshift is basically the

on here presented, since it is related to quantities directly observable as the

curves of light of emitting objects. Only after some assumptions, redshift can

been used as a measure of the expansion of the Universe.

1.2 The Static Universe

1.2.1 The line element

Describing the geometry of the Universe and the path that any observer follows

within it is a non trivial exercise for anyone’s mind, due to the high degree of

abstraction needed to imagine a four-dimension coordinates system. One can

divide the spatial part from the time part, threat them separately and then blend

them in a unique metrics.

Since one can always use the Minkowski metric tensor in our neighborhood,

we can see how to separate the form in Eq. 1.1.1 in a time part and a space part.

Consider some observers that move along with the mean flow of the matter in

the Universe. Each observer has assigned a set of three numbers, xα, α = 1, 2, 3

6
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and each observer is carrying a clock. If we assign to an event the three numbers

of the observer passing for that event and the time coordinate x0 = t, where t is

the time measured by the clock that observer is carrying, then we have assigned

a four coordinates system to the space-time. Two events that belong to the same

world line of a comoving observer will have only the time coordinate changing

with the amount dt, whose metric is

dt2 ≡ ds2 = gijdxidyj = g00dt2. (1.2.1)

The last equality derives from the statement that two events separated only by

time interval have dxα (α = 1, 2, 3), and we have g00 = 1. The off-diagonal ele-

ments have to be zeros, g0α = 0, since for the Einstein’s cosmological principle,

there is no preferred direction for g0α to point. The line element can thus be

rewritten in the form

ds2 = dt2 + gαβdxαdxβ

= dt2 − dl2 (1.2.2)

with dl2 is the proper spatial separation between events at the same world time,

t.

Now we must use the above extrapolation, thinking of the space-time as a four-

dimension space. A line element on a three-dimensions spehere is the line con-

necting two points on a surface, whose equation is

R2 = x2 + y2 + z2, (1.2.3)

the same has to be thought for a three-dimensions surface embedded in a four-

dimensions space:

R2 = x2 + y2 + z2 + w2, (1.2.4)

with the line element described by

dl2 = dx2 + dy2 + dz2 + dw2. (1.2.5)

Now, renaming the three independent space variables r2 = x2 + y2 + z2, the

fourth variable is fixed by the relation w2 = R2 − r2, whose differential leads to

dw =
rdr

(R2 − r2)−1/2 . (1.2.6)

Introducing the last equation in the Eq. 1.2.5, we obtain the general form of

four-dimensions line element in Cartesian coordinates

dl2 = dx2 + dy2 + dz2 +
r2dr2

R2 − r2 . (1.2.7)

7
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Common sense would suggest that a set of polar coordinates r, θ, ϕ is more

appropriate to describe a spherical surface. Substituting the usual relations

z = r cos θ,

x = r sin θ cos ϕ,

y = r sin θ sin ϕ, (1.2.8)

in Eq. 1.2.7, we finally get the space line element for a four-dimensional curved

surface:

dl2 =
dr2

1 − r2/R2 + r2
(

dθ2 + sin2 θdϕ2
)

. (1.2.9)

Introducing the time coordinate is straightforward, giving the complete expres-

sion for the line element in a static Universe

ds2 = dt2 − dr2

1 − r2/R2 + r2
(

dθ2 + sin2 θdϕ2
)

. (1.2.10)

In the next subsections I will introduce some basic equations on the dynamics of

Einstein’s model, then I will introduce the concept of scale factor that combined

to Eq. 1.2.10 will give a more precise description of the metric in an expanding

Universe.

1.2.2 Dynamical properties of Einstein’s model

We ha ve seen that the metric tensor gij(x) is the entity describing distance

between elements in the space-time. The Einstein’s field equation (EFE) is the

equation describing the behavior of the metrics in the presence of matter

Rij −
1
2

gijR = 8πGTij. (1.2.11)

The first term, the second-order tensor Rij is the Ricci tensor and describes the

amount of deviations of a curved surface in a generic Riemann manifold from

the same curved surface in Euclidean space. The quantity R is the Ricci scalar

and in this case is the trace of the Ricci tensor. On the right hand of the equation

we have the stress-energy tensor. It describes the flux of the energy density and

momentum in the space-time. Usually, it has sixteen (4× 4) elements, but in the

local Minkowski coordinate system in which the fluid is at rest, it has the form

Tij =


ρ 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p

 , (1.2.12)

8
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where ρ is the energy density (matter, radiation and non-gravitational force

fields) and p is the pressure.

In Newtonian dynamics, the Poisson’s equation indicates the mass density as

the source for gravital acceleration. But in presence of high pressure, a more

general way to indicate the source of gravitational force is

∇g = −4πG(ρ + 3p), (1.2.13)

where we can indicate with ρg = (ρ + 3p) the source of gravitational accelera-

tion.

Considering a spherically symmetric distribution of mass with radius l, using

the Birkhoff theorem (the mass in a flat space acts under Newtonian dynamics),

we get that the acceleration of the mass surface is

l̈ = −GM
l2 = −4

3
πG(ρ + 3p)l (1.2.14)

where the single and double dot sign mean first and second order time deriva-

tive respectively. The net energy inside the sphere is given by the mass, U = ρV.

Changing in the net energy is a consequence of the movement of matter inside

the radius l, due to the change of pressure work on the surface

dU = −pdV

= dρV + Vdρ, (1.2.15)

where the second line is the differential of the energy-mass relation. Since

V ∝ l3 and dV = V̇dt, dρ = ρ̇dt, the second relation in Eq. 1.2.15 yields

ρ̇ = −(ρ + p)
V̇
V

= −3(ρ + p)
l̇
l
. (1.2.16)

Using the equation above, we can eliminate the pressure p in Eq. 1.2.14:

l̈ =
8
3

πGρl +
4
3

πGρ̇
l2

l̇
. (1.2.17)

The last equation has the great advantage that multiplied by l̇ has the integral

in the form:

l̇2 =
8
3

πGρl2 + K, (1.2.18)

with K the constant of integration.

In a static Universe, with l constant (and zero time derivatives), the constant of

integration is K = −l2/R2, with R the same curvature seen in Eq. 1.2.9. Eqs.

9
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1.2.14 and 1.2.18, for a static, homogeneous and isotropic Universe are

4
3

πG(ρ + 3p) = 0 (1.2.19)

and
8
3

πGρ − 1
R2 = 0. (1.2.20)

1.2.3 Introduction of the cosmological constant

With no doubt, one of the biggest puzzle in cosmology is the nature of the so

called dark energy. Historically, the existence of an extra component besides

matter and radiation arose by the evident contradiction in Eq. 1.2.19. In a static

Universe, for a positive density (naturally expected for ordinary matter and

radiation), pressure has to be negative, p = −ρ/3. To avoid this, Einstein mod-

ified the EFE, with the integration of an additional term on the left hand:

Rij −
1
2

gijR − Λgij = 8πGTij, (1.2.21)

where Λ is called cosmological constant. Comparing the metric tensor gij with

the stress-energy tensor Tij, Eq. 1.2.12, we get

ρΛ =
Λ

8πG
(1.2.22)

and

pΛ = −ρΛ. (1.2.23)

The nature of constant arises instantly if we substitute the relation in Eq. 1.2.23

in Eq. 1.2.16, we get ρ̇Λ = 0. Finally, using the relations in Eqs. 1.2.22 and 1.2.23

in Eqs. 1.2.19 and 1.2.20, we see how the cosmological constant acts as a source

for gravity and curvature:

4πGρ = Λ =
1

R2 . (1.2.24)

Einstein introduced the cosmological constant for consistency with the accepted

idea of a statical Universe. In fact, the mean mass density, ρ̄ is set equal to a con-

stant, Λ/4πG. Larger (lower) values of the the mean mass density will cause

the Universe to contract (expand) under its own gravity (vacuum pressure).

In the next section, I will introduce the dynamics of an expanding Universe,

which, in principle, makes the cosmological constant useless. Nonetheless, the

accelerated expansion that the Universe is undergoing is caused by the den-

sity of the Dark Energy, that relies on the same formulation introduced for the

cosmological constant.

10
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1.3 The expanding Universe

1.3.1 The scale factor

We indicate with l the proper physical separation between two objects, namely

two galaxies, distant enough to not attract themselves under their mutual grav-

itational force. The expansion of the Universe says that this proper distance is

a function of time, l(t):

l(t) = l0a(t), (1.3.1)

where the proper distance has been separated into a constant part l0 and a scale
factor a(t) that carries the expansion part. The cosmological principle makes

the scale factor a(t) the same for every part of the Universe. The rate of the

recession is obtained differentiating the above relation:

v = l̇ = l0 ȧ = l
ȧ
a
≡ Hl. (1.3.2)

The Hubble’s parameter is a function of time, H = ȧ/a, and the value it has at

the present, H0, refers to the expansion scale factor at the present epoch, a0.

1.3.2 The Robertson-Walker metric

From Eq. 1.3.1 we can easily apply the expansion factor to the line element in

Eq. 1.2.2:

ds2 = dt2 − a2(t)g0
αβdxαdxβ. (1.3.3)

Using the prescription in Sect.1.2.1, we get the general metric describing the

space-time:

ds2 = dt2 − a2(t)
[

dr2

1 − Kr2 + r2(dθ2 + sin2 θdϕ2)
]

, (1.3.4)

where the spatial part between square brackets is expanded by the scale factor

a(t). The metric in the Eq. 1.3.4 is called the Robertson-Walker line element,

and is the most general form of the line element in a spatially homogeneous

and isotropic space-time, independently of the gravitational framework. The

constant K is the curvature, K = 1/R2. It defines spatial hyper-surface with

positive, zero or negative curvature, K = +1, 0,−1. We can introduce the coor-
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dinate χ:

χ =
∫ dr√

1 − Kr2
=


sin−1 r (for K = 1)
r (for K = 0)
sinh−1 r (for K = −1)

, (1.3.5)

and its function SK(χ),

SK(χ) =


sin χ (for K = 1)
χ (for K = 0)
sinh χ (for K = −1)

, (1.3.6)

that allows us to compact the spatial part of the metric:

dl2 = a2
[
dχ2 + SK(χ)(dθ2 + sin2 θdϕ2)

]
. (1.3.7)

We have already seen the case in which K = 1, that describes the case of a

three-sphere embedded in an abstract flat four-dimensional Euclidean space

(Sect. 1.2.1). The interval for the coordinate χ is 0 ≤ χ ≤ π, where the other

angles take the usual values for the spherical coordinates. Hence the K = 1

model has finite volume, and is referred as close. The case K = 0 is the simplest

one, that describe the flat Euclidean three-space. This model is referred as flat.
The last case with K = −1 describes the geometry of a hyperboloid embedded

in an abstract four-dimensional space. The spatial element of the hyperboloid

is

dl2
k=−1 = a2

[
dχ2 + sinh2 χ(dθ2 + sin2 θ2dϕ2)

]
. (1.3.8)

Note that the passage from a positive curvature to a negative one is obtained

with the transformation R 7→ iR. On a three-sphere, any point can be mapped

onto another with a rotation, while on three-hyperboloid any point can be

mapped onto another with a rotation by an imaginary angle. These transfor-

mations leave the metric unchanged, demonstrating that all the points and di-

rections are equivalent, accordingly to the cosmological principle.

1.3.3 Dynamics in the expansion

The basic equation of the expansion

l(t) = l0a(t) (1.3.9)

is applied to the concepts exposed in Sect. 1.2.2 to describe fundamental laws

of the expanding Universe. Since l(t) ∝ a(t), the Eq. 1.2.14 transforms in
ä
a

= −4
3

πG(ρ + 3p) +
Λ
3

, (1.3.10)
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where we have added the cosmological constant. The energy conservation Eq.

1.2.16 transforms into

ρ̇ = −3(ρ + p)
ȧ
a

. (1.3.11)

Eliminating the pressure, we obtain the corresponding of Eq. 1.2.18:(
ȧ
a

)2

=
8
3

πGρ +
K
a2 +

Λ
3

, (1.3.12)

that can be rewritten introducing the Hubble’s parameter and the curvature

model

H2 =
(

ȧ
a

)2

=
8
3

πGρ ± 1
a2R2 +

Λ
3

, (1.3.13)

where the the sign for the curvature model is negative in case of closed model

and positive for open model.

The Eq. 1.3.13 gives us important information on the behavior of the different

components of the Universe. First, if matter presents negligible pressure, the

energy conservation Eq. 1.3.11 states that matter density scales as

ρ ∝
1

a(t)3 , (1.3.14)

accordingly to the common sense that a volume scales as a(t)3 and the mass is

conserved. Then, we consider the different behaviors of the components with

the scale factor in Eq. 1.3.13. Matter density varies as a higher power of the

expansion parameter a(t) then the Λ term and the curvature term. Tracing back

the scale factor to smaller values, the mass term dominates. We can neglect the

last two terms in Eq. 1.3.13 and write(
ȧ
a

)2

=
8
3

πGρ, (1.3.15)

which yields

a ∝ t2/3 (1.3.16)

and

t =
2

3H
=

1
(6πGρ)1/2 . (1.3.17)

When t → 0, we have a → 0, and ρ → ∞, that represents a singularity.
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1.3.4 The cosmological redshift

First of all, we show how the cosmological principle applies to the recession

law. In vector form, the recession velocity of a galaxy at distance l is

v = H0l. (1.3.18)

Another observer, recessing from us with a velocity v′ will see the recession of

the same galaxy with velocity

v̂ = v − v′ = H0(l − l′) = H0 l̂, (1.3.19)

where l̂ is the distance between the second observer and the galaxy and the

Hubble law is clearly applied in case of non-relativistic velocities.

For the redshift, imagine an observer measuring at time t some radiation emit-

ted in the past. For that observer, the radiation has a certain wavelength λ(t).

Another comoving observer will observe the same radiation after a time t + δt,
at a proper distance l = δt (with c = 1). The first observer sees the second mov-

ing with a recession speed of v = Hl = (ȧ/a)δt. The wavelength measured by

the second observer is Doppler shifted

λ(t + δt) = λ(t)(1 + v) = λ(t)[1 + (ȧ/a)δt], (1.3.20)

that is reduced to
λ̇

λ
=

ȧ
a

(1.3.21)

with the solution

λ(t) ∝ a(t). (1.3.22)

In Sect. 1.1.3 the redshift has been defined through the Eq. 1.1.9. Using the

above relation, we get

1 + z =
λ0

λe
=

a0

ae
, (1.3.23)

where the subscript o refers to the observed wavelength and scale factor at the

present and the subscript e refers to the wavelength at the emission and the

scale factor of the Universe at that time. In this thesis, we often refer to the

redshift in term of emitted and observed frequencies
νo

νe
=

ae

ao
=

1
1 + z

(1.3.24)

or in the preferred form νe = νo(1 + z) (sometimes, the subscript 0 is used in

place of o ). The redshift loses its nature of measuring how distant is an object

from us, and assumes the slightly different meaning of measuring the epoch of

a certain event.
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1.3.5 Parameters

The expansion factor H = ȧ/a is a function of time. We can define it as the re-

lation among different parameters, each one describing the behavior of a com-

ponent of the Universe, which density evolves with time:

H2 =
(

ȧ
a

)
=
(

ż
1 + z

)
= H2

0 [Ω(1 + z)3 + ΩR(1 + z)2 + ΩΛ], (1.3.25)

where H0 is the Hubble constant at the present time and the parameters inside

the square brackets, Ω, ΩR and ΩΛ are constants who evolves explicitly with

time (redshift). These parameters are the density parameter

Ω =
8πGρ0

3H2
0

, (1.3.26)

related to the mean matter density ρ0. As we already know, the mean mass

density scales as the inverse cube of the scale factor, ρ ∝ a−3 ∝ (1 + z)3. The

second parameter is the curvature parameter

ΩR =
1

(a0H0R)2 . (1.3.27)

This parameter is positive when R is real (positive curvature, closed space) and

negative with open space (R is imaginary). For flat space, R → ∞ and Ω → 0.

The last term is the cosmological constant parameter

ΩΛ =
Λ

3H2
0

. (1.3.28)

At the present epoch, the equality between H and H0 in Eq. 1.3.25 is obtained

through the relation:

Ω + ΩR + ΩΛ = 1 (1.3.29)

since z = 0 cancels the power laws of the first two parameters.

1.3.6 The Einstein-de Sitter solution

The discovery of a non-static Universe, moved Einstein to reject the idea of the

cosmological constant. Accordingly with the idea of de Sitter, Einstein declared

that the simplest reasonable case was considering the only mass density, the

only one at that time having observable evidence and hence not negligible. The

scale factor and time relations for an Universe filled only with matter are given

in Eqs. 1.3.16 and 1.3.17, while the line element is

ds2 = dt2 − a2(t)[dr2 + r2dΩ]. (1.3.30)
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Since the expression inside square brackets is the ordinary flat space, the Einstein-

de Sitter model is often referred as a flat model.

Even in the case that the others two parameter, ΩR and ΩΛ are non-zero, at

high redshifts the dominant term is the matter density. At the early stages, the

Universe was in a Einstein-de Sitter state,

H =
ȧ
a

=
ż

1 + z
= H0Ω1/2(1 + z)3/2, (1.3.31)

with the solution

t =
2
3

1
H0Ω1/2(1 + z)3/2 (1.3.32)

independently of the cosmological constant and space curvature.

From Eq. 1.3.26 and Eq. 1.1.12, we can derive the numerical value of the mean

matter density:

ρ0 = 3ΩH2
0/(8πG) = Ωρcrit = 2.78 × 1011Ωh2M⊙ Mpc−3

= 1.88 × 10−29Ωh2 g cm−3. (1.3.33)

1.3.7 Distances in cosmology

The following concepts are fundamental tools when dealing with redshift and

the metrics associated to distant events in the space-time. The following auxil-

iary function enters in most of the calculations

E(z) ≡
√

Ω(1 + z)3 + ΩR(1 + z)2 + ΩΛ. (1.3.34)

The Hubble’s constant at any redshift can be expressed via the Eq. 1.3.34,

H(z) = H0E(z) that is a generalization of the Eq. 1.3.31. The quantity dz/E(z) is

the proper distance that a photon travels in the interval dz, divided by the scale

factor, hence is a comoving distance. The integration along the line-of-sight

(LOS) is the the total LOS comoving distance

DC =
c

H0

∫ z

0

dz′

E(z′)
(1.3.35)

The transverse comoving distance DM is related to the LOS comoving distance

DM =


c

H0
1√
ΩR

sinh[
√

ΩR
H0
c DC] for ΩR > 0

DC for ΩR = 0
c

H0
1√
|ΩR|

sin[
√
|ΩR|H0

c DC] for ΩR < 0.
(1.3.36)
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The comoving distance between two elements that take place in the same time

(or redshift) and are seen separated by the angle δθ is δθDM. The comoving

distance is the proper motion distance defined in Weinberg 1972, [10].

The angular diameter distance for an object is the defined as the ratio between its

physical transverse size to its angular size (i.e., measured by a telescope). It is

the comoving diameter distance multiplied by the scale factor

DA = a(t)DM =
DM

1 + z
. (1.3.37)

The angular diameter distance between two objects is not the the difference

between their angular diameter distances, but

DA12 =
1

1 + z2

DM2

√
1 + ΩR

H2
0 D2

M1
c2 − DM1

√
1 + ΩR

H2
0 D2

M2
c2

 (1.3.38)

that is valid only for ΩR ≥ 0.

Another fundamental tool is the luminosity distance DL that is defined as the

ratio between the emitted bolometric luminosity L and bolometric flux S

S =
L

4πD2
L

(1.3.39)

(see Eq. 1.1.3), where

DL = (1 + z)DM = (1 + z)2DA. (1.3.40)

The comoving volume VC is defined as the volume in which the number density

of non-evolving objects locked in the Hubble flow is constant. The element of

the volume is

dVC =
c

H0

(1 + z)2D2
A

E(z)
dΩdz (1.3.41)

in the solid angle element dΩ and redshift interval dz. Integrated, we get the

comoving volume of the sky

VC =

 4π
2ΩR

(
c

H0

)
[Ξ(DM, ΩR) − Θ(DM, ΩR)] for ΩR ̸= 0

4π
3 D3

M for ΩR = 0
(1.3.42)

where the functions Ξ(DM, ΩR) and Θ(DM, ΩR) are

Ξ(DM, ΩR) =
DM

(c/H0)

√
1 + ΩR

D2
M

(c/H0)2 , (1.3.43)
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Figure 1.2 Relevant distances in cosmology. Solid line: Ω = 1, ΩΛ = 0; dotted lines:

Ω = 0.05, ΩΛ = 0; dashed line: Ω = 0.2, ΩΛ = 0.8. All plots from Hogg (1999), [5].

and

Θ(DM, ΩR) =


1√
ΩR

arcsinh
(√

|ΩR| DM
(c/H0)

)
for ΩR > 0

1√
ΩR

arcsin
(√

|ΩR| DM
(c/H0)

)
for ΩR < 0.

(1.3.44)

In Fig. 1.2 are plotted distances for different models of Universe. All the plot

and references in this section are from Hogg (1999), [5].

1.3.8 The k-correction

Bolometric quantities do not discern among frequencies or wavelengths of the

emitted radiation. Band luminosities are converted to band fluxes through the
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k − correction
Sν = (1 + z)

Lνe

Lν

Lν

4πD2
L

(1.3.45)

when observing in a frequency interval and

Sλ =
1

(1 + z)
Lλe

Lλ

Lλ

4πD2
L

(1.3.46)

when observing in a wavelength interval. The quantities with the subscript e
are the frequency and wavelengths at the rest frame of the emitter, νe = ν(1 +
z) and λe = λ/(1 + z), where ν and λ are the observed quantities. The k-

correction is fundamental in observation astronomy, since it has to be taken

into account for each emission with a non-constant νLν.

1.4 Growth through gravitational instability

The Universe appears homogeneous on large scales. In contrast to the static

model, the expanding Universe has been close, in the past, to the homogeneity

observed today. On smaller scales, the structures we observer (galaxy groups,

clusters and filaments) are a departure from the homogeneity. At the position x

and at time t, we define the density as

ρ(x, t) = ρb(t)[1 + δ(x, t)]. (1.4.1)

Here, ρb(t) is the mean background density and δ(x, t) is the density contrast,
a number that measures the departure from the homogeneity. The spatial co-

ordinate x is the coordinate of the observer that records the density contrast at

proper time t. A hypothetical collection and comparison of the records from all

the observers freely moving in the Universe can be done even if some of them

are separated by the Hubble length.

1.4.1 Newtonian equations of motion

The Newtonian mechanics approach to perturbation theory is better suited to

study the growth of large structures such as galaxy clusters. These structures

present typical sizes R to be much smaller than the Hubble length H−1, hence

the velocities involved are non-relativistic and the treatment through the New-

tonian laws is justified, [1].
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The baryonic matter is considered as a pressureless ideal fluid. Indicating with

u the velocity field in an inertial coordinate system at the proper position r, the

mass conservation equation is(
∂ρ

∂t

)
r
+ ∇r + (ρu) = 0 (1.4.2)

while the Eulerian equation of motion is(
∂u
∂t

)
r
+ (u + ∇r)u = −∇rΦ . (1.4.3)

The Poisson’s equation for the potential Φ is ∇2
r Φ = 4πGρ.

1.4.2 Comoving coordinates

In Eq. 1.3.1 we have already seen the relation between proper coordinates and

comoving. The same relation is applied to the comoving coordinate x respect

the proper one r,

x = r/a(t) . (1.4.4)

The gradient ∇r is computed with respect to the proper coordinate. Passing to

the comoving coordinate and removing the subscript:

∇ = a∇r . (1.4.5)

Furthermore, the velocity can be seen as a sum of two separate velocities:

u = ȧx + v(x, t), (1.4.6)

where the first part is the the Hubble flow and the second part is the peculiar

velocity of the object relative to the general expansion. The time derivative of

any function f = f (x, t) with respect the proper coordinate is(
∂ f
∂t

)
r
=
(

∂ f
∂t

)
x
− ȧ

a
x · ∇ f , (1.4.7)

where the gradient is with respect to x (Eq. 1.4.5). Differentiating with respect

the comoving coordinate the Eq. 1.4.2(
∂

∂t
− ȧ

a
x · ∇

)
[ρb(t)(1 + δ)] +

ρb
a
∇ · [(1 + δ)(ȧx + v)] = 0 (1.4.8)

where we can use the differential 1.3.14 with respect to t, ρ̇b = −3ρb ȧ/a to get

the simpler form:
∂δ

∂t
+

1
a
∇ · [(1 + δ)v] = 0. (1.4.9)
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The potential Φ can be rewritten in terms of the comoving potential ϕ(x, t)

Φ = ϕ(x, t) +
2
3

πGρba2x2 − 1
6

Λa2x2, (1.4.10)

useful for the Poisson’s equation in which enters the density contrast

∇2ϕ = 4πGρba2δ. (1.4.11)

Reminding the notation for the time derivative in Eq. 1.4.7, we can use the

above expression in the Eq. 1.4.3:(
∂

∂t
− ȧ

a
x · ∇

)
(ȧx + v) +

1
a
(ȧx + v) · ∇(ȧx + v)

= −1
a
∇ϕ − 4

3
πGρbax +

1
3

Λax. (1.4.12)

Finally, using the relation between the expansion velocity ä and the sources for

gravitation (Eq. 1.3.10), we can simplify the above equation

∂v
∂t

+
ȧ
a

v +
1
a
(v · ∇)v = −1

a
∇ϕ. (1.4.13)

The set of Eqs. 1.4.9, 1.4.11 and 1.4.13 represents the evolution in an expanding

universe of mass fluctuations, where the pressure is negligible with respect to

the density.

1.4.3 Linear evolution

On small scales, neglecting the pressure is not so well justified, but comes to a

realist approach when averaging on larger scales. In this regime, we can com-

pute δ and v in linear perturbation theory, neglecting terms of order δv or δ2.

Thus, Eqs. 1.4.9 and 1.4.13 have simplest forms:

∂δ

∂t
+

1
a
∇ · v = 0, (1.4.14)

∂v
∂t

+
ȧ
a

v +
1
a
∇ϕ = 0. (1.4.15)

Deriving with respect to time the first equations and subtracting the divergence

of the second, where we can substitute the Poisson’s expression in Eq. 1.4.11,

we get the time evolution of the mass density contrast

∂2δ

∂t2 + 2
ȧ
a

∂δ

∂t
= 4πGρbδ. (1.4.16)

21



CHAPTER 1: INTRODUCTION

For the Einstein-de Sitter model, where the density is the dominant component

with respect to the curvature and the cosmological constant, the scale factor

scales as t2/3 and the time evolution becomes

∂2δ

∂t2 +
4
3t

∂δ

∂t
=

2
3t2 δ, (1.4.17)

that has the solution

δ = At2/3 + Bt−1. (1.4.18)

The two coefficients A and B are functions of the comoving coordinate x, while

the two functions in t are linearly independent. The first term is the growing
mode of a density perturbation, while the second term is known as the decaying
mode.

The growing mode corresponds to the gravitational instability and it is the

mechanism at the base of the structures formation in the Universe. Indicat-

ing with D(t) the function upon which depends the δ in Eq. 1.4.18, Eq. 1.4.14

becomes

∇ · v = −a
∂δ

δt
= −aδ

Ḋ
D

, (1.4.19)

since the coefficient A depends only on the position. We define the velocity

factor

f =
a
ȧ

Ḋ
D

=
1
H

Ḋ
D

(1.4.20)

and we compare Eq. 1.4.19 to the Poisson’s equation for the peculiar gravita-

tional acceleration g = −∇ϕ/a

v =
f H

4πGρb
g =

2
3

f
ΩH

g, (1.4.21)

that for Einstein-de Sitter model (Ω = 1 = f ), has the usual form v = gt.
For a negligible cosmological constant or curvature, the velocity factor has an

phenomenological value

f ≈ Ω0.6. (1.4.22)

1.4.4 The Jeans scale

When the photons-baryons gas is not negligible, the pressure affects the solu-

tion. The pressure force per unit volume is

F = −1
a
∇p = −dp

dρ

∇ρ

a
= −c2

s ρb
∇δ

a
, (1.4.23)
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where c2
s ≡ dp/dρ is the velocity of sound. The equation 1.4.13 for the velocity

evolution becomes

∂v
∂t

+
ȧ
a

v +
1
a
(v · ∇)v = −1

a
∇ϕ − c2

s
∇δ

a
. (1.4.24)

The density perturbation in Eq. 1.4.16 takes an additional term:

∂2δ

∂t2 + 2
ȧ
a

∂δ

∂t
= 4πGρbδ +

c2
s

a2∇
2δ. (1.4.25)

The role of the pressure is to counterbalance the effects of gravity. To identify

the size of the overdensities that collapse under the gravitational force, the den-

sity contrast can be decomposed in Fourier series:

δ = ∑ δke−ik·x, (1.4.26)

where ks are the wavenumbers and δk are the amplitudes of the series. For

each amplitude δk(t), the evolution of the density perturbation yields

d2δk

dt2 + 2
ȧ
a

dδk

dt
=
(

4πGρb −
k2c2

s
a2

)
δk. (1.4.27)

The evolution of each amplitude of the overdensity is zero when the term in

brackets is zero. This is obtained at a certain wavenumber kJ

kJ =
2a
cs

(πGρb)1/2, (1.4.28)

which correspond to the Jeans wavelength

λJ =
2πa
kJ

=
(

πc2
s

Gρb

)1/2

. (1.4.29)

The role of the Jeans wavelength is clear: at wavelengths larger than this value,

the pressure wave velocity cannot counteract the gravitational fall and hence

the perturbation grows as it was in absence of pressure. For shorter wave-

lengths, the contrast oscillates as a sound wave.

1.4.5 The Zeldovich approximation

The Zeldovich approximation, [11], is a further step beyond the linearity of the

motion equations. Basically, the proper position can be seen as the product

between the scale factor and the comoving position plus a perturbation term

r(t) = a(t)q + b(t)f(q), (1.4.30)
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where q is the usual comoving coordinate, b(t) is a scale function for the time-

independent displacement field f(q), representing a strain. The vectorial field

f(q) is irrotational, hence the gradient of a scalar field f(q) = ∇ψ(q). The

relation with the linearized density perturbation is

δ = −b
a
∇f. (1.4.31)

The above equation represents a first-order Lagrangian perturbation theory.

When the density perturbation is small, the Lagrangian approach and the linear

Eulerian approach gives the same results. In fact, we can see that b(t)/a(t) =
D(t), where D(t) is the same linear relation of Eq. 1.4.18. We can rewrite the

proper coordinate as

r(t) = a(t)[q + D(t)f(q)]. (1.4.32)

The Zeldovich approach is a method used to set up quasi-linear initial condi-

tions for N-body simulations.

1.4.6 Spherical collapse

The spherical collapse is a very useful way to describe overdensity that are

much greater than unity. A spherical distribution of matter behaves as a closed

universe. The matter density of the sphere has not to be uniformly distributed,

as the collapse is driven by the mean density.

In a matter-dominated Universe, the relation between the proper radius and

time is the solution for a cycloid

r = A(1 − cos θ);

t = B(θ − sin θ), (1.4.33)

where A and B are constants. The perturbation within the sphere is

δ ≃ 3
20

(
6t
B

)2/3

(1.4.34)

that for early times is the growing mode for linear evolution. Breakdown from

linearity occurs at later times. The first departure is found at turnaround. From

the first of Eqs. 1.4.33 we see that a maximum for r is reached at θ = π and

t = πB. In this case r = 2A, while from the cycloid solution A3 = GMB2,

where M is the mass enclosed in the sphere of radius r. The mean density inside

the sphere is ρ̄ = 3M/4πr3, while the background density is ρb = 1/(6πGt2),
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as the solution is in a matter-dominated Universe (Eq. 1.3.17). The density

contrast at the time of the turnround is

ρ̄

ρb
=

9
16

π2 ≃ 5.6 (1.4.35)

Linear evolution would predict δlin = (3/20)(6π)2/3 ≃ 1.06. After the turn-

around, the system collapses under the gravity, reaching a singularity for

θ = 2π. This occurs when

δlin = (3/20)(12π)2/3 ≃ 1.69. (1.4.36)

The collapse never occurs, but rather the system encounters a state of equi-

librium according to the virial theorem, with a kinetic energy K related to the

potential energy V with the relation V = −2K. The virialization state means

the end of the gravitational collapse for a given system, reached at θ = 3π/2

with an overdensity of ≃ 147. If the collapse is taken as the point the system

reaches the virialization, with θ = 2π, then the overdensity is taken to have a

value of 178.

1.5 Radiation

One could easily argue that there is a huge amount of radiation in the Uni-

verse: the one proceding from stars, from hot gas clouds, from catastrophic

events such supernovae. Nonetheless, the radiation density from these events

is not even comparable to the matter density or the cosmological constant. In a

steady-state Universe, the presence of radiation as one of the components of the

Universe has not been taken into account. But for theorists facing the steady-

state with the Big Bang model, the radiation would have an important role in

the early stage of the Universe. After the Big Bang (a proper image of the Big

Bang is a high density state where new physics is expected), the Universe was

incredibly hot and dense, presenting a high energy density and pressure. In this

state elemental particles were coupled. As the Universe expanded and cooled,

elemental particles were capable to form neutrons and protons, in a continu-

ous process of formation and destruction. Photons were at thermal equilibrium

with matter, and the streaming path was limited by the frequent collisions and

absorptions. The universe was totally opaque to the light. As the plasma fur-

ther expanded, the first light nuclei formed and the corresponding temperature
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lowered to the point that the photons were free to escape. The sphere subtended

by the free streaming path of the photons originary on a single point is known

as the horizon of that single point, while all the parts of the Universe that can

interacts with these are said to be causally connected.

In a thermal equilibrium, the plasma behaves as a black body, an entity that emits

all the radiation absorbed with a spectral distribution that only depends on its

temperature. The mean number of photons per oscillation mode is

N =
1

eh̄ω/kT − 1

=
1

ehc/kTλ − 1
(1.5.1)

where ω = 2πν is the angular frequency, h̄ = h/2π is the reduced Planck con-

stant and k is the Boltzmann constant. For the adiabaticity (no interactions with

other fields occur because the frequencies of radiation are much more larger

than the expansion rate, [1]) N is independent of time, but the expansion of the

universe stretches the wavelength as λ ∝ a(t). This implies, as the Universe

expands, that the temperature scales as

T ∝
1

a(t)
, (1.5.2)

that means that the temperature of the radiation is proportional to 1 + z,

T(t) = T0a0/a(t) = T0(1 + z). (1.5.3)

In order to derive the radiation spectrum for the radiation energy, we report the

expression for the number of photons per unit volume with (angular) frequency

ω in the interval dω moving in any direction (dΩ = 4π)

dN = n(ω)dω =
1

π2c3
ω2dω

eh̄ω/KT − 1
(1.5.4)

This number density function does not change its shape even during the expan-

sion of the Universe.

The blackbody radiation energy u(ω)dω is the Eq. 1.5.4 times the energy of

each photon h̄ω

u(ω)dω =
h̄

π2c3
ω3dω

eh̄ω/kT − 1
, (1.5.5)

that is known as the Planck distribution. Usually in astrophysics, this quantity

is given in unit of erg sec −1 cm−3 Hz−1. The same quantity is often referred

as emission per solid angle, then divided by 4π. Another way to express the
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radiation spectrum is the surface brightness, that is the Eq. 1.5.5 divided by 4π

and multiplying by the speed of light c

i(ν)dν =
2h
c2

ν3dν

ehν/kT − 1
, (1.5.6)

where the ν = ω/2π is the change between angular frequency and frequency.

When hν ≪ kT, Eq. 1.5.6 can be approximated with a Taylor series to the first

order

i(ν) = 2kTν2/c2, (1.5.7)

that is known as the Rayleigh-Jeans approximation. Later we will discuss better

these quantities, introducing unities to measure them.

Integrating over frequencies we get the radiation energy per unit volume

u =
∫ ∞

0
u(ω)dω =

π2

15
(kT)4

(h̄c)3 = aBT4, (1.5.8)

where aB = 7.56 × 10−15 erg cm−3 K−4.

The radiation density is obtained dividing Eq. 1.5.8 by c2

ρrad =
aBT4

c2 =
aB

c2 T4
0 (1 + z)4. (1.5.9)

We have seen in Eq. 1.3.14 that the matter density scales as a function of (1 + z)3,

thus there has been an epoch at high redshift that the Universe was dominated

by radiation. We can find the value of the corresponding scale factor recalling

that the matter density is

ρ(t) =
1

a(t)3
3H3

0
8πG

(1.5.10)

and

a(t) =
8πGaBT4

0

3H2
0c2

1
Ω

≃ 2.5 × 10−5Ω−1h−2, (1.5.11)

which has redshift

1 + zeq =
1

a(t)
≃ 4 × 104Ωh2. (1.5.12)

The most recent value for zeq has been given by the 7-years WMAP data, zeq =
3196+134

−133, [9]. We can calculate the time at which matter density and radiation

density were equivalent (from Eq. 1.3.32)

t(zeq) =
2
3

1
Ω1/2H0(1 + zeq)

≃ 2.6 × 1010Ω−2h−4 seconds (1.5.13)

Before this time, the expansion of the Universe has been dominated by the ra-

diation, after this time it is matter dominated.
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Figure 1.3 Spectrum of the Cosmic Microwave Background from the FIRAS instrument

at the north Galactic pole.

1.5.1 The Cosmic Microwave Background

We have mentioned the radiation temperature in Eq. 1.5.9, where the tempera-

ture T0 is some certain value that is measurable and that can tell us what was the

temperature at the time of equivalence. The temperature T0 is the temperature

of the Cosmic Microwave Background, or CMB

T0 = 2.735 ± 0.06 Kelvin, (1.5.14)

that is the result of the FIRAS instrument mounted on the COBE satellite, that

is the first generation of satellite for the measurement and the study of the CMB

and its features, [12]. The measurement has confirmed that the CMB is a per-

fectly thermalized blackbody at the temperature T0 (see Fig. 1.3).

The discovery of the CMB has one curious aspect: the debate on the evo-

lution of the Universe (steady-state model or expansion) has taken place for

decades, and the same theorists of the evolution struggled between a hot early
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universe (the Big Bang) and a cold one. The abundance of helium observed

in the universe (about 26%) was a heritage of a hot and dense primordial uni-

verse, as pointed out in the paper of Gamow and Alpher (the famous α − β − γ

paper) who first described the potential physics that could be involved. In 1948

Alpher and Herman published a paper with the description of a relic radiation,

filling the whole space with blackbody distribution, cooled at 5 K as proof of

the expansion of the Universe. After several years, Robert Dicke from Prince-

ton University and his collaborator P.J.E. Peebles concentrated their effort not

only on the calculation of the temperature (they gave a value of 10 K) but also

in the possible way to find the relic radiation. That was in 1964. In the same

year, a couple of radio astronomers, A. Penzias and R. Wilson working for the

Bell Telephone Company, started some calibration works on a radio antenna

in Holmdel, New Jersy, not very far from Princeton. They were continuously

receiving a signal, independently of the direction of the antenna. After one

year trying to understand the nature of such excess signal, they came across the

Peebles work and invited Dicke to Holmdel for a demonstration. The Cosmic

Microwave Background was finally discovered, meaning the victory of the Big

Bang model over other models. Penzias and Wilson were granted the Nobel’s

prize in 1978.

The discovery of the CMB has opened the door to the cosmology science, since

the radiation itself is full of information on the early stages of the Universe.

1.5.2 Thermal properties

In the hot plasma that constitutes the early Universe, radiation and matter are

strictly coupled and the high radiation pressure keeps the matter fully ionized,

in a continuous reaction

e + p ↔ H + γ (1.5.15)

where the net balance of the chemical potential is

µ(e) + µ(p) = µ(H). (1.5.16)

The chemical potential comes useful in the calculation of the number density of

particles per unit volume

n = g
(2πmkT)3/2

(2πh̄)3 e(µ−mc2)/kT, (1.5.17)
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where g is the number of the spin states (2 for protons and electrons and 4 for

the hydrogen atom in its ground state). The Saha thermal ionization equilibrium
equation relates the number densities to the ionization fraction x = ne/n:

nenp

nHn
=

x2

1 − x
=

(2πmekT)3/2

n(2πh̄)3 e−B/kT, (1.5.18)

where B = 13.60 eV is the binding energy of the electron and proton respect the

hydrogen atom. Beside the Ω parameter for the matter, we must introduce a

restricted parameter for only baryon matter content, Ωb, related to the number

density through the relation

n = 1.12 × 10−5ΩBh2(1 + z)3 cm−3. (1.5.19)

Using the scale relation for the temperature of Eq. 1.5.14, we can calculate

d log x/d log z,

log[x2/(1 − x)] = 20.99 − log[Ωbh2(1 + z)3/2] − 25050/(1 + z). (1.5.20)

For a ionization fraction of x = 0.5, we can calculate the redshift at decoupling

zdec ∼ 1300, (1.5.21)

with a temperature of

Tdec = T0zdec ∼ 3000 K. (1.5.22)

Recent releases of WMAP data report the precise measurement of the redshift

for the decoupling, zdec = 1088.2 ± 1.2, [9].

The decoupling is maybe the most important event in observational cosmology.

Photons, previously coupled to matter, are now free to stream away, with a

typical path compared to the horizon of the Universe at that time. The redshift

at which the coupling happens is usually referred as the Last Scattering Surface,

the light emerging is what we observe in the present as CMB.

1.5.3 Recombination

The recombination is the transition phase that follows decoupling. It refers to

the formation of hydrogen atoms via the capture of the electron in the coulom-

bian field of the proton. But there was no previous catch in the thermal history

of the universe and the term ’recombination’ is used improperly. Through ex-

pansion and cooling, the primeval plasma is free to combine to atomic hydro-

gen at the same redshift of the decoupling phase.
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The electron can be captured in the ground state: in this case, the loss of energy

of the electron gives birth to a photon that ionizes another atom, leaving no net

change. The production of atomic hydrogen passes through the capture in an

excited state. If the electron is captured in the metastable state 2s, the atomic

hydrogen is formed with the two-photon decay, [13]

p + e → H∗ + γ1,

H∗ → H + γ2. (1.5.23)

This transition is parametrized through the rate Λ = 8.23 s−1 (not to be con-

fused with the cosmological parameter). Besides the two-photon decay, it is

present the allowed transition 2p → 1s that gives birth to a Lymann-α (Lyα)

emission. The net rate of production of hydrogen per unit volume is

αbn2
e − βen2s = R + Λ

(
n2s − n1sehνα/kT

)
, (1.5.24)

where αb = 2.6 × 10−13cm3s−1 is the case B recombination coefficient, R is the

rate for the allowed Lyα transition and να is the frequency. The factor βe is

just the Saha relation for the thermal equilibrium between the states n2s and n2
e ,

found in Eq.1.5.18 but with the binding energy B2 = 3.4 eV of the level n = 2.

From the above equation is possible to calculate the time variation of the ratio

between electron density and baryon density

− d
dt

ne

n
=
(

αbn2
e

n
− βen1s

n

)
C. (1.5.25)

The constant C takes into account the expansion of the Universe that introduces

a redshift in the wavelength of the Lyα photons.

In the absence of reionization sources, at low redshifts the Universe is almost

completely neutral. Scaling formula can be found in Peebles (1993), [1].

Residual electrons give birth to molecular hydrogen H2, via the reaction chains

H + e ↔ H− + γ

H− + H ↔ H2 + e (1.5.26)

and

H + p ↔ H+
2 + γ

H+
2 + H ↔ H2 + p. (1.5.27)
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The first reaction has a binding energy of B− = 0.75 eV and can produce molec-

ular hydrogen at relatively low redshift, while the second chain has a binding

energy of B+ = 2.65 eV and requires higher redshifts. The second case reaches

the equilibrium, described by the Saha equation

n2+

np
=

n(2πh̄)3

(2πmpkT)3/2 eB+/kT, (1.5.28)

that reaches the unity at a redshift z f = 200 in an expanding universe, [14].

1.5.4 Helium and light nuclei

Last step in this brief summary of the thermal history of the Universe is the

production of helium, one of the constituent of the diffuse gas. The nucleus

of helium consists in two protons and two neutrons, hence the necessity for a

chain to form neutrons out from protons:

e− + p ↔ n + ν,

ν̄ + p ↔ n + e+,

n ↔ p + e− + ν̄. (1.5.29)

The ratio between neutron and proton is kept in thermal equilibrium for plasma

temperatures grater than Q = (mn − mp)c2 = 1.2934 MeV (1 MeV ∼ 1.1 × 1010

Kelvin )

n/p = q−Q/kT. (1.5.30)

In the reaction 1.5.29, the pair neutrino-antineutrino plays a determinant role

and the final abundance of helium is strictly related to the number of species of

neutrino, that in the standard model is set to be Nν = 3. The reaction between

a proton and a neutron creates deuterium (a stable isotope of the hydrogen

formed by a proton and a neutron in its nucleus)

n + p ↔ d + γ (1.5.31)

. The inverse process (photo-dissociation) destroys deuterium faster than its

formation, until temperature drops below kT ∼ 100 KeV. At this point, the for-

mation of helium 4He is favored through the intermediate production of tritium

(isotope of the hydrogen, which nucleus has two neutrons and one proton) and
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the isotope 3He:

d + d ↔ t + p,

d + d ↔ 3He + n,

t + d ↔ 4He + n,
3He + d ↔ 4He + p. (1.5.32)

Through the reactions in 1.5.29, 1.5.31 and 1.5.32 is worth noting that the for-

mation of helium and light nuclei is the result of a fine balance of different

equilibria, involving temperatures that favor different reactions, relative abun-

dance and recombination times respect the Hubble time. Details are to be found

in Bernstein, Brown & Feinberg (1989), [15], and Peebles (1983), [1]. Here, it is

worth mentioning the neutron abundance respect baryons:

nn

nn + np
≡ x(t) = x0e−

∫ t
t0

(λ+λ̂)dt′ +
∫ t

t0

λ

λ + λ̂
de−

∫ t
t0

(λ+λ̂)dt′′ (1.5.33)

where λ = λ1 + λ2 and λ̂ = λ̂1 + λ̂2 + λd. Here, λ1 and λ̂1 are respectively the

probabilities per unit time of the reactions p + e− ↔ n + ν (λ1 for the produc-

tion, λ̂1 for the decay), while λ2 and λ̂2 are the probabilities for the reactions

p + ν̄ ↔ n + e−. Finally λd is the probability for the decay of neutron through

the reaction n → p + e− + ν. Number of species of the neutrinos play an im-

portant role in the numerical integration of Eq. 1.5.33. The equilibrium for the

deuterium for the reaction n + p ↔ d + γ is found via the Saha equation

npnn

ndn
=

4
3

(
mpmn

md

)3/2 (2πkT)3/2

(2πh̄)3n
e−B/kT, (1.5.34)

where n = 1.124 × 10−5ΩBh2 cm−3 is the actual number density for baryons

and B = 2.225 MeV is the binding energy for deuteron. The number Nν of

neutrino families is the parameter that fixes the neutron abundance at different

temperatures, along with the baryon density ΩB. The value for the baryon

density has been refined in the last cross-measurements from WMAP seventh

years, ΩBh2 = 0.02258+0.00057
−0.00056, while the primordial helium fraction is

YHe = 0.28+0.14
−0.15, that is higher than the previous estimation of YHe = 0.249, [16].

For Nν has been estimated a lower limit Nν > 2.7(95% CL), accordingly with

Nν reported in Peebles (1993).
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1.6 Dark Matter

All the previous sections have treated the ordinary matter, matter that is formed

by baryons and that is often associated to a luminous emission such as stars or

gas clouds. But it has been known from the 1930s that a missing mass is respon-

sible for bounding the Virgo and Coma clusters, [17, 18]. Since then, the term of

missing mass has been gradually substituted by the term dark matter and with

time has begun one of the most discussed paradigms in astrophysics, since it

appears to be the largest contribution to the matter density. Furthermore, the

dark matter paradigm is puzzling not only for cosmologists, but even also for

particle physics, it is deeply involved in finding and defining limits for the can-

didates.

For quite a long time, the dark matter has been associated to a baryonic com-

ponent not directly measurable, as low mass stars, stars remnants and planets.

Anyway, in Gott et al. (1974), [19], the authors noticed that if ΩB ∼ 1, this

could not explain the observed deuterium abundance that would have burnt

into helium due to the high density of matter in primeval state of Universe.

From this consideration, leaving a reasonable fraction of dark matter as still

baryonic, most of it has to be something exotic, that does not participate in

element-building reactions.

A hypothetical non-baryonic dark matter candidate was a particular family of

massive neutrinos (few tens of eV) that can be produced in nuclear beta decay.

This neutrino could be a perfect non-baryonic candidate to explain some prop-

erties of rich galaxy clusters, but it is not able to explain some behavior of dwarf

galaxies. Some of the problems of massive neutrinos were: first, the refinement

of the measure of the Hubble’s constant h, that was no more compatible with

the mass of a family of neutrinos, that needs to be smaller, second, a primeval

universe were fluctuations in radiation, baryons and neutrinos are Gaussian,

scale-invariant and adiabatic, would encounter a real problem to form struc-

tures. Anyway these critics could be removed by considering another family

of massive neutrinos or shifting the formation of structures in a non-adiabatic

scheme. Nonetheless, the combination of the two critics found a better solution

in realizing that particle physics would offer different candidates to maintain

both the initial adiabatic conditions and the robust galaxy formation model.

Because neutrinos were relativistic and exhibited a pressure at z ∼ zeq, they are
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indicated with the term hot dark matter (HDM), while pressureless candidates

are indicated with the term cold dark matter (CDM).

Baryonic matter in non-emitting form has been ruled out on the basis of the

observable mass-to-light ratio of our galaxy (M/L = 2.2(M⊙/L⊙)). The pres-

ence of high quantity of hydrogen in brown dwarfs and neutron stars is ruled

out by the fact that most of the mass of the preceding stars is expelled and

then reprocessed in new stars formation. The capture of an important fraction

of molecular hydrogen in cometlike snowballs has to be ruled out. Comets

form by elements that are not hydrogen via chemical reactions that bind them

together. The only way for molecular hydrogen to form comets is through grav-

itational attraction, but at the temperature of the CMB, T0 = 2.725 K, the mini-

mum mass required for a stable hydrogen formation is six orders of magnitude

grater than the observed comets of the solar system (see calculations in Peebles

1993, [1]). Similar mass-to-light ratios to the one reported for the Milky Way

have been found for the cores of other galaxies in the neighborhood, indicating

that baryonic matter cannot widely exceed the luminous matter. This indicates

that the bulk for the dark matter is still to be found in non-baryonic matter.

1.6.1 Cold Dark Matter

CDM is today accepted as the most plausible candidate for fulfilling the mat-

ter parameter Ω. The shift of attention from the HCD (neutrinos) to the CDM

is mainly due to elegant way to explain galaxy formation. The particles to

be thought as CDM would have to be nonrelativistic at the time first fluctua-

tions formed, in order to allow them to grow until dark matter becomes self-

gravitating at z ∼ zeq. Dark matter is at equilibrium with the CMB at the

temperature T, with small chemical potential respect kT, and the occupation

number of the particles for the energy ϵ is

N =
1

eϵ/kT ± 1
, (1.6.1)

After a first phase of equilibrium between creation and annihilation, the ex-

pansion of the Universe brings the suppression of the annihilation, and the

number n f of particles is frozen at time t f , at equilibrium with radiation tem-

perature Tf . In case of non-relativistic particles, the energy can be expressed as
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ϵ = mc2 + p2/2m, and the number density at freezing is

n f =
∫ 4d3p

(2πh̄)3 e−p2/2mkTf e−mc2/kTf

=
(mkTf

2πh̄

)3/2

e−mc2/kTf . (1.6.2)

This number is diluted through the expansion, and an estimate for present

value holds

ρd =
n f m

(1 + z f )3 =
3H2

0Ωd

8πG
, (1.6.3)

where the mass m is to be estimated. The density parameter Ωd is of the order

of unity for masses between 2 and 10 GeV.

A candidate in this range of mass are the weakly interacting massive particles or

WIMPs. WIMPs are been introduced in the framework of the supersimmetry

(SUSY), a step ahead of the standard model of particle physics. To the light-
est supersimmetric particle (LSP) has been given the name of neutralino, and is

the candidate for the WIMP CDM. Neutralino must have very small, but a still

measurable cross section with ordinary matter, provided by weak force. Mass

range for the neutralino spans from 10 to 1000 GeV. Experiments for the detec-

tion and measurements of WIMPs are on going or planned. A indirect mea-

surement consists of the detection of some neutrinos produced by the annihila-

tion of WIMPs captured in great quantity by the Sun. But the most promising

experiments has been the cryogenic dark matter search (CDMS) in Sudan Mine

(Minnesota, US), where two events between supposed WIMPs and an array

of detectors (made up by germanium and silicon cooled at 50 µK) have been

recorded. Despite the uncertainty of the nature of the detections (that might

have been produce by some sort of decay in the background particles), the re-

ported mass is in the range 7 - 11 GeV, as the same order expected for the WIMP

dark matter.

The other accepted candidate for cold dark matter is the axion. The axion is a

lightweight boson. Standard model in particle physics predicts the violation of

the either charge (C) and parity (P, together CP) for strong nuclear interactions.

If the CP is violated, an electric dipole momentum in neutrons is expected, but

this has never been observed. In 1977, Peccei and Quinn have introduced a new

symmetry that violates the CP spontaneously, [20], but this involves a massless

quark. Massless quarks have never be endemonstrates to exist, hence later the

axion has been introduced to take that role. Axions are expected to have very
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light masses, 10−6 − 1 eV, and to interact very weakly with ordinary matter.

Due to its low mass, axions must be present in the Universe in the state of a

Bose-Einstein condensate (BEC), confined in a potential and cooled to almost

0 K. Several experiments are operating for the detection of axions: the Italian

Polarizzazione del Vuoto con LAser (PVLAS) has succesfully announced in recent

years the detection of axions, but soon after, international particle physics com-

munity and the same PVLAS team announced that the result had to be rejected.

The CERN Axion Solar Telescope (CAST) tries to detect axions produced in the

interior of the Sun by the scattering of X-rays over electrons and protons in

the presence of strong electric fields. These axions are then reconverted into

X-rays in the laboratory using strong magnetic fields. A first phase has been ac-

complished without any trace of the particle, but restricting the range of mass.

A second phase is running. Another experiment is the Axion Dark Matter Ex-
periment (ADMX), that consists of a haloscope, an instrument capable to detect

the axions filling the halo dark matter around our galaxy. The axions would

be converted into photons by strong magnetic fields, and the photons detected

in a vacuum chamber at resonance frequency of 460 - 810 MHz. Detection of

relevant events are still expected. A review of latest results on the axion dark

matter theory can be found in Duffy & van Bibber (2009), [21].

1.6.2 Alternatives to the Dark Matter

One of the most decisive evidences in favor of the DM model is the rotational

curve of spiral galaxies. In Fig. 1.4 is reported the result from van Albada et

al. (1985), [22], where the radial velocity of the gas in the galaxy NGC 3198 is

measured as a function of the radius. The only disk, which is accounted for all

the matter in the classical model without DM, cannot reproduce the data points.

The rotation elements in a spiral galaxy are in equilibrium where gravitational

attraction counterbalances the centripetal force

GMdiskm
r2 =

m
r

v2 (1.6.4)

and velocity has to show an inverse law v =
√

GM/r. But the rotation curve in

the figure is flat, and is explained with the introduction of the halo of DM that

surrounds the galaxy.

In the effort to explain this behavior, Mordehai Milgrom proposed a modifica-

37



CHAPTER 1: INTRODUCTION

Figure 1.4 Rotation curve for NGC 3198, from van Albada et al. (1985), [22]. The data

points describe a flat curve, that is a superposition of two components: the baryonic

matter (disk) and the dark matter component (halo).

tion of the Newton physics [23–25]. The proposed modification is

GMm
r2 = mµ(x)a, (1.6.5)

where µ(x ≫ 1) ≈ 1, µ(x ≪ 1) ≈ x and x = a/a0. The classical Newtonian

acceleration is a, while a0 ≈ 10−10 m sec−2. Hence, when the ordinary acceler-

ation is much greater than a0, we get the usual second law of Newton F = ma.

But in the external part of galaxies, the acceleration a induced by the central

disk can drop to values lower than a0. In this case, eliminating m in Eq. 1.6.5

GM
r2 =

a2

a0
(1.6.6)

then, considering the acceleration in a central field

a =
v2

r
=

(GMa0)1/2

r
. (1.6.7)

The velocity of rotation curve is

v = (GMa0)1/4 (1.6.8)
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that is a naturally flat curve.

MOND is an interesting alternative to DM, as it can fit the rotation curves of

galaxies with high accuracy, regardless of their type. Some applications to fit

MOND’s critical acceleration a0 to different scales have been successful, [26].

Nonetheless MOND seems to fail when predicting accelerations on galaxy clus-

ter and cosmological scale.

Another alternative conceptually similar to the MOND is the theory of modified
gravity or MOG, proposed by Moffat in 2006, [27]. The author introduces a com-

posed potential Φ(r) = ΦN(r) + ΦY(r), where ΦN(r) is the classical Newtonian

potential and

ΦY(r) = σ
e−µr

r
, (1.6.9)

is the Yukawa potential, derived from particles physics. In this potential, σ is

a function of the mass M0, a parameter to be estimated according to the mass

of the system one is interested with and µ is the effective mass of the particle

vector in the scalar-tensor-vector gravity (STVG). The gravity acceleration, for a

spherical symmetry, depends on a function G(r), instead of the usual Newton’s

constant G
a(r) = −G(r)M(r)

r2 , (1.6.10)

where the function G(r) depends on the MOG mass scale M0 and on the MOG

range scale r0. When r tends to zero, G(r) tends to the Newtonian value of G.

The author examines different cases of interest in astrophysics and cosmology

and claims that remarkably successes has been achieved. MOG seems to fit well

for a single galaxy as well as a galaxy cluster and it is the only theory (stated by

the author) capable to explain the anomalous acceleration of the Pioneer 10 and

11 spacecrafts outside the Solar system. The frame is completed by the MOG’s

prediction of the acoustic peaks featured in the angular power spectrum of the

Cosmic Microwave Background.

Since its formulation, MOG gives an excess of mass to the baryons. Since dark

matter is strictly coupled to baryons, in principle there is no way to distinguish

the two theories. Fortunately, in recent years, a powerful dark matter test has

been observed.
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Figure 1.5 The reconstructed image of the cluster 1E0657-558, commonly named Bullet

cluster for its unique feature to show a merger between two subclusters on the plane

of the sky. The emission from the hot ICM gas is shown in red color (false) from the

central region, while the convergence map which indicates the potential, is shown in

blue.

1.6.3 A laboratory for the Dark Matter: the Bullet Cluster

The Fig. 1.5 shows the cluster 1E0657-558, in a reconstructed image that en-

hance its unique feature, the separation between the collisionless component

(dark matter and galaxies) and the collisional component, the ICM gas.

The cluster, located at z = 0.296, has been identified by Tucker et al. (1998),

[28] and a deeper analysis has been carried out by Clowe et al. (2006), [29].

The analysis consists of a X-ray observation through the Chandra satellite, and a

set of optical observation performed with various telescopes, the 2.2 meters at

ESO/MPG, the 6.5 meters at the Magellan IMACS and the Advanced Camera

for Surveys (ACS) mounted on the Hubble Space Telescope (HST). The cluster

is composed of two components, a main cluster (east-side in figure) and a sub-

cluster (west-side), separated by 0.72 Mpc on the sky. The X-ray image, though,
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gives a different picture, with a huge concentration of hot ICM gas located be-

tween the two clusters. Even if this configuration appears to be very special,

it is no surprising since the galaxy component and the gas have two different

behaviors when a merger between clusters occurs. In fact, galaxies are to be

treated as collisionless, due to the large separation between them. Gas has to be

treated properly as a viscous component with phenomena of friction when the

two clouds cross.

The test for the dark matter arises when reconstructing the convergence map.

As will be explained in the section about gravitational lensing, huge gravita-

tional potentials produce a coherent distortion (shear) of the image of the back-

ground galaxies. The shear can be measured and makes it possible to recon-

struct the radial profile of the mass density. Clowe et al. (2006) analyzed the

shear field. Since the mass of the gas component for a cluster (see later) is

higher than the combined mass of the galaxies, one could expect that the ra-

dial density profile will be centered on the ICM cloud. Surprisingly, the shear

analysis confirms that the radial profile is split and centered on the two clusters

visible in the optical images. This leads to the conclusion that the main mass is

not the ICM, but neither can be the galaxies. Clowe et al. (2006) state that this

is a direct empirical proof of the existence of dark matter, since its collisionless

nature will locate its peaks at the same location of the galaxies.

The Bullet cluster remains the only observed cluster merger where the compo-

nents separation appears so distinctive. The discovery has open a new window

in different fields: hydrodynamical simulations have been run to test the initial

velocities of the two clusters before merging to simulate the shock fronts that

are observed, large ΛCDM simulations (see later) with high spatial resolution

have evidenced that a similar separation between components is expected in

1-2% of the clusters with masses larger than 1014M⊙, [30]. A supposed similar

merger has been observed for the cluster CL0024 through the lensing analy-

sis performed by Jee et al. (2007), [31] (see Chapter 4), but along the line of

sight and not on the plane of the sky. Moreover, the theories that propose an

alternative to the Dark Matter have tried to explain the dynamical state of the

Bullet cluster. MOND seems to fail in the prediction of the observed conver-

gence map, while in a recent paper by Brownstein and Moffat (2007), [32], the

modified gravity (MOG) has been applied successfully to reconstruct the sur-

face mass density. Nonetheless, the dark matter paradigm remains the most
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robust workframe for the observed separation of the two components.

1.7 Statistics of density field

The basic quantity to study the statistics for the density field is the variance

< δ2 >. The variance is calculated sampling the same event in several rep-

etitions of a process. But our observations are limited to a single Universe,

hence it does not constitute an ensemble. Nonetheless, the density fluctuations

in different parts of the sky are non-correlated, hence they can be treated as

independent and the average can be done over a volume rather than over the

number events of the ensemble.

1.7.1 Correlation function

The first quantity to be defined is the two-point correlation function, ξ(r), [1] de-

fined through the probability that two point processes (galaxies or overdensity)

are found in the two volume elements dV1 and dV2 placed at a separation r

dP = n2dV1dV2[1 + ξ(r)]., (1.7.1)

where n is the number density. Giving a function dependent on the position r,

for which dP = f (r)dV1dV2 and n = ⟨ f ⟩, we can find

n2ξ(r12) = ⟨ f1 f2⟩ − n2 = ⟨( f1 − n)( f2 − n)⟩, (1.7.2)

where f1 = f (r1) and r12 = |r1 − r2|. We can consider our function f , the

density at the position r, ρ(r). The average over a volume is ⟨ρ(r)⟩ = ρb, and

substituting into Eq. 1.7.2 we get

ξ(|r1 − r2|) =
⟨(ρ(r1) − ρb)(ρ(r2) − ρb)⟩

ρ2
b

, (1.7.3)

that is the dimensionless autocorrelation function. The quantity expressed above

is the product between two overdensities, and a simple change of variables

r = r2 − r2 results in

ξ(r) = ⟨δ(r)δ(r1 + r)⟩ (1.7.4)

that is the standard expression for the correlation function of the density field,

where the angle brackets indicate the average over a volume V with periodic

boundary conditions. The boundary conditions are formally expressed by the
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wavevectors k = 2πn/L, where L is the side of the volume and the vector n is

a triplet of integers, positive or negative.

1.7.2 Power spectrum

It is possibleto compute the Fourier transform of the correlation function (see

Eq. 1.4.26)

ξ(r) =

⟨
∑
k

∑
k′

δkδ∗k′ei(k−k′)·r1e−ik·r
⟩

. (1.7.5)

The periodic boundary conditions of the volume make the cross term k ̸= k′ to

cancel on average, while the real field δ(r) has the property δk(−k) = δ∗k(k),

[2]. Passing to the integral

ξ(r) =
V

(2π)3

∫
|δk|2e−ik·rd3k, (1.7.6)

where is evident that the correlation function is the Fourier transform of the

quantity

P(k) ≡ ⟨|δk|2⟩, (1.7.7)

which is the power spectrum. The vector notation k can be dropped because

the isotropy of the space, ⟨|δk|2(k)⟩ = |δk|2(k). The last step is to express the

integral in 1.7.6 in polar coordinates, d3k = k2dkdΩ. The spherical symmetry

makes it trivial to integrate over the angular part

ξ(r) =
V

(2π)3

∫
4πP(k)

sin kr
kr

k2dk. (1.7.8)

Alternatively, the power spectrum can be expressed in the form

∆2(k) ≡ V
(2π)3 4πk3P(k). (1.7.9)

A featureless power spectrum has the form

⟨|δk|2⟩ ∝ kn, (1.7.10)

and is the simplest form to represent the power spectrum in the absence of a

functional form. The variance of the density contrast, when filtering the density

field in a box of comoving length x is

⟨δ2⟩ ∝
∫ 1/x

0
kn4πk2dk ∝ x−(n+3), (1.7.11)
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from which

δrms ∝ x−(n+3)/2. (1.7.12)

A scale invariant power spectrum is obtained for n = 1, to have ∆2 ∝ k4. This spec-

trum is also referred as the primordial power spectrum, since it arises in the era

of inflation (see details in Sect. 17 of Peebles 1993, [1]). A scale invariant power

spectrum assumes that the the density perturbation evolves linearly with the

Hubble length and the Universe looks always the same when seen on the Hub-

ble length (describing the Universe similar to a fractal). A scale invariant power

spectrum is the primordial power spectrum for the density fluctuations during

the inflationary era.

1.7.3 CDM model

We recall some basic concepts: zeq and teq are the redshift and time when the

universe passes from the radiation-dominated phase to the matter-dominated

phase. In the radiation era, scale factor is a ∝ 1/T (Eq. 1.5.2), while the expan-

sion rate is (
ȧ
a

)2

=
8πGabT4

3c2 , (1.7.13)

that gives a ∝ t1/2. In the radiation era, we can divide the modes of perturba-

tion in two branches: those that are larger than the horizon (larger wavelengths,

smaller ks) and those that reside inside the horizon. Conceptually, the pressure

gradient force prevents the growth, while the scale factor is expanding. Indi-

cating with kx the breakthrough wavenumber, we have

P(k) ∼
{

A(kx/k)3 for k ≫ kx ,

Ak/kx for k ≪ kx ,
(1.7.14)

where A is the amplitude term.

There is another approach to describe the evolution from a primordial power

spectrum Ak to a decaying mode Ak−n. We consider a perturbation hα,β to the

line element, [1],

ds2 = dt2 − a(t)2(δα,β − hα,β)dxαdyβ. (1.7.15)

The time evolution of the perturbation in the line of the light path is a con-

sequence of the overdensities, either in radiation (coupled to baryons) (ρr and

pr = ρr/3) and dark matter (only density ρx)

d2h
dt2

ȧ
a

dh
dt

= 8πG(2ρrδr + ρx). (1.7.16)
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The dark matter component has the only condition for the energy conservation

dδx

dt
=

1
2

dh
dt

, (1.7.17)

while for the matter radiation fluid, there are the energy-momentum conserva-

tion equations
dδr

dt
=

4
3

(
kv
a

+
1
2

dh
dt

)
, (1.7.18)

and
dv
dt

= −kδr

4a
. (1.7.19)

In Peebles (1982), [33], details are given for the numerical integration of the

above equations, with a resulting parametric form for the power spectrum in

the era of radiation z ≪ zeq

P(k) =
Ak

(1 + αk + βk2)2 (1.7.20)

where the numerator is the primordial power spectrum and the denominator is

the transfer function. The factors α and β do depend on the matter parameter Ω

and have the sizes of Mpc and Mpc2 respectively. In Appendix A, illustrating

our computations for the halo function, we use the different transfer function

from Bardeen et al. (1986), [34], and we give the value for the normalization

term A.

The power spectrum P(k) is a fundamental quantitys in cosmology and astro-

physics and it can be tested with observations. A very good picture of this is

shown in Fig. 1.6, from Tegmark et al. (2004), [35]. The shape of the power spec-

trum evolves in this way: we start from a linear, primordial power spectrum, on

all scales. The inflation has expanded the overdensities to scale larger than the

horizon. Fluctuations are growing on all scales, but soon as a mode enters the

horizon, the growth is counterbalanced by the radiation pressure and starts to

oscillate as a sound wave and smoothed by the Silk damping (see next section).

This length scale corresponds to the Jeans scale seen previously (see Eq. 1.4.29).

This corresponds to the right hand side of Fig. 1.6, but imagine that the overall

amplitude is lower and the scale affected by the suppression is just the far end

of the tail. As soon as the horizon expands, more scales enter it and get sup-

pressed, while the modes outside the horizon keep growing. This creates the

observed peak. The peak moves leftward (from higher wavenumbers to lower).

The transition to the matter dominated era freezes the power spectrum since all

modes now are free to grow linearly.
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Figure 1.6 Matter power spectrum reconstruction through observations, from Tegmark

et al. (2004), [35]. Visible is the peak that corresponds to the Jeans scale at the equiva-

lence.

1.7.4 Silk damping

For scale factors a < adec, only dark matter overdensities can grow in pres-

ence of radiation pressure. For baryons, the only growing modes are the ones

outside the horizon, that are stopped by the pressure action as they enter it.

Baryonic modes inside the horizon could potentially start to grow again after

teq (as matter dominates the expansion), but this is not going to happen because

the effect of the radiation drag. Photons are tight coupled to baryons, and this

limits their streaming path. But photons can diffuse, moving from overdense re-

gions to underdense ones. Baryons follow photons, and this dragging smooths

the overdensities on scales smaller that the diffuse scale ldiff, [3]. The diffuse

scale is given the name of Silk scale and to the associated mass the name of Silk
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mass, [36]

MS ≃ 6.2 × 1012M⊙

(
Ωtot

Ωbar

)3/2

(Ωtoth2)−5/4. (1.7.21)

Silk mass varies as MS ∝ a15/4 in the period aeq < a < adec, while for a > adec

the effect is not present anymore. Silk mass, hence, represents the minimum

mass for baryonic objects forming after the decoupling, because smaller fluctu-

ations are wiped out by the radiation drag.

1.7.5 Cluster of galaxies

This section focuses on one of the most important issues of this thesis, the

galaxy clusters. These structures are the biggest gravitationally bounded ob-

jects. A large gravitationally bounded system, that does not show some of

the typical properties of the clusters is referred to be a galaxy groups. Differ-

ences between the two different aggregations are to be found first in the mass

range, groups are in the order of 1011 − 1013M⊙, while clusters are typically

1014 − 1015M⊙. A characteristic feature of clusters is the presence of the intr-
acluster medium (ICM), sometimes referred also as intergalactic medium (IGM),

that is baryonic matter in the gas state, mainly formed of primordial hydrogen

and helium. The typical temperature of the gas is a few keV (∼ ×107 Kelvin).

The gas is an important tracer of the mass of the cluster, since it emits in the

radio 21-cm line when in neutral state, or emits through bremsstrahlung and

synchrotron when ionized. The ICM gas is discussed in the next Chapter.

Galaxy clusters have one, important, intrinsic information: they show the strict

correlation that exists between the collapse of dark matter clumps and the dis-

tribution of baryons (gas and stars). Galaxy clusters have shown (rotation

curves, gravitational lensing) that they are formed prevalently of dark matter,

and that the baryonic matter has been coupled with it because of the high gravi-

tational potential. For the underlying dark matter distribution, both for clusters

and groups, we give the generic name of halo.

A statistic for the number density of halos was first proposed by Press and

Schechter (1974), [37], lately revisited by Sheth and Tormen (1999), [38]. If we

indicate with δ the mass density contrast at decoupling, we can derive the stan-

dard deviation (rms) of the density contrast smoothed over a comoving win-

dow rs

σ = ⟨δ2⟩1/2. (1.7.22)
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We have seen in linear theory that the collapse of an overdensity occurs at

δlin = 1.69 (Eq. 1.4.36). We need to project this quantity at the redshift of

decoupling. For an Einstein-de Sitter universe (Ω = 1) this is straightforward

since density scales with the scale factor

δc =
δlin

(1 + zdec)
. (1.7.23)

For a flat Universe with cosmological constant Ω + ΩΛ = 1, the computation is

quite different and can be found in Appendix A (for reference, see Mathiesen &

Evrard 1998, [39]). Any overdensity that at decoupling has a mass density con-

trast larger than δc will collapse in a halo. Since the fluctuations are Gaussian

distributed, the probability that this occur is

P(> δc) =
1

(2π)1/2σ

∫ ∞

δc
e−δ2/2σ2

dδ, (1.7.24)

where σ = sigma(M) and fixes the radius of the window where the con-

trast is averaged. The above equation indicates the probability that a spher-

ical volume of radius rs (window) is placed on a protocluster of mass M or

smaller. The same probability in Eq. 1.7.24 can be applied with the variance

σ(M− δM), and the difference between the two expressions (P in σ(M) and P
in σ(M− δM)) is the probability that a halo of mass between M and M− δM
is formed. The volume of the window is Vs = M/ρ0 and defining the quantity

νc ≡
[

δc

σ

]2

, (1.7.25)

we can compute the number density of object forming at the present with mass

between M− δM in the Press-Schecther formalism

M dn
dM =

(
2
π

)1/2 d ln σ−1

d lnM ν1/2
c e−νc/2. (1.7.26)

The seven-year fit of the WMAP data has fixed the value for the rms fluctuation

over a radius of 8h−1 Mpc to be σ8 = 0.801 ± 0.030, [9].

The role of the mass function has been intensely used in the next Chapter, where

an estimation of the halos produced per unit volume and per unit of redshift has

been used to model the free-free emission from groups and clusters. More de-

tails on the used Sheth-Tormen mass function (a revisited version of the Press-

Schechther), on the rms fluctuation σ, on the transfer function and the window

function are given in the Appendix A. We only advise that the role of the halo

mass function has demonstrated its importance among the cosmological hydro-

dynamical simulation sets.
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1.7.6 The observation of the bottom-up formation

We have not mentioned the formation of structures in case the dark matter

is constituted by relativistic particles, like neutrinos (HDM). HDM theory has

two branches, the adiabatic model and the isocurvature model. The adiabatic

HDM is the simplest model. Neutrinos coupled with baryons exhibit a strong

pressure force that does not allow the gravitational collapse of small coherent

lengths. Hence, the collapse occurs only for objects on scales larger than the

ones predicted by CDM scenario. Then isolated galaxy or groups have to be

formed out through a fragmentation, or top-down. Nonetheless, the observation

of the isolated galaxies in our neighborhood seems to indicate that no fragmen-

tation has occurred, since the peculiar velocity does not indicate a motion from

out the Virgo cluster. Furthermore, our Galaxy is older than others in the same

group, indicating a process of aggregation instead of fragmentation. Cold dark

matter (CDM) supplies an accordance model for the observed hierarchic struc-

ture formation. Groups, clusters and filaments are the result of gravitational

attraction of smaller clumps.

Even if the observations seem to role out the adiabatic model for the HDM, the

isocurvature model is still an open question, since the bottom-up formation is

not in contradiction with it. Here, we limit to say that in this scenario, hot dark

matter is still formed up by relativistic neutrinos, but the clumps have been

originated by baryons after the decoupling. Only at later time, neutrinos cool

down and fall in the gravitational potential of the baryonic clumps.

1.7.7 N-body simulations

In recent years, cosmology has taken enormous advantage of the processing

power of modern computers. There is no better way to test a model than to

replicate it in a virtual universe, especially when the involved physics are in

the non-linear regime. Of course, many limitations have to be considered in

this task, but final picture of the large scale structure from a simulation clearly

resembles the matter distribution from observations.

In this thesis, for the part of the bremsstrahlung emission from halos, we have

used a set of simulations based on the cosmological code GADGET-2 , by Volker

Springel, [40]. The code has been run on local facilities and further details are
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given in the next Chapter. Here, we will briefly mention the basic underlying

the cosmological code, as extracted from the work of the author.

A simulation basically consists of the evolution of two types of matter under

mutual interaction: collisionless matter that acts only under a gravitational

field, and a collisional matter, for which it is necessary to develop some hy-

drodynamical properties besides gravity. Collisionless matter is the dark mat-

ter, collisional matter consists of gas that develops friction and viscosity. Both

types are subjected to the gravitational field.

Collisionless dynamics is based on the collisionless Boltzmann equation (CBE)

coupled to the Poisson equation in an Friedman-Lemâitre model (expanding

background universe with a Robertson-Walker metric). We assume that the

matter is discretized as a finite number of particles, each one has assigned a

mass mi. Given a single particle phase-space (x, p), where x is the comoving

coordinate (three-vector) and pi = a2miẋi. The function f (x, p, t) is the mass

density for a single particle in phase-space, and the BCE defines the evolution

of the that function under the gravitational force and in the presence of no col-

lisions:
d f
dt

≡ ∂ f
∂t

+ p
∂ f
∂x

− ∂Φ
∂x

∂ f
∂p

= 0 (1.7.27)

where Φ(x) is the peculiar potential for each particle, defined as

Φ(x) = ∑
i

miϕ(x − xi). (1.7.28)

Particles are distributed inside a cube of size L with periodic boundaries condi-

tions, the interaction potential ϕ(x) is the solution of the Poisson equation

∇2ϕ(x) = 4πG

[
− 1

L3 + ∑
n

δ̃(x − nL)

]
. (1.7.29)

The density particle function δ̃(x) is a Dirac δ-function convolved with a spline

kernel, which depends on a comoving softening length ϵ, δ̃(x) = W(|x|, 2.8ϵ),

[41]. For large numbers of particles N, the computation of the gravitation force

is a heavy task. GADGET-2 can use approximated force computations with a set

of modification to the main method, since the errors in the force accuracy are

comparatively small. However, this assumption is valid only for collisionless

particles. Collisional gas particles require high accuracy computation, limiting

the execution of cosmological codes involving gas only to powerful clusters of

processors.
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The gas component of the simulation has to be supplied with a full set of equa-

tions for the computation of the pressure and viscosity. The smoothed particle
hydrodynamics (SPH) method considers a discrete set of particles with coordi-

nates ri, velocities vi and mass mi. The thermodynamic state of each particle is

expressed through the entropy per unit mass, si, or more accurately, by an en-

tropic function A ≡ P/ργ. The density estimation makes use of the smoothing

kernel

ρi =
N

∑
j=1

mjW(|rij|, hi). (1.7.30)

The smoothing length hi is the length in which is contained the same amount

of mass of the smoothing neighbors

4π

3
h3

i ρi = NSPHm, (1.7.31)

where m is the average particle mass. From a Lagrangian point of view, the

equation of motion for a particle is

dvi

dt
= −

N

∑
j=1

mj

[
fi

Pi

ρ2
i
∇iWij(hi) + f j

Pj

ρ2
j
∇iWij(hj)

]
(1.7.32)

with the coefficients fi defined as

fi =
(

+
hi

3ρi

∂ρi

∂hi

)−1

. (1.7.33)

The kernel function in Eq. 1.7.32 is defined as Wij = W(|ri − rj|, h) and Pi =
Aiρ

γ
i .

The time evolution of the motion of the particles due to viscosity needs another

system of N equations

dvi

dt
|visc = −

N

∑
j=1

mjΠij∇iWij, (1.7.34)

where Πij is the artificial viscosity term and a parametrization depending on vij,

rij and hij is given in Gingold & Monaghan (1982), [42] and Balsara (1995), [43].

The term W ij is the arithmetic average of the two kernels Wij(hi) and Wij(hj).

All the basic equations for the gravitational field and the hydrodynamics are

evolved in time, but some algorithms are required to speed the computation.

GADGET-2 uses a combination of Fourier mesh and the tree algorithm for the
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computation of the gravitational field. Through this method, the problem is

solved as a N-body system, in which dark matter and gas are represented with

particles. Usually, each particle feels the force of the other N − 1 particles, but

the tree algorithm decompose the space in adaptive multipoles: distant par-

ticles are grouped as a single entity exerting just one force. The simplest im-

plementation of the tree is considering the box as root cube, then dividing it

in eight sub-nodes of half box length each. The algorithm chooses, based on a

threshold, if the partial gravitational force in the node is accurate for the com-

putation. If it is, the force inside the node is used, and then other node is taken

into account. If it is not, the node is opened, again in eight sub-nodes and

the algorithm analyzes each of them. This will reduce the computation to a

O(log N).

An example of the open criterion adopted in GADGET-2 is to open the node if

the the following relation is satisfied

GM
r2

(
l
r

)2

≤ α|a|, (1.7.35)

where M is the mass of the node, l is its side length and r is the distance from

the particle for which is asked the open-criterion. The total amount of the ac-

celeration obtained in the last time-step is |a| an α is a tolerance parameter. The

error in the force accuracy that this open-criterion introduces is kept constant,

and adapted to the dynamical state of the simulation where required.

The walking tree algorithm is adopted and adapted for the search of SPH neigh-

bors too. In this case, at a position ri is applied a sphere of radius hi. If

this sphere overlaps the node, then the node is open, otherwise the node is

discarded. This method limits the walking tree process only at local regions

around the particle of interest, allowing CPU power saving.

On smallest scales, the tree algorithm can be implemented with a Particle Mesh
(PM) development, which has been given the name of treePM. TreePM decom-

poses the potential in Eq. 1.7.28 into ϕk = ϕ
long
k + ϕshort

k , where

ϕ
long
k = ϕke−k2r2

s , (1.7.36)

and the real-space of the short range is

ϕshort(x) = −G ∑
i

mi

ri
erfc

(
ri

2rs

)
. (1.7.37)

The scale rs is the scale of the force split and ri = min(x − ri − nL), where x is

the point in the space where the potential is computed and ri is the coordinate
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of the particle. The force is rapidly suppressed by the error function for scales

grater than rs, accounting only for the particles in the short range. The force

expressed by the short scale potential can be computed with the tree algorithm.

Since the suppression to the large scale, for each target particle the walk has to

be performed only on restricted spatial regions. The treePM guaranties that the

force is computed with the same accuracy on all scales of the volume.

The integration scheme used for the GADGET-2 simulation code is the sympletic

leapfrog (a trasformation which maintains a global stability of the system) in-

troduced by Quinn et al. (1997), [44]. The Hamiltonian structure of the system

is preserved in time integration if each step of it is formulated as a canonical

transformation. For the time-step ∆t, the transformations are obtained through

the drift operator and the kick operator

Dt(∆t) :

{
pi 7→ pi

xi 7→ xi +
pi
mi

∫ ∆t
t

dt
a2 ,

(1.7.38)

Kt(∆t) :

{
xi 7→ xi

pi 7→ pi + fi
∫ ∆t

t
dt
a ,

(1.7.39)

where

fi = −∑
j

mimj
∂ϕ(xij)

∂xi
(1.7.40)

is the force on the particle i. The time evolution operator can be approximated

as a combination of the above operators, like drift-kick-drift (DKD) or kick-

drift-kick (KDK). The advantage of this system over similar time integration

schemes like Runge-Kutta is, for a Hamiltonian system, that no perturbations

are introduced in the long term behavior.

Gas particles constitutes a Hamiltonian system if no viscosity arises. However,

long-time perturbations arise only under some circumstances, and when this

occurs a thermal energy components is added to the Hamiltonian of the system

Htherm =
1

γ − 1 ∑
i

mi Aiρ
γ
i , (1.7.41)

for which the leapfrog scheme can be used. Further notions and details are to

be found in [40] and the references therein.
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1.7.8 The Standard Model

A cosmological simulation like GADGET-2 is a powerful test not only for the

dark matter paradigm, but for the entire Standard model. We can briefly sum-

marize it. The Universe is in a dynamical state of expansion and has been orig-

inated in a hot and density state about 13 billions years ago. Its age is concor-

dant with a model of flat universe with the total density parameter Ωtot ≃ 1.

In the early stage, quantic fluctuations were stretched by an accelerated expan-

sion which theorists give the name of inflation. Isotropy and homogeneity are a

result of this primordial expansion, which can be invoked to give an answer to

the problems of the horizon and flatness. The first problem concerns different

patches of the sky, separated by large angular distances, that seem to be causally

connected in the past. The flatness problem is more puzzling. We observe today

a high grade of flatness, |Ωtot − 1| ∼ 0.01. This indicates that in the past, the

flatness had to be stronger than the value it has today, exactly |Ωtot − 1| ∼ 10−62.

A slightly different value in the past would translate today into a non-flat uni-

verse, hence the extremely little order of magnitude represents a clear problem

of fine-tuning. Inflation resolves the problem with the introduction of a constant

density for the inflationary field, even in the case of an accelerated expansion

where the scale factor a(t) rises exponentially. This will lead to a merely flat

geometry independently of the initial curvature. Moreover, the scale-invariant-

spectrum (n = 1 for the spectral index of Eq. 1.7.10) predicted by inflation has

been confirmed by the WMAP observations.

The matter content of the Universe accounts only for a fraction of the total den-

sity parameter, Ω ≃ 0.27. The baryonic percentage is lower, Ωbar ≃ 0.0449.

The matter is almost totally dark, and the standard model prescripts it is cold.

Evidence of the non collisional nature of the dark matter has been mentioned

in the previous sections. The dark energy, commonly associated with the initial

guess of Einstein’s cosmological constant and hence indicated with Λ is driving

the accelerated expansion with a density parameter ΩΛ ≃ 0.73. The standard

model is often referred as flat ΛCDM model.

Another fundamental aspect of the standard model is the reionization: after the

recombination redshift zrec ≃ 1300, the primordial gas was in a neutral phase.

The first luminous objects injected UV photons into the IGM, which slowly

went through a new ionization phase. When all the bubbles around ionization

objects overlapped, the reionization process was completed. The beginning and
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Name symbol value

Hubble’s constant H0 70.4 ± 2.5 km sec−1 Mpc−1

Age of Universe t0 13.77 ± 0.13 Gyr

Baryon density Ωb 0.0449 ± 0.0028

Dark matter density ΩDM 0.222 ± 0.026

Dark energy density ΩΛ 0.734 ± 0.029

Primordial power spectrum index nS 0.963 ± 0.014

Optical depth τ 0.088 ± 0.015

End of reionization redshift zreion 10.6 ± 1.2

Table 1.1 ΛCDM parameters. From the seventh year fit of the WMAP analysis, [9].

the duration of the process are not well understood, since it depends on the first

class of luminous objects and on their physical properties, nor has been under-

stood that reionization has occurred once with the actual older population of

stars or it has been a first reionization carried out by the so called Population III
stars, massive stars formed only of primordial gas and that have left no traces

today. Anyway, the redshift of reionization has been measured through the

optical depth τ.

The Tab. 1.1 resumes the concordance model.

Running a cosmological simulation according to the standard model is the most

standard case. ΛCDM simulations have been proved to replicate the large

scale structure quite accurately. In Borgani and Kravtsov (2009), [45], the au-

thors review all the progresses and still open problems for the simulation of

galaxy clusters, hence, simulations for which is required a high spatial resolu-

tion and in which the physics due to the hydrodynamics plays a fundamental

role. Nonetheless, the authors state: “Many of the salient observed properties of
clusters, such as scaling relations between observables and total mass, radial profiles
of entropy and density of the intracluster gas and radial distribution of galaxies are
reproduced quite well”. Excepts the inner regions of the clusters where the sim-

ulations predict a higher star formation rate, generally a cluster is a structure

whose formation is well framed in the ΛCDM model. The Fig. 1.7, from page

14 of Borgani and Kravtsov (2009), reports three snapshots for the dark matter

density, where is visible the bottom-up hierarchical formation.
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Figure 1.7 Three snapshots from a GADGET-2 simulation from [45]. The snapshots rep-

resent the dark matter density in a comoving volume of 24h−1 Mpc, at redshifts (from

left to right) z = 4, z = 2, z = 0.

1.8 Gravitational lensing

This section treats about the theory framework of the gravitational lensing, re-

lated to Chapter 4.

1.8.1 Basics

In gravitational lensing, it is usual to adopt the thin lens approximation because

the cosmological distances between the observer, the lens, and the sources are

much greater than the size of the lens. Hence, the lens can be treated as a plane.

All the other elements in the lensing problem are also assumed to be located

in planes. When there are multiple background galaxies, each one is assumed

to be in a different plane with redshift zi (in the case of strong lensing) or in

the same plane at the average redshift z (in the case of weak lensing). All these

planes are perpendicular to the line of sight and the deflection is assumed to

occur instantly when the light crosses the lens plane.

We define Dls as the angular diameter distance between the source plane and

the lens plane and Dol and Dos as the angular diameter distances from the ob-

server to the lens and from the observer to the sources, respectively. With re-

spect to the line of sight, the sources are located at angular positions βi (i =
1, 2, ..., n with n the number of sources), while the lensed images are located at

positions θi (i = 1, 2, ..., m with m the number of images). We define the equa-

tion of the lens
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Figure 1.8 Simplified geometry of strong gravitational lensing through the thin lens

approximation. The thickness of the lens is negligible with respect to the cosmological

distances involved. DS, DL and DLS are the angular diameter distances from observer

to background galaxies, from observer to lens and from lens to background galaxies

respectively. Note that the distance DLS is not the difference between DS and DL, but is

computed through the Eq. 1.3.38. The positions θs represent the positions of the lensed

images on the plane of the sources. The unlensed position β of the background galaxy

is function of θs and of the deflection angles αs.

β = θ − Dls
Dos

α(θ). (1.8.1)

We denote by ψ(θ) the two-dimensional potential produced by all the masses

located at θ′

ψ(θ) =
4GDolDls

c2Dos

∫
d2θ′Σ(θ′)ln(|θ − θ′|), (1.8.2)

where Σ(θ′) is the surface density of the cluster at the given position θ′. The

part outside the integral is related to the critical density

Σcrit ≡
c2

4πG
Dos

DolDls
. (1.8.3)
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The above equation is used in the definition of the convergence

κ =
Σ(θ)
Σcrit

(1.8.4)

The deflection angle α and the convergence can be expressed as derivatives of

the two-dimension potential

α = ∇ψ, (1.8.5)

κ =
1
2
∇2ψ. (1.8.6)

The magnification that the lens produces on the source is quantified by the de-

terminant of the matrix describing the variation in the image position δθ for a

small variation in the source position δβ

µ = det
∣∣∣∣ ∂θ

∂β

∣∣∣∣ =
[

det
∣∣∣∣∂β

∂θ

∣∣∣∣]−1

. (1.8.7)

From Eq. (1.8.1), we get

µ−1 = 1 − ∂αx

∂θx
−

∂αy

∂θy
+

∂αx

∂θx

∂αy

∂θy
− ∂αx

∂θy

∂αy

∂θx
. (1.8.8)

The strong lens regime is most sensitive to the central mass of the cluster, where

the mass surface density is normally higher than the critical surface mass den-

sity (κ > 1). When the surface mass density drops significantly below the criti-

cal density (κ << 1), we are in the regime of weak lensing. Weak lensing cannot

produce multiple images, but useful information about the distribution of the

mass in the cluster can be extracted from the shear of the distortion (γ1 and γ2).

Differentiating Eq. (1.8.1), we obtain

H = δij −
∂ψ

∂θi∂θj
=

(
1 − κ − γ1 −γ2

−γ2 1 − κ + γ1

)
(1.8.9)

where

γ1(θ) =
1
2
(ψ11 − ψ22), (1.8.10)

γ2(θ) = ψ12 = ψ21, (1.8.11)

where the double subscripts indicate the second order partial derivative. Equa-

tions (1.8.10) and (1.8.11) can be expressed in the complex notation

γ = γ1 + iγ2 (1.8.12)
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to obtain the amplitude and the orientation of the deformation. The reduced
shear is defined (in complex notation) g = γ/(1 − κ). The shear measures co-

herent shape distortions of source galaxies.

The detection of multiple images and/or the measurement of the shear can

be used to constrain the mass distribution of the cluster. In cases where the

number of constraints is large the mass of the cluster expressed in Eq. (1.8.2)

can be reconstructed using a non-parametric method (see Chapter 4).

1.9 Radiation processes

This section is the last part of the introduction Chapter. The aim here is to give

some basics on the emission processes that are developed in Chapters 2 and

3. Even if occurring in a cosmological contest, the radiation mechanisms as

free-free and synchrotron are correlated to structures that are already formed.

However, a last, important, step in the thermal history of the Universe has to

be analyzed, the reionization process.

1.9.1 Cosmic reionization

Reionization has been observed both in high-z absorption line studies and with

the CMB experiments. However, many aspects of the reionization remain un-

clear. First of all, the role of the first stars and quasars. We have already men-

tioned the debate about the existence or not and the efficiency of the first mas-

sive stars, the Population III. But this is just one of the multiple aspects to be

clarified. In Ferrara and Ciardi (2005), [6], they discuss the uncertainty of an-

other parameter, the escape fraction of ionizing photons, fesc. It is generally

accepted that fesc = 7% − 14% for a Milky Way type galaxy. Some studies

have considered the escape fraction from high-z galaxies, with the result that

fesc could drop to lower than 1% at z ≈ 10. At the same redshift, the role of

miniquasars can be relevant.

An accurate model of the reionization of the IGM has to consider a radiative

process

H + γ ↔ p + e, (1.9.1)
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and an electron collision

H + e → p + e + e. (1.9.2)

The inverse reaction of the photoionization is the photon capture

p + e ↔ H + γ, (1.9.3)

while the inverse reaction of the electron collision is the electron capture of the

electron by the proton

p + e → H. (1.9.4)

The recombination coefficient α is estimated through the product of the electron

capture cross section, σr and the velocity of the electron ve,

α = ⟨σrve⟩ =
∫ 4πp2e−p2/2mkT

(2πmkT)3/2
p
m

2h̄2ω2

c2p2
σ1ω1

ω3 , (1.9.5)

where ω1 is the angular frequency of the Lyman series 1s → np with the value

ω1 = 7.9 × 10−18 cm2. An interpolation of the α coefficient has been given in

Osterbrock (1989), [46],

α = 4 × 10−13T−0.7
4 cm3 s−1, (1.9.6)

where T4 = T/104 K. This temperature is the reference temperature to consider

the IGM ionized. The ionized fraction x is determined by the balance between

the recombination rate α and the rate of ionization by radiation or collision.

Gnedin (2000), [47], has modeled the cosmic reionization through a numeri-

cal simulation, identified three stages: a pre-overlap stage where hydrogen is

in neutral form (HI) and ionized bubbles exist only around isolated objects,

an overlap stage where the bubbles expand to ionize the medium and a post-

overlap stage where a small fraction of neutral hydrogen still exists in clumps.

Gnedin identifies the end of the reionization when the neutral hydrogen frac-

tion is less than 103. We have already mentioned that this happens at zreion ≈ 10.

Once ionized, the IGM is left in a state of free ions and electrons, which interact

with each other (free-free). This interaction is also extended to the CMB photons

(inverse Compton) and with magnetic winds (synchrotron). Clumpy regions of

neutral hydrogen emit through the hyperfine transition at 21-cm wavelength.

After reionization, we can start talking about HII regions. With ne we indicate

the number density of electrons in units of cm−3. The reionization is measured

through the optical depth (see Tab. 1.1)

τ(z) = cσT

∫ 0

zreion

dzne(z)
dt
dz

, (1.9.7)
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where σT = 6.65 × 10−25 cm2 is the Thomson scattering cross-section. The elec-

tron density at a given redshift scales as (1 + z)3

ne(z) = nH,0(1 + z)3x(z), (1.9.8)

where nH,0 is the hydrogen density at the present epoch, and x(z) is the ionized

fraction, [48].

1.9.2 Free-free emission

The effect is properly named thermal bremsstrahlung, from the German word

meaning brake radiation.The name free-free is given because the state of the elec-

tron before and after the collision. The term free-free is also used to distinguish

the less energetic bremsstrahlung visible at radio and microwaves bands from

the more energetic interactions in the X-ray band.

The mechanism is straightforward to understand: nonrelativistic electrons, mov-

ing free in the plasma, have a coulombian collision with the ionized hydrogen

and helium nuclei. Interactions between electrons and electrons do not occur

due to the very small cross-section.

A single collision has two parameters: the velocity of the incoming electron v
and the impact parameter b, defined as the minimum distance l between the

electron and the ion. The energy radiated by a single electron-ion interaction is

W =
πZ2e6

4c3m2
e

(
1

b3v

)
, (1.9.9)

emitted in a single pulse of duration t ≈ b/v. The pulse power spectrum is

nearly flat for frequencies lower than a maximum frequency

νmax = (2πt)−1 = v/(2πb), (1.9.10)

then it decreases rapidly. For typical HII regions at T = 104 K, the cutoff fre-

quency is estimated to be νmax ≈ 1014 Hz ≡ 105 GHz.

In HII regions, we can estimate the number of electrons with a velocity range

between v and v + dv that collide with the ions within an impact parameter

between b and b + db per unit volume and per unit time

N(v, b) = (2πbdb)[v f (v)dv]neni (1.9.11)

where f (v) is the velocity distribution for the electrons that for a nonrelativistic

plasma in local thermal equilibrium (LTE) is the Maxwell distribution

f (v) =
4v2

π

( m
2kT

)3/2
e−mv2/kT. (1.9.12)
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The isotropic spectral power is the integral over the parameter b, in the velocity v,

over the whole solid angle

4πϵν =
∫ ∞

b=0

∫ ∞
v=0 Wν(v, b)N(v, b)dvdb

= π3Z2e6neni
c3m2

e

∫ ∞
v=0

f (v)
v

∫ ∞
b=0

db
b

(1.9.13)

in units of cm−3 sec−1 Hz−1. The integral in db diverges for both extremes b = 0

and b = ∞, and hence it is necessary to define a range for the impact parameter

bmin ≤ b ≤ bmax. The free-free emission coefficient is

ϵν =
π2Z2e6neni

4c3m2
e

(
2me

πkT

)1/2

ln
(

bmax

bmin

)
. (1.9.14)

A simple estimation of the ratio in the last term yields

bmax

bmin
≈
(

3kT
me

)3/2 me

3πZe2ν
. (1.9.15)

For a pure hydrogen plasma we can make a numeric evaluation for the free-

free coefficient in Eq. 1.9.14. For a full ionized medium, the number densities

of ions and electrons are to be equal ni = ne, while the effective nucleus charge

is Z = 1. The weak dependence on the frequency is absorbed in the free-free

Gaunt factor, [49],

gff ≈ ln
[

4.355 × 10−2
( ν

GHz

)−1
]

+ 1.5 ln
(

Te

K

)
. (1.9.16)

The numerical estimation of the free-free coefficient used in the calculation in

the next Chapter is

ϵν = 5.4 × 10−39n2
e T−1/2

e gff(ν, Te)e−hν/kTe , (1.9.17)

in units of erg cm−3 sec−1 Hz−1 srad−1.

1.9.3 Synchrotron radiation

Synchrotron radiation is the dominant mechanism for normal galaxies in the

radio band. By normal galaxy we mean a galaxy whose center does not have

a supermassive black hole, or, if present, there is no matter falling onto it and

radiating. The emission is originated by free electrons accelerated to relativistic

velocities in magnetic fields. Consider an electron with velocity v moving in

a magnetic field B. The electric field measured in the rest frame of the charge
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Figure 1.9 Spectrum of galaxy M82 in radio/far infrared, presented by Condon 1992,

[50], using data from Klein et al. 1988, [51] and Carlstrom & Kronberg 1991, [52]. The

spectrum is the sum of the free-free emission (dashed line,) synchrotron radiation (dot-

dashed line) and dust components (dotted line). In the radio band, free-free and syn-

chrotron are the dominant effects, with the latter dominating at lower frequencies, due

to the slope Sν ∝ ν−0.7. The weaker frequency dependence of the free-free, Sν ∝ ν−0.1,

makes it possible to observe only in a narrow window.

is E′ ∝ γB, with an acceleration a′ = (qE′/me). The radiated energy by the

accelerated particle is

dE
dt

=
dE ′

dt′
=

2
3

q2

c3 (a′)2 =
2
3

q2

c3

(
q2

m2
e

γ2B2
)

, (1.9.18)

where the first equivalence is between the lab frame and the charge rest frame

and γ =
√

1 − v2/c2. The power radiated by a single electron of energy

E = γ mec2 is (dE/dt) ∝ ϵ2B2. The energy density of a magnetic field is

Ub = (B2/8π), then the

dE
dt

=
16π

3

(
q2

mec2

)2

γ2cUb ≃ (σTcUb)γ2, (1.9.19)
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where σT is the Thomson scattering cross section. When the electron is rela-

tivistic, its effective mass is meγ and for a spiral motion in a magnetic field, the

angular frequency is ω = (qB/mecγ) = (qcB/E). For relativistic effects, the

angular frequency sets the critical frequency of the emitted radiation

ωcrit ≈ ωγ3 ∝ Bγ2 ∝ Bϵ2 (1.9.20)

(details to be found in Chapters 1 and 3 of Theoretical Astrophysics, Volume I:
Astrophysical Processes by Padmanabhan 2000, [3]). The total radiation emitted

is

ϵω ∝ B2E2N(E)(dE/dω), (1.9.21)

where B2E2 is the energy emitted by a single particle, N(E) is the number of

particle with energy E and (dE/dω) is the Jacobian from E to ωcrit. The energy

spectrum of the electrons has the form of a power law

N(E) = CE−p, (1.9.22)

then the radiation spectrum is

ϵν ≈ e3

mec2

(
3e

4πm3
e c5

)(p−1)/2

CB(p+1)/2ν−(p−1)/2. (1.9.23)

Indicating with α = (p − 1)/2, the Eq. 1.9.23, the emission spectrum of syn-

chrotron is a power law of type ϵsynch ∝ ν−α.

For the computation in Chapter 3, we have adopted a value α = 0.7, that is suit-

able when the spectrum contribution is mostly from normal galaxies. Both free-

free and synchrotron are the main mechanism for the emission in radio band

by normal galaxies. However, the difference in the spectral indexes, α = 0.1

for free-free and α = 0.7 allows the two emission to not be completely over-

lapped. More, the deep analysis carried out in Condon (1992), [50], shows how

synchrotron is at last one decade higher than free-free. Both effect are strictly

connected to the rate of star formation (SFR) in the galaxies: on the left hand,

the ionization of the interstellar medium is function of the escape fraction fesc

of ionizing photons, on the right hand, magnetic fields in galaxies are mainly

produced by supernovae remnants (SNR), which number is again related to the

number and charateristics of the stars formed in the burst. A third kind of emis-

sion is peculiar for normal galaxies and is the IR radiation from spinning dust.

The empirical relation between a λ = 10 µm emission and a 1415 MHz emission

was first pointed out by van der Kruit (1971), [53], and was soon extended to
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universal law for normal galaxies. The definition of the FIR/radio correlation

will be given in Chapter 3. To illustrate the typical spectrum emission of normal

galaxies, Fig. 1.9 shows the emission spectrum of galaxy M82 as a composition

of the three main radiation mechanism, free-free, synchrotron and dust.
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CHAPTER 2

The cosmological free-free

signal from galaxy groups and

clusters

Using analytical models and cosmological N-body simulations, we study the

free-free radio emission from ionized gas in clusters and groups of galaxies.

The results obtained with the simulations are compared with analytical predic-

tions based on the mass function and scaling relations. Earlier works based

on analytical models have shown that the average free-free signal from small

haloes (galaxies) during and after the reionization time could be detected with

future experiments as a distortion of the CMB spectrum at low frequencies

(ν < 5 GHz). We focus on the period after the reionization time (from red-

shift z = 0 up to z = 7) and on haloes that are more massive than in previous

works (groups and clusters). We show how the average signal from haloes

with M > 1013h−1M⊙ is less than 10% the signal from the more abundant and

colder smaller mass haloes.However, the individual signal from the massive

haloes could be detected with future experiments opening the door for a new

window to study the intracluster medium.

2.1 Introduction

In the near future, new high sensitivity experiments observing at radio and

millimeter wavelengths will open a new window to study the high redshift

Universe and in particular the re-ionization period. Among these experiments,
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SIGNAL FROM GALAXY GROUPS AND CLUSTERS

the Square Kilometer Array (or SKA hereafter, [54]) and the Atacama Large Mil-
limeter Array (or ALMA hereafter, [55]) are the most relevant ones due to their

sensitivity and angular resolution. These experiments will be able, for the first

time, to trace in detail the distribution of neutral hydrogen before re-ionization

(through the 21 cm line, see e.g. Schneider et al. 2008, [56]), and the transi-

tion between a neutral and ionized Universe at the time of reionization (ALMA

could see the first galaxies emerging at the reionization time).

The study of the re-ionization period will offer a unique window to help us

understand the formation of the first stars and galaxies. The possibilities of

this new window for astronomy has motivated many studies that focus, for in-

stance, on the 21-cm line radiation from neutral gas, [57–66], or on the kinematic

Sunyaev-Zeldovich effects (kSZ, [67]) from inhomogeneous (patchy) reioniza-

tion on large scales, [68–70]. In Oh (1999), [71], it is proposed that the reioniza-

tion can be studied also through the H-α emission, useful to trace young star

formation regions.

Another signal emerging from the ionized regions will be the free-free from in-

teractions between the electrons and ions in the plasma. The photons emerging

from these interactions can be observed in the radio and microwave bands.

The distortion that free-free induces on the background temperature in the

Rayleigh-Jeans part of the spectrum, [72], is actually constrained by the ground

based measurement of Bersanelli et al. (1994), [73], at 2 GHz, Yff < 1.9 × 10−5

(95% CL).

Most of the efforts focus on the study of the 21-cm line and the interaction

between the CMB photons and the ionized clouds but little has been done in

relation to the free-free signal. In this paper we focus on the free-free emis-

sion and its ability to trace the ionized medium. The free-free emission (or

bremsstrahlung) can be potentially observed in the local Universe and up to

the re-ionization era. UV radiation emerging from the first stars and quasars

ionized the neutral hydrogen creating expanding bubbles of ionized plasma.

During a free-free interaction between two charged particles (free electrons and

ionized atoms), the electron loses part of its kinetic energy by emitting a pho-

ton. The energy of the photon ranges from the radio to the X-ray wavelength

depending on the electron temperature. Since this interaction involves two par-

ticles, its intensity depends on the square of the free electron (or equivalently
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the ion) density, ne. This n2
e dependence makes the free-free signal an interest-

ing candidate for cross-correlations with other signals like the SZ effect where

the signal amplitude depends linearly on ne.

In the late 90’s, an experiment was designed to measure the distortion of the

CMB spectrum due to the cosmological free-free signal; the Absolute Radiome-

ter for Cosmology, Astrophysics and Diffuse Emission (or ARCADE, see Fixsen et

al. 2004, Kogut et al. 2006, Fixsen et al. 2011 and Seiffert et al. 2011, [74–77] for

details). Its goal is to detect the average free-free signal at frequencies around 1

GHz. Studying the distortion of the CMB spectrum at these frequencies would

allow, in principle, to set strong constraints on the history of reionization of the

Universe. Recently, the ARCADE team presented the results of the ARCADE2

mission that studies both Galactic and extragalactic signals, [76]. They detect

a signal that is significantly larger than the expected extragalactic radio back-

ground (a factor ∼ 5 brighter than the estimated contribution from radio point

sources). The ARCADE team is currently exploring the possible causes of such

a signal like for instance possible foreground contamination, synchrotron emis-

sion from Earth’s magnetic field or CII lines. In the latest review of the results

of the mission, [77], the authors still report that the excess detection remains

unexplained, even though the three main sources of errors, Galactic emission,

instrumental systematic errors and radio emission from the faint end of the dis-

tribution of known sources, are carefully taken into account. Sharpe (2009),

[78], has suggested that the observed excess is produced by synchrotron radia-

tion emerging from an optically thin low density magnetized plasma region in

the heliosphere of the Sun.

Oh (1999), [71], presents an exhaustive treatment of the different sources of ra-

diation that could be detected with SKA and ALMA in the range of the radio

frequencies. He pays special attention to the free-free signal from small haloes

and the intergalactic medium (or IGM) and concludes that the IGM signal is

subdominant when compared with the signal from haloes. Another interesting

work is presented in Cooray & Furlanetto (2004), [79], where the authors use a

halo model to predict the amount of free-free signal from haloes. The authors

also compute the angular power spectrum of the signal produced by the free-

free below 2 GHz and make predictions in the context of the ARCADE mission.



Burigana et al. (1995), [80], discusses different physical processes involving the

CMB photons and the ionized medium, including also the free-free signal. In

Burigana et al. (2004), [65], the authors discuss about the possibility of detecting

the individual sources of free-free signal.

All these works have focused on the signal from small and cold haloes, largely

ignoring the signal coming from larger and hotter haloes (groups and clusters).

In this paper we will study the regime of more massive haloes and focus on

the period after reionization. Also, an important advantage of working with

more massive haloes is that their modeling is much simpler than in the case of

smaller haloes. The cooling time is significantly larger for massive haloes and

one can more easily ignore highly non-linear phenomena like radiative cooling.

2.2 Free-Free emission

In a hot plasma with temperature T, the electrons move with kinetic energy

Ee = 3/2kbT where kb is the Boltzmann’s constant (1.38× 10−23 J/K). The mini-

mum T required to ionize a plasma is ≈ 2× 104 K, [81]. This is also the temper-

ature at which most of the cooling radiation occurs in a typical galaxy halo, [82].

This temperature can be translated into a kinetic energy for the free electrons,

typically in the order of 2 × 1012 erg (∼ 1 eV). The collisions between oppo-

site charged particles within the plasma modify the paths of the electrons that

lose a few percent of their kinetic energy (bremsstrahlung or brake radiation). The

net effect is the bulk emission of photons in the radio frequency range (1 ∼ 10

GHz), strongly dependent on the square of the electron density. Note that this

square dependence implies a crucial role of the density contrast pattern inside

the haloes.

The bremsstrahlung, or free-free signal, can be parametrized in terms of the

electron density ne and temperature Te as, [60, 79, 83],

ϵν = 5.4 × 10−39n2
e T−1/2

e gff(ν, Te) exp
(
−hν

kbTe

)
, (2.2.1)

in units of ergs cm−3 s−1 Hz−1 sr−1. The Gaunt factor, [80, 84], gff, is computed

for the observed frequency but it has a weak dependency on the temperature

of the gas. In the Rayleigh-Jeans limit (where the free-free radiation is more

relevant) the exponential part can be safely neglected. From Eq. (2.2.1) it is clear



that the free-free emissivity depends mostly on the electron density ne. The

inverse dependence with the root square of temperature is a direct consequence

of the thermal Maxwellian distribution.

The luminosity of an ionized volume of space with constant ne and Te can be

obtained from Eq. (2.2.1) by integrating the electron density and temperature

over that volume. By dividing this luminosity by the corresponding luminosity

distance, the flux (or brightness) in Jy can be derived (1 Jy = 10−23ergs/s cm2

Hz). In terms of the temperature distortion, the brightness can be transformed

into equivalent temperature. In the Rayleigh-Jeans limit we have that

∆T ∝ Fλ2 (2.2.2)

where F is the free-free flux and λ = c/ν. Thus, at 1 GHz, while the flux

does not change much with frequency, the free-free temperature distortion is

expected to be higher than at 10 GHz by a factor 100. This simple scaling shows

the convenience of looking for the free-free signal at lower frequencies. Sev-

eral attempts have been made in the past to measure the free-free distortion

at low frequencies as a deviation of the nearly perfect CMB blackbody energy

spectrum. The first accurate measurements of the spectrum of the CMB were

made by the FIRAS and have shown no departure from the blackbody spectrum

(within the error bars) in the frequency range of 60 − 600 GHz. It is expected

that new experiments will detect the average free-free contribution at lower

frequencies in the shape of a distortion of the CMB energy spectrum.

2.3 Predictions from analytical models

Through analytical halo models it is possible to explore a wide range of cases.

Oh (1999), [71], shows that the free-free contribution coming from the diffuse

IGM is significantly smaller than the signal from ionized haloes so it can be

safely ignored. Two ingredients are needed in order to compute the average

free-free signal from haloes. First, the mass function, n(M, z), that predicts the

average number of haloes per redshift, z, and mass, M, intervals and, second, a

model for the internal gas distribution (and temperature) inside the haloes. The

abundance of haloes can be computed from the mass function given a cosmo-

logical model. We use the mass function of Sheth & Tormen (1999) (or ST mass

function hereafter, [38]) for this purpose. The ST mass function reproduces well



the results obtained with large N-body simulations. For the internal distribu-

tion of the gas in the haloes and temperature we assume a standard isothermal

β-model with β = 2/3. The gas density profile plays an important role since

steeper profiles can produce a larger free-free signal with the same amount of

gas (as it happens in the X-ray band with gas in galaxy clusters). Other more

realistic models can be found in the literature (see for instance Ascasibar et al.

2003, [85], Ascasibar & Diego 2008, [86]) but for simplicity we will use the β-

model as this model requires only three parameters (To for the temperature and

Rc, and no for the β-model).

2.3.1 Predictions for a single halo

The β-model is widely used in the context of galaxy clusters to describe the

electron density as a function of radius, [87, 88]:

ne(R) =
no

1 +
(

R
Rc

)2 , (2.3.1)

where no is the electron density at the center of the halo and Rc is the core radius

and we have assumed β = 2/3.

For the β-model, the free-free luminosity can be computed integrating Eq. (2.2.1)

over the volume of a sphere of radius Rvir

Lν =
∫

V
ϵνdV

= Cn2
oR3

c

(
tan−1 √p −

√
p

p + 1

)
(2.3.2)

where C = 5.4× 10−392πT−1/2
e gff(ν, Te) and the argument p is the ratio Rvir/Rc.

For simplicity we have dropped the negligible term exp(−hν/(kbTe)) in Eq.

(2.2.1).

The halo luminosity can be transformed into flux given the luminosity distance,

DL, from the halo at redshift z to the observer (at z = 0).

Sν(Jy) =
Lν

4πDL(z)2 . (2.3.3)

The values of no, Rc and T can be computed from scaling relations. In order

to establish these relationships we assume that the total mass of the halo, M,

and the total mass of the gas, Mgas, are proportional to each other with the



proportionality constant being the universal baryon fraction, fb = Mgas/M.

Given a virial mass for the halo, the virial radius can be expressed as, [89, 90],

Rvir = 1.3M1/3
15 (1 + z)−1, (2.3.4)

where M15 is the halo total mass expressed in 1015h−1M⊙ and the radius is

scaled with the expansion factor (1 + z)−1. Within the virial radius, the relation

between the baryonic mass and the electron density profile (given in Eq. (2.3.1))

is

Mgas =
∫

V
µmpne(R)dV (2.3.5)

= 4πµmp

∫ Rvir

0
ne(R′)R′2dR′.

Then, a relationship between no and the total mass of virialized halo, Mv ≈
Mgas/ fb, can be established:

no =
Mv fb

[p − tan−1(p)] 4πµmpR3
c

, (2.3.6)

where p = Rvir/Rc. The ratio between Rvir and Rc is assumed to be constant

(Rvir/Rc = 10). For fb we assume fb = 0.13. Finally, for the temperature we

use the relation obtained by Diego et al. (2001), [91], which was shown to be

consistent with X-ray measurements

T(keV) = 10M4/7
15 . (2.3.7)

Once no, Rv, Rc and T are known, it is possible to compute the total free-free

luminosity, flux and temperature distortion of the halo at redshift z from equa-

tions (2.3.2), (2.3.3) and (2.2.2) respectively.

2.3.2 The abundance of haloes: the mass function

In this work we use Sheth & Tormen (ST hereafter) mass function, [38], see A .

We compute the mass function between the masses 108 ≤ M ≤ 1016h−1M⊙.

This mass interval covers the range from the smallest ionized haloes to the

largest galaxy clusters. We include the small haloes in our calculation for com-

parison purposes with earlier works and with the more massive haloes. In

our simple model we will make the assumption that all haloes included in the

mass function are fully ionized. This is not properly true in the low end of the



mass interval since, as it was discussed in Oh (1999), [71], the low mass haloes

will stay ionized only for a limited amount of time. Consequently, at a given

redshift, only a fraction of the low mass haloes are active or fully ionized. The

conclusions derived from our calculations should be then considered as an up-

per limit in the low mass range (M ∼< 1012h−1M⊙). On the other hand, the high

mass end haloes can be considered as fully ionized as most the gas in these

massive haloes (clusters) will remain ionized by the high temperatures of the

plasma in the clusters. Regarding the redshift range we will consider only the

contributions up to redshift z = 7. The reionization period was studied in Loeb

(1996), [92], Oh (1999), [71], Oh & Mack (2003), [60]. In Fig. 2.1 we show how

Figure 2.1 Mass function for different redshift intervals. Note how small haloes are

common at all redshifts (their population drops at redshifts larger than the ones shown

here).

the mass function behaves for different redshifts. The low mass haloes (∼ 108

solar masses) show a nearly constant abundance at all redshifts while the num-

ber of massive haloes decreases with redshift.

In the next subsection we will combine the predicted flux of the β-model from



one halo with the mass function to compute the mean free-free signal from a

cosmological volume.

2.3.3 Average free-free emission from an analytical halo model

Figure 2.2 Average temperature distortion due to free-free as a function of frequency

for our analytical model. The solid line shows the distortion obtained assuming that

the temperature of each halo was computed with the scaling law T(keV) = 10M4/7
15 ; for

reference, we show as a dotted line the distortion corresponding to a fixed temperature

of 104 K for all haloes. The dot-dashed line represents the 95% confidence level obser-

vational upper limit derived from Bersanelli et al. (1994), [73]. The star and the triangle

represent the results from Oh (1999), [71] related to the diffuse IGM (∆T = 6.0 × 10−6

K) and to point sources (∆T = 3.4 × 10−3 K) respectively.

Combining a model for the gas distribution inside a halo, like the β-model,

with the abundance of haloes as a function of mass and redshift, it is possible

to compute the mean free-free signal in a solid angle as a function of redshift

and/or mass. We can also integrate this information in the redshift-mass space

and estimate the mean free-free signal from all these haloes.

Given a redshift and mass interval, we compute the number of haloes in the



interval and compute the free-free flux from those haloes. After integrating

over the entire redshift range (0 < z < 7) and mass range (108 < M < 1016)

we compute the mean free-free flux from all the haloes. The flux is converted

into thermodynamic temperature to compute the ∆T/T as a function of the fre-

quency. The resulting distortion from our analytical model is shown in Fig. 2.2.

When comparing our results with those obtained by Oh (1999), [71], we find

that our model (solid line) falls below the predicted value by Oh (1999). This

can be explained by the fact that we are assuming a higher temperature for the

haloes. Fixing the temperature to T = 104 K (like in Oh 1999), our model pre-

dicts more signal than in Oh (1999). A possible explanation is that, in Oh (1999),

only a fraction of the haloes were active while in our case all haloes are ionized.

It is interesting to show how the free-free signal depends on the redshift and

the mass of the haloes. In Fig. 2.3 we show the free-free signal for different

mass intervals. In each interval, we compute the mean free-free distortion as a

function of redshift. The smaller but more abundant haloes give a larger signal.

Also, as we show earlier, smaller haloes have more or less the same abundance

at all redshifts and hence their average free-free contribution shows a slow de-

pendence with redshift. Note how the simulation predicts significantly less

average signal than the analytical model. As we will see later, this is a direct

consequence of the lack of resolution in the simulation that is not able to capture

the contribution from the smallest haloes.

This prediction, however, should be taken with care since on one hand we as-

sumed that haloes remain ionized at all times and the temperature of the gas

corresponds to the virial temperature of the halo. In small systems, the cooling

time is short and the gas can cool down significantly, become neutral and form

stars. Our assumptions are only valid for the most massive haloes (groups and

clusters) and the model predictions are robust only in that regime. For these

objects, the average free-free distortion is of the order of a few to several tens

of µK at 1 GHz. Also, the plot shows the average free-free signal obtained from

simulations (see below) as a function of redshift (stars). As we will see later,

the smaller range of halo masses of the simulation predicts a smaller average

free-free signal.

In Fig. 2.4 we show more explicitly the dependency of the average free-free dis-

tortion with the mass range but for different redshift intervals. Again, smaller



Figure 2.3 Free-free signal for different mass intervals as a function of redshift and for

ν = 1 GHz. The points represent the distortion ∆T computed from a cosmological

simulation of 300 Megaparsecs (see Sect. 2.4 below). The minimum mass resolved

in the simulation at z = 1.57 is Mmin,sim = 1.14 × 1011 and the maximum mass is

Mmax,sim = 8.21 × 1013.

haloes contribute more to the average signal than massive ones at all redshifts.

This result is strengthened by the the model proposed in Miniati et al. 2004,

[93]. The authors, referring to the component of the UV luminosity produced

by the thermal emission from gas accreting on to dark matter haloes, calculate

that the most contribution is produced by haloes with temperatures between

106 K and a few ×107 K, corresponding to masses 1011 − 1013 solar masses.

It is important to note, though, that cooling and star formation play a criti-

cal role in determining the actual contribution of galaxy-sized haloes (M <

1012h−1M⊙) to the temperature distortion of the CMB. On the one hand, the

temperature of the ionized gas will be around 104 K, much lower than predicted

by Eq. (2.3.7), and its density will be considerably higher than predicted by the

β-model. The combined action of both effects can boost the expected free-free



signal by a large factor. On the other hand, a significant fraction of the gas will

be transformed into stars and most of the interstellar medium will be in neutral

rather than ionized form, and therefore it will not emit any bremsstrahlung ra-

diation. The net effect is difficult to quantify, and Oh (1999), [71], has resorted

to a phenomenological parameter describing the fraction of active galaxies or,

equivalently, the average ionization fraction of the gas. These works focus on

the signal from small and cold systems, where UV radiation from stars and

quasars ionizes the surrounding neutral hydrogen and creates expanding bub-

bles of ionized plasma.

Gas cooling, star formation, and feedback processes determine the amount

of ionized gas, its characteristic density, its temperature, and thus the total

bremsstrahlung luminosity.

We discuss in more detail the regime of hotter, more massive objects, where the

gas is heated collisionally rather than photo-ionized. These systems contribute

only to a small fraction of the overall cosmological signal. In this work, we pro-

vide robust lower limits for the signal produced by massive objects, based on

a simply physical modeling. A more detailed treatment of cooling and photo-

ionization of the interstellar medium will be addressed in a future work.

2.4 N-body simulations

In the previous section we have shown how the average free-free signal from

haloes depends on their redshift and mass distributions. We also discussed

how these predictions depend on the internal gas distribution inside the haloes.

In this section we use numerical simulations to compute the free-free signal.

Through N-body simulations we can obtain the distribution of the electron den-

sity, its temperature and ultimately the free-free effect which can be projected

into sky maps.

We use the GADGET-2 code, [40], see Sect. 1.7.7 in Introduction. The code is a

combination of a Particle Mesh Refinement algorithm and the TreeSPH method

by Hernquist and Katz (1989),[94]. For the cosmological parameters we use the

concordance model: ΩΛ = 0.73, ΩM = 0.27, Ωb = 0.039, ΩK = 0, σ8 = 0.79,

h = H0/(100 Km s−1Mpc−1) = 0.72 where σ8 is the RMS mass fluctuation on a

sphere of a radius of 8 Mpc.



Figure 2.4 Free-free signal as a function of the halo mass and for different redshift in-

tervals.

We create the initial conditions at redshift z=49 with the code 2LPT, [95], based

on a second-order Lagrangian perturbation theory. The initial condition is evolv-

ed with GADGET-2 from z = 49 until z = 0. For the main simulation, we use

a cosmological volume with 5123 particles of dark matter and 5123 particles of

gas distributed in a box size of (300h−1 Mpc )3. The force smoothing param-

eters has been set to 1/30 of the inter particle distance, and corresponds to 20

Kpc for the 300h−1 Mpc simulation.

The outputs (or snapshots using the GADGET-2 terminology) of the 300h−1Mpc

box were chosen at redshifts for which the comoving distance between both

ends of the box would overlap between consecutive redshifts. Each snapshot

is analyzed independently from the others. We assume that the Universe is

fully ionized below z=7 and we concentrate on this regime. The masses for

the dark matter and gas particles are MDM = 1.165 × 1010h−1M⊙ and Mgas =
0.17 × 1010h−1M⊙ respectively.

The minimum and maximum masses of the structures found in our simulation

depend on the simulated volume, particle mass, and of course the redshift. As



discussed earlier, the free-free signal has a wide dynamical range in mass.

The choice of the comoving volume of the simulation box is important: on one

hand we want to have the largest possible box so we can include more massive

haloes, on the other hand, the small structures have a very significant impact

on the average free-free signal and is also important to capture the small scale

signal.

To address the issue of resolution in the N-body simulation we make a different

simulation (with the same cosmology) but with higher resolution. The use of

different box sizes and resolutions is useful to study a wider range of masses

(or resolutions) with N-body simulations (see for instance Refregier & Teyssier

2002, [96] and Trenti & Stiavelli 2008, [97]).

The box size of the second simulation is (50h−1 Mpc)3 (that is 63 times smaller

in volume). We maintain the same number of particles (5123 for dark mat-

ter and 5123 for gas). The resulting dark matter and gas particle masses are

MDM = 6.1 × 107h−1M⊙ and Mgas = 0.873 × 107h−1M⊙ respectively. The

masses of the particles are proportional to the volume of the simulation boxes

divided by the number of particles, that is, since the number of particles is the

same in both simulations, the particle masses are 63 times larger in the 300 h−1

Mpc box than in the 50 h−1 Mpc one.

Our simulations do not include cooling nor radiative transfer. In a future work

we plan to include these mechanisms and improve the predictions. We also

plan to extend the redshift range into the reionization period. For the present

work, our intention is to explore the redshift range 0 < z < 7 and focus on the

most massive haloes for which the above effects are not so relevant.

2.4.1 Range of halo masses in the N-body simulation

We use a halo finder to map the distribution of haloes in mass and to associate

each simulations with a proper free-free emissivity mass range (Fig. 2.3 and

Fig. 2.4).

In order to identify haloes and subhaloes in our simulations we have run the

MPI+OpenMP hybrid halo finder AHF1. A detailed description of AHF is

given in the code description paper, ([98]). We provide a brief summary of
1AMIGA halo finder, to be downloaded freely from http://www.popia.ft.uam.es/AMIGA

http://www.popia.ft.uam.es/AMIGA


the mode of operation. By virtue of the adaptive mesh hierarchy employed

to sample the density field, AHF locates overdensities as prospective halo cen-

ters. The local potential minima are computed for each of these density peaks

and, treating the prospective halo in isolation, the gravitationally bound parti-

cles are determined. Only peaks with at least 20 bound particles are considered

as haloes and retained for further analysis. For each halo, we compute the virial

radius rvir, that is the radius r at which the density M(< r) = (4πr3/3) drops

below ∆virρ̄. Here ρ̄ is the cosmological background density. The threshold

∆vir is computed using the spherical top-hat collapse model and is a function

of both cosmological model and time. Applying the AHF to the 300 Mpc sim-

ulation, we have found that the mass of the inside haloes only span between

M ≈ 1011h−1M⊙ and M ≈ 1014h−1M⊙. Low mass haloes are not present in

the simulation due to the resolution. On the high end mass, the limited vol-

ume of our simulation prevents us from having the most massive clusters in

our simulation.

2.4.2 Average free-free from the simulation

For each gas particle in the volume, we compute the free-free luminosity as-

suming that the electron density is approximately constant over the volume of

the particle. Then, the integral of the squared of the electron density can be

computed as: ∫
V

n2
e dV ≈ ne

∫
V

nedV = ne
Mgas

µmp
. (2.4.1)

The gas density, ne, at the position of the particle is extracted from GADGET-2

and then transformed into convenient cm−3 units.

Eq. (2.4.1) is used to compute the particle luminosity from Eq. (2.2.1). The par-

ticle luminosity is transformed into particle flux given the luminosity distance,

DL, from the particle at redshift z to the observer (at z = 0).

Sff(Jy) =
eν

4πD2
L

. (2.4.2)

The internal energy is given by GADGET-2 in units of [km sec−1]2 which is con-

verted into K with the factor:

CK = 106(γ − 1)µ
mp

kb
, (2.4.3)



where γ = 5/3 is the adiabatic index for a monoatomic ideal gas. The scale

factor 106 accounts for GADGET-2 ’s internal units, and kb is the Boltzmann con-

stant.

After the flux per particle is computed, the fluxes are projected along the line

of sight into a pixelized 2D map. Since the apparent angular size of each box

depends on the redshift, we have to restrict our analysis to the smallest field

of view that in our case corresponds to the apparent size of the most distant

box (about 3 degrees for the 300 h−1 Mpc box). Because we want to compare

the distortion that our model induces on the CMB temperature as a function of

frequency, we extract a mean flux, S̄ff, from all the projected maps. The result-

ing mean brightness is converted into temperature in K (antenna or thermody-

namic, since we are considering low frequencies):

∆T(ν) =
cS̄ff

2kbν2 (2.4.4)

In Fig. 2.5 we show the result obtained from Eq. (2.4.4). We plot, based on the

actual constraint of Yff (dashed line), the corresponding upper limit distortion

produced by the free-free emission over the CMB temperature. The solid line

shows the mean temperature distortion of the projected map in the sky from the

simulation while the dot-dashed line refers to the assumption of a constant tem-

perature for all particles of T = 104 K (see Oh 1999, [71]). Because in Eq. (2.2.1)

the strength of the signal depends inversely on the temperature, the lower the

temperature of the gas, the higher the signal.

From Fig. 2.5, we conclude that the average free-free distortion predicted from

our 300 h−1 Mpc N-Body is well below the current observational constraint

(dashed line). A much lower temperature for the gas (104 K) in Eq. (2.2.1) does

not change the effect too much showing the anticipated weak dependency of

the free-free distortion with the temperature.

The signal from the simulation is also significantly smaller than the value pre-

dicted using the analytical model. As we will see below, the most likely reason

for this is the fact that the simulation does not include the small mass haloes that

give most of the signal in the analytical case. A limiting factor of the N-body

simulations is that by construction there is a minimum mass for the haloes. This

can have a large impact on the predicted average signal as smaller haloes are

expected to be much more numerous than massive ones and they can boost the

average signal. In the next subsection we explore the range of masses present



Figure 2.5 Free-free emission distortion from the 300 h−1 Mpc simulation. The emission

is computed from 20 snapshots within the interval 0 < z < 7. The field of view covers

2.7 degrees. The solid line shows the distortion in the case where the emissivity has

been computed with the temperature derived from the simulation. The dash-dotted

line corresponds to the case where the temperature for all particles has been fixed to

104 K. The dashed line shows the observational upper limit constraints (95% CL) from

Bersanelli et al. (1994), [73].

in the simulation.

2.4.3 Dependency with the resolution

In the previous sections, we have shown the results obtained with the 300 Mpc

simulation. In this section we compare the results obtained with the 50h−1 sim-

ulation that has a much higher resolution.

When we compare the mass functions, we find that, as expected, the 50 h−1

Mpc box contains less massive haloes, but it has many more small haloes. A

halo must contain of the order of 20 particles to be considered a halo. There-

fore the minimum mass of a halo depends on the resolution of the simulation.



On the other hand, the maximum mass of a halo depends on the volume of

the simulation. Large haloes are truncated by the boundary conditions of the

simulation that suppress the power on scales larger than the box side. In other

words, there is a minimum k-mode in the Fourier modes which is directly re-

lated with the dimension of the box.

We compare the average free-free effect in the 300 h−1 Mpc and 50 h−1 Mpc

boxes. Since the 50 h−1 Mpc box is 63 times smaller in volume than the 300

h−1 Mpc one, we renormalize the average free-free to the same volume. As

expected, due to the presence of smaller haloes in the 50 h−1 Mpc simulation,

the smaller box produces a larger free-free signal. Considering a slice of 50 h−1

Mpc at redshift 1.57 in both cases; in the 300 h−1 Mpc box the average ∆T is

∆T ≈ 10−6 K at 1 GHz while in the 50 h−1Mpc box ∆T ≈ 5 × 10−6 K also at

1 GHz. This is a factor 5 more signal in the higher resolution case. As shown

earlier, this extra signal comes from the lower mass haloes although we should

keep in mind that in our model we are not including neither radiative cooling

nor partial ionization of the low mass haloes. These effects compensate each

other partially (in terms of the free-free signal) but they will change the amount

of free-free predicted by our model (again, in the low mass haloes more than in

the massive ones).

2.5 Free-free from a single massive halo. A new window for

cluster science ?

In the previous section we have shown how the average contribution of the

massive haloes (groups and clusters) to the mean free-free signal is significantly

smaller than the contribution from the smaller but more numerous low mass

haloes. In this section we explore the signal of an individual halo comparing

the prediction from the β-model with the result obtained from the numerical

simulation.

Using the high resolution simulation (50 h−1 Mpc box, Mgas = 0.8× 107h−1M⊙

per particle) presented in Sect. 4, we extract the most massive cluster from it

in order to compare its free-free flux with an analytical model. The redshift of

the simulation is z = 1.6 but the same conclusions can be extracted at other

redshifts. It is however interesting to explore the high redshift regime since



the free-free signal could be potentially useful to detect clusters in their earlier

stages of formation and before the gas is too hot to be seen through X-rays.

In this sense, the free-free emission could extend the actual X-ray science in

clusters to the range of the radio waves. Similarly, the same cluster could be

seen through the SZ effect but its detection will be harder if the cluster is not

hot enough. On the contrary, a lower temperature in the cluster makes the free-

free signal stronger.

The halo boundaries are defined as Rvir or the radius where the over-density

equals 200 times the average density in the box (according to the common as-

sumption of the virial radius r200, adopted to our simulation). For the most

massive halo in our simulation, this radius corresponds to Rvir = 560 kilopar-

secs (co-moving) and the corresponding total mass of the halo within this radius

is Mhalo = 9 × 1012h−1M⊙. This mass corresponds to a group of galaxies. We

add the flux per particle and compute the flux and temperature distortion (see

Eqs. (2.2.1) and (2.4.1)). In Fig. 2.6, we show the one-dimensional profile. The

solid line represents the electron density (in cm−3) as a function of the radius.

In order to compare this profile with a β-model, the values for no and Rc of

the β-model are obtained by fitting the solid line in Fig. 2.6 with the analytical

profile. The best fitting β-model is also shown in Fig. 2.6 where the core radius

corresponds to 1/14 of the virial radius (or p = 14 in the notation used above).

We fix the temperature for the β-model case to the average over the halo parti-

cles in the simulation. This average corresponds to Thalo ≈ 106 K. With all these

ingredients, the fluxes for this halo can be derived from the simulation and the

analytical model. For the simulation case we find Sff = 3.67× 10−9 Jy, while the

β-model predicts a larger flux Sff = 2.80 × 10−8 Jy (a factor 7.5 larger). In terms

of ∆T, the maximum temperature distortion is about a few µK (at 1 GHz) at

the center of the cluster, that is, within reach of future planed experiments like

SKA. According to Burigana et al. (2004), [65], SKA could reach a sensitivity

limit of 40 nJy in one hour of integration and with an angular resolution of 1

milliarcsecond in the 4-20 GHz band. More massive and denser clusters would

produce an even stronger signal making the study of free-free emission in clus-

ters at radio frequencies an interesting and useful way to study the intracluster

medium. In Fig. 2.7 we show a map of the free-free signal at 1 GHz in an area

containing a more massive cluster at redshift z = 0.15 extracted from the 300

Mpc simulation. In this case, the free-free distortion is of the order of 1 mK in



the cluster regions. At higher frequencies, the temperature distortion decreases

as ν−2. That is, at 30 GHz, the temperature distortion would be of the order of

1 µK.

Figure 2.6 Density profile extracted from the most massive halo in the 50 h−1 Mpc

simulation box at z = 1.6. The solid line shows the average electron density profile

in concentric shells. For comparison, a β-model is shown (dashed line). The model

corresponds to a core radius Rc ∼ 40 kpc and p = 1/14. The smaller box shows the

temperature distortion produced by this halo as a function of the radius and at ν = 1

GHz. The maximum distortion is ∆T/TCMB ≈ 10−6.

2.6 Discussion

Our results show that there is a significant free-free signal at all redshifts up to

the time of reionization. Our predictions are based on analytical models and

they are compared with N-body simulations. Some assumptions made in our

model need to be improved, like, for instance, the fact that all low mass haloes

remain ionized at all times.

Another important improvement is to substitute the β-model (in the analytical



Figure 2.7 Free-free distortion for a massive halo (M = 6.6 × 1014h−1M⊙) at redshift

z = 0.15. The greyscale shows the distortion in K and at 1 GHz. The field of view is

≈ 40′. The total flux in this region is Sff = 2.83 × 10−5 Jy.

calculations) by a more accurate description of the gas in massive haloes. In

particular, the model of Ascasibar & Diego (2008), [86], assumes a steeper and

non-isothermal profile for the gas distribution that could boost the free-free sig-

nal. This model is in better agreement with high resolution X-ray profiles in

galaxy clusters, [86, 99], and with the SZ effect, [100, 101], than the β-model.

Another issue that need to be addressed in the future is the fact that the free-

free effect is significant for a wide range of halo masses. This fact, combined

with the high range of redshifts, makes the computation of the free-free from

simulations a very demanding task from the computational point of view.



2.6.1 Comparison with earlier results

It is interesting to compare our results (based on numerical and analytical anal-

ysis) with those found in the literature that use only analytical methods ( Haiman

& Loeb 1997, [102], Oh 1999, [71], Cooray & Furlanetto 2004, [79]). The main

difference between our analysis and previous ones is that we have focused on

the better understood regime at lower redshifts and higher masses. Cooray &

Furlanetto (2004) shows how the free-free signal has the maximum contribu-

tion at redshift z ≤ 3. The free-free signal is integrated from the beginning of

the reionization (z ∼ 12 in Oh 1999 and z ∼ 13 in Cooray & Furlanetto 2004)

until present while we consider only a redshift range (0 < z < 7) in which the

Universe can be considered as fully ionized (on large scales). Also, in this work

we focus more on massive haloes which are the ones that can be considered as

fully ionized at all times (for z < 7). In earlier works, only low mass haloes

where considered in the calculations of the free-free signal. The modeling of

the low mass haloes is more difficult since they are more sensitive to non-linear

phenomena. In a future work, we will extend our analysis to higher redshifts

to include the transition between a neutral and a ionized Universe and a more

careful modeling of the low mass haloes.

In Oh (1999) (see also Oh & Mack 2003, [60]), a model is proposed for the ion-

izing sources. The model includes the production rates of recombination line

photons Ṅrecomb and ionizing photons Ṅion. It makes a clear distinction between

virialized (collapsed) structure that undergo a starburst phase and a diffuse gas

that is constantly being re-ionized. A halo mass function is used to compute the

number of active haloes (or haloes with a starburst, and ionizing UV flux) and

the duration of the starburst is set to a constant interval of t0 = 107 years. Our

model is, instead, much more simplistic and assumes that all haloes are fully

ionized. This assumption certainly fails in the low mass halo regime.

In Oh (1999), [71],the emissivity ϵν is computed combining an expression for the

luminosity of the haloes Lν(M, z) and the rate formation of ionizing photons.

In this model, the temperature is fixed to 104 K.

In our case, we used a combination of a β-model plus the mass function com-

bined with a scaling law for the temperature in the analytical case. In the N-

body simulation, no assumptions are made about the gas profile or its tem-

perature since these values are extracted directly from the simulation. Recent



models, [82], show that the gas is seldom heated up to the virial temperature in

systems with T < 106 K. Instead they are accreted in cold flows (with T ∼ 104

K). The cold flow mechanism is not implemented in our N-body simulations

resulting in smaller free-free signal from the smallest haloes.

The N-body simulation includes the contribution from both, compact haloes

and diffuse IGM. In the work by Oh (1999), (and later by Oh & Mack 2004), a

clear distinction is made between the contribution from small ionized haloes

(that remain ionized for a limited amount of time before becoming neutral

again) and the diffuse IGM. The authors introduce a cutoff flux Sc correspond-

ing to the minimum mass able to be ionized and with a temperature of Te = 104

K. The minimum mass for the ionized haloes with this temperature evolves

with redshift as M∗ ∼ 108(1 + z/10)−3/2 h−1M⊙. In our case, the tempera-

ture is derived from the simulation and is, in general, larger than the temper-

ature used in Oh (1999) and Cooray & Furlanetto (2004). As a consequence,

our higher temperatures will predict a lower free-free signal from haloes. As

we mentioned earlier, in a future work we plan to include mechanisms such

as cooling that would reduce the temperature of the haloes (and hence would

boost the free-free signal).

The distortion over the CMB temperature from haloes derived by Oh (1999) is

∆Tff = 3.4 × 10−3 K at 2 GHz. This result was obtained with no cutoff in the

flux of point sources (Sc = 0). On the other hand, an estimation of the flux

coming from the diffuse IGM renders a much smaller temperature distortion

(∆Tff = 6.0 × 10−6 K at 2 GHz) a result later confirmed by Cooray & Furlanetto

(2004). Cooray & Furlanetto (2004) obtain a value of ∆Tff ≈ 5.0 × 10−3 K for

the halo contribution also at 2 GHz, [79]. Comparing these numbers with our

analytical predictions (see Fig. 2.2), we obtain a lower signal at 2 GHz when the

temperature of the haloes is computed with the scaling law Eq. (2.3.7) (≈ 1.73×
10−3 K). Fixing the temperature to ∼ 104 K the results agree better (≈ 7 × 10−3

K).





CHAPTER 3

The contribution of star-forming

galaxies to the cosmic radio

background

Recent measurements of the temperature of the sky in the radio band, com-

bined with literature data, have convincingly shown the existence of a cosmic

radio background with an amplitude of ∼ 1 K at 1 GHz and a spectral energy

distribution that is well described by a power law with index α ≃ −0.6. The

origin of this signal remains elusive, and it has been speculated that it could be

dominated by the contribution of star-forming galaxies at high redshift if the

far infrared-radio correlation q(z) evolved in time. We fit observational data

from several different experiments by the relation q(z) ≃ q0 − β log(1 + z) with

q0 = 2.783 ± 0.024 and β = 0.705 ± 0.081 and estimate the total radio emis-

sion of the whole galaxy population at any given redshift from the cosmic star

formation rate density at that redshift. It is found that star-forming galaxies

can only account for ∼13 percent of the observed intensity of the cosmic radio

background.

3.1 Introduction

Although the detection of diffuse radio emission dates back to Jansky (1933),

[103], the origin of the cosmic radio background (CRB) is still a mystery. The

recent data obtained by the Absolute Radiometer for Cosmology, Astrophysics

and Diffuse Emission (ARCADE 2) has revived the interest in this question, de-
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tecting a diffuse background at frequencies between 3 and 10 GHz that is more

then 5 σ above the COBE/FIRAS measurement of the temperature of the cosmic

microwave background (CMB) and well in excess of current estimates based on

radio source counts. More precisely [76], the inferred value of the antenna tem-

perature as a function of frequency can be expressed as

T(ν) =
hν/k

exp(hν/kTCMB) − 1
+ TR

(
ν

ν0

)α−2

(3.1.1)

where TCMB = 2.729 ± 0.004 K denotes the thermodynamic temperature of the

CMB, TR = 1.19 ± 0.14 K is the normalization of the radio background at ν0 =
1 GHz, and α = −0.62 ± 0.04 is the spectral index of the CRB, consistent with

synchrotron emission from normal galaxies (see e.g. Condon 1992, [50]).

The observed emission is most likely of extragalactic origin, [104], and sev-

eral candidates have been considered by Singal et al. (2010), [105]. Radio

source counts detected by current surveys, sensitive to flux densities above

S1.4 GHz >∼ 10 µJy, cannot explain more than ∼ 10 per cent of the signal, [106–

108], and low-surface brightness sources missed by these surveys may con-

tribute, at most, an additional 15 per cent. Diffuse emission in regions far from

galaxies is ruled out due to the overproduction of X-rays and γ-rays, so the only

possible explanation is that the cosmic radio background is dominated by faint

sources below the threshold of 10 µJy, [105].

According to Singal et al. (2010), radio supernovae make a negligible contribu-

tion, and radio-quiet quasars may be responsible for only a few per cent of the

emission. Thermal bremsstrahlung from the hot gas in galaxy clusters has been

shown to contribute about 0.01 − 0.02 K at ν = 1 GHz (see e.g.Ponente et al.

2011, [109]), and the most reasonable candidate to explain the bulk of the CRB

seems to be the population of ordinary star-forming galaxies at high redshift.

Some authors, [71, 79], have tried to estimate the contribution of free-free emis-

sion from star-forming galaxies to the radio background by resorting to phe-

nomenological prescriptions to relate halo mass and star formation activity at

different redshifts.

However, if the far infrared-radio correlation (FRC) observed for local galaxies

holds at all redshifts, there must be a tight relation between the radio and in-

frared backgrounds, [110, 111]. From the measured intensity of the latter, one

concludes that the contribution of star-forming galaxies must be of the order of

5 − 10 per cent.
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During the last years, the advances in infrared and sub-millimetric instrumen-

tation have made it possible to investigate the evolution of the FRC over a large

fraction of the age of the Universe, and several recent studies (e.g. Ivison et

al. 2010a, Ivison et al. 2010b, Michałowski, Hjorth & Watson 2010, [112–114])

suggest that the correlation is linear at all times, but the normalization is offset

towards increasing radio loudness at high redshifts, boosting the expected sig-

nal from star-forming galaxies by a significant amount. In the present work, we

make a quantitative estimate of the contribution of star-forming galaxies to the

CRB. The prescription followed to assign radio luminosities as a function of the

instantaneous star formation rate is detailed in Sect. 3.2. The evolution of the

far infrared-radio correlation is discussed in Sect. 3.3, and the implications for

the cosmic radio background are shown in Section 3.4. Our main conclusions

are briefly summarized in the Sect. 5.2 in Chapter 5.

3.2 Radio emission from individual galaxies

In normal galaxies, radio emission is always associated to star formation, see

e.g. Condon (1992), [50], or Introduction, Sect. 1.9. Young, massive stars pro-

duce intense ultraviolet radiation that ionizes the surrounding medium, and

thermal bremsstrahlung from these free electrons (often referred to in the radio

literature as free-free emission) makes a significant contribution to the galaxy

spectra in the few-GHz range. On the other hand, stars with M > 8 M⊙ ex-

plode as Type II and Type Ib supernovae at the end of their life cycle. Supernova

remnants are thought to accelerate most of the relativistic electrons in normal

galaxies, and they constitute the main source of the synchrotron emission that

dominates at low frequencies.

Assuming a pure Hydrogen plasma with an electron temperature Te ∼ 104 K,

the free-free luminosity of a galaxy is approximately given by

Lff

3.2 × 10−39 erg s−1 Hz−1 ≈
( ν

GHz

)−0.1( ne

cm−3

)2( Ve

cm3

)
(3.2.1)

where ν denotes the photon frequency, ne is a characteristic electron density,

and Ve represents the total volume occupied by the radio-emitting, ionized HII

regions, [71, 115]. This volume is set by the condition that the number of ioniz-

ing photons Q emitted by the stars per unit time is equal to the recombination
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rate

Q = n2
e αB Ve (3.2.2)

with αB = 2.6 × 10−13 cm3 s−1 being appropriate for case-B recombination at

Te ∼ 104 K. According to stellar population synthesis models, e.g. Leitherer &

Heckman (1995) and Mollá, García-Vargas & Bressan (2009), [116, 117],

Q
1.5 × 1053 s−1 ≈ Ψ

M⊙ yr−1 (3.2.3)

where Ψ is the current star formation rate (SFR) of the galaxy, assuming a

Salpeter, [118], initial mass function (IMF) between 0.1 and 100 M⊙. In the

end, the predicted free-free luminosity

Lff

1.8 × 1027 erg s−1 Hz−1 ≈ Ψ
M⊙ yr−1

( ν

GHz

)−0.1
(3.2.4)

scales roughly proportionally with the instantaneous star formation rate.

Computing the synchrotron luminosity from first physical principles is much

more involved, since it requires knowledge of the amount of cosmic rays in-

jected by supernovae, their spectrum, and the conditions of the surrounding

medium (most notably, its density structure and the intensity of the magnetic

field). Observationally, [50], non-thermal synchrotron emission is about 10

times more luminous than the free-free continuum at ν = 1 GHz, and its spec-

tral index is close to ∼ 0.7 for a broad range of star-forming galaxies. In ad-

dition, there is a tight correlation between the synchrotron luminosity and the

thermal radiation emitted by the dust in the infrared, which is powered by the

stellar ultraviolet light and is thus another tracer of the star formation rate. The

observed far infrared-radio correlation suggests (but see e.g. Lacki, Thomp-

son & Quataert 2010 and Lacki & Thompson 2010 for a different point pf view,

[119, 120]) that synchrotron emission is also proportional to the SFR, implying

that
Lsyn

1.8 × 1028 erg s−1 Hz−1 ≈ Ψ
M⊙ yr−1

( ν

GHz

)−0.7
. (3.2.5)

3.3 Evolution of the FRC

Since most of the contribution of normal galaxies to the cosmic radio back-

ground observed today is due to their synchrotron emission, with thermal

bremsstrahlung (see e.g. Oh 1999, Seiffert et al. 2011, Ponente et al. 2011,
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[71, 77, 109]) providing only a minor correction at the level of a few percent,

equation (3.2.5) has a crucial importance. In particular, the intensity of the CRB

is extremely sensitive to the evolution in time of the relation between SFR and

radio luminosity.

It is not clear, though, whether the far infrared-radio correlation should evolve

with redshift, and current observational evidence is far from being conclusive.

While several recent studies (e.g. Ibar et al. 2008, Sargent et al. 2010, [121,

122]) are consistent with no evolution in the FRC, some others report systematic

trends with redshift (e.g. Vlahakis, Eales & Dunne 2007, Seymour et al. 2008

and Michałowski, Hjorth & Watson 2010, [114, 123–125]).

The main source of uncertainty is that normal galaxies are rather faint in the

radio band. According to equation (3.2.5), only the most intense starbursts, with

instantaneous SFR in excess of Ψ >∼ 30 M⊙ yr−1, would be detectable at z ≥ 1

by current surveys, whose sensitivity at 1.4 GHz is of the order of ∼ 10 µJy.

One possible solution (see e.g. Marsden et al. 2009, Pascale et al. 2009, Patan-

chon et al. 2009, [129–131]) is to stack the confusion-limited and sensitivity-

limited radio images at the positions of thousands of infrared-selected galaxies.

In doing so, one increases the signal-to-noise ratio and reduces the contribution

of radio-loud active galactic nuclei (AGN), probing a population that is more

representative of normal galaxies. This procedure has been applied by Ivison et

al. (2010a), [112], to a mid infrared-selected sample of galaxies, obtaining that

q ≡ log
LIR / 3.75 × 1012 W
L1.4 GHz / W Hz−1 ∝ (1 + z)γ (3.3.1)

with γ = −0.15 ± 0.03. Both the total infrared luminosity LIR (defined from

8 to 1000 µm)1 and the radio power L1.4 GHz are given at the rest-frame of the

source, using a k-correction based on spectral templates. A similar analysis,

[113], is consistent with no evolution, γ = −0.04 ± 0.03, but discarding the

least reliable data at z < 0.5 yields γ = −0.26 ± 0.07.

Alternatively, one may detect high-redshift star-forming galaxies by observing

their rest-frame infrared dust emission, shifted towards sub-millimeter wave-

lengths. Based on a sample of 76 sub-millimeter galaxies with measurements in

the radio band, Michałowski, Hjorth & Watson (2010) conclude, in agreement

with previous studies (e.g. Kovacs et al. 2006 and Murphy 2009, [132, 133]) that

the radio emission of high-redshift galaxies scales linearly with the SFR, but the
1The difference with e.g. the far-infrared band (from 60 to 100 µm) is about a factor of two.
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Figure 3.1 Evolution of the far infrared-radio correlation. Least-squares fit (solid line)

with 1σ limits (dash lines) to the observational data from (Bell 2003, full squares, [126]),

(Murphy et al. 2009, stars, [127]), (Michałowski, Hjorth & Watson 2010, open diamonds,

[114]), (Sargent et al. 2010, triangles, [122]), (Bourne et al. 2011, full diamonds, [128]),

(Ivison et al. 2010a, crosses, [112]) and (Ivison et al. 2010b, open squares, [113]).

normalization is about a factor of two higher than for local samples.

Although selection effects (e.g. Sargent et al. 2010, [122]) and potential biases

arising from spectral templates, [128], cannot be completely excluded, a combi-

nation of different data sets is fairly well reproduced by

q(z) = q0 − β log(1 + z) (3.3.2)

with q0 = 2.783 ± 0.024 and β = 0.705 ± 0.081 (see Fig. 3.1). Assuming that

LIR ∝ Ψ and that the constant of proportionality does not vary with redshift,

this implies that the synchrotron luminosity of a given galaxy scales as

Lsyn

1.8 × 1028 erg s−1 Hz−1 ≈ Ψ
M⊙ yr−1

( ν

GHz

)−0.7
(1 + z)β (3.3.3)

In other words, we assume that the infrared luminosity is an unbiased tracer of

the SFR and that all the evolution of the FRC is due to the conversion between

SFR and radio luminosity.
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3.4 The cosmic radio background

The specific intensity of the cosmic background at any given frequency is given

by the integral along the line of sight

Iν =
c

4πH0

∫ ∞

0

ϵν′(z)
(1 + z) E(z)

dz (3.4.1)

of the average emissivity per unit volume ϵν′ . In this formula, c and H0 denote

the speed of light and the Hubble constant, respectively,

E(z) =
√

ΩM(1 + z)3 + Ωk(1 + z)2 + ΩΛ (3.4.2)

reflects the cosmological expansion, and ν′ = ν(1 + z) is the initial frequency at

which the photons observed today with a frequency ν were emitted. We adopt

a WMAP7 (seven-year observation) cosmology with ΩM = 0.27, ΩK = 0, ΩΛ =
0.73, and H0 = 71 km s−1 Mpc−1, [9], and compute the brightness temperature

of the CRB as

T(ν) =
c2 Iν

2kν2 (3.4.3)

using the Rayleigh-Jeans approximation, where k is the Boltzmann constant.

By definition, the average emissivity at a given redshift is the sum

ϵν′(z) =
∫ ∞

0
n(Ψ, z) Lν′(Ψ) dΨ (3.4.4)

of the contributions of all the galaxies at that redshift, with n(Ψ, z) representing

the number density of galaxies with SFR between Ψ and Ψ + dΨ at redshift z.

As long as the relation between luminosity and instantaneous star formation

rate is linear, Lν′ = κ(ν′, z) Ψ, as indicated by equations (3.2.4) and (3.3.3), one

can express the total emissivity

ϵν′(z) = κ(ν′, z)
∫ ∞

0
n(Ψ, z) Ψ dΨ = κ(ν′, z) ρ̇∗(z) (3.4.5)

in terms of the cosmic SFR density ρ̇∗, [111]. The emissivity of the free-free and

synchrotron components can be taken into account simultaneously as

ϵν′(z) =
[
κff(ν′, z) + κsyn(ν′, z)

]
ρ̇∗(z) (3.4.6)

with
κff(ν′, z)

1.8 × 1027 erg s−1 Hz−1 M−1
⊙ yr

=
(

ν′

GHz

)−0.1

(3.4.7)
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and
κsyn(ν′, z)

1.8 × 1028 erg s−1 Hz−1 M−1
⊙ yr

=
(

ν′

GHz

)−0.7

(1 + z)β (3.4.8)

where β = 0 for a non-evolving far infrared-radio correlation, and β = 0.705 ±
0.0801 to fit the data plotted in Figure 3.1.

Figure 3.2 Cosmic star formation history. The solid line shows the best fit provided by

expression (3.4.9) to the data points compiled by Michałowski, Hjorth & Watson (2010),

[114], and dotted lines illustrate an uncertainty of a factor of 2.

The evolution of the cosmic SFR density has been extensively studied during

the last decade, and several compilations of observational data exist in the lit-

erature (e.g. Somerville, Primack & Faber 2001, Ascasibar et al. 2002, Hopkins

2004, Hopkins & Beacom 2006, Michałowski, Hjorth & Watson 2010, [114, 134–

137]. In the present work, we have adopted the parametrization of Cole et al.

(2001), [138],
ρ̇∗(z)

M⊙ yr−1 Mpc−3 =
a + bz

1 +
( z

c
)d (3.4.9)

and fit the observational data points reported in Table A.4 of Michałowski,

Hjorth & Watson (2010)2. The optimal values ( a, b, c, d ) = ( 0.011, 0.097, 2.73, 3.96 )
2Conversion to a Salpeter IMF between 0.1 and 100M⊙ and a WMAP7 cosmology (following the pre-
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have been obtained by means of the FiEstAS sampling technique, [139], a Monte

Carlo integration scheme based on the Field Estimator for Arbitrary Spaces (Fi-

EstAS, [140, 141]). The resulting cosmic star formation history is plotted as a

solid line in Fig. 3.2.

Figure 3.3 Integrated radio emission, observed at 1 GHz, from normal galaxies up to

redshift z. ∆T refers to the excess signal above the CMB temperature. The solid line

shows the contribution of synchrotron emission, assuming β = 0.705, and the errors

associated to the least-squares fit (∼ 0.01 at the end of the integration) are indicated by

the dashed lines. The contribution of free-free emission is plotted as a dotted line.

Combining expressions (3.4.1), (3.4.3), (3.4.5), (3.4.7), and (3.4.9), we estimate

that the contribution of free-free emission from star-forming galaxies to the cos-

mic radio background is

Tff

0.0137 K
=
( ν

GHz

)−2.1
(3.4.10)

whereas, using expression (3.4.8), synchrotron emission yields

Tsyn

0.0817 K
=
( ν

GHz

)−2.7
(3.4.11)

scription in Ascasibar et al. 2002, [135]) amounts to a negligible correction.
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for β = 0 and
Tsyn

0.1402 K
=
( ν

GHz

)−2.7
(3.4.12)

for β = 0.705.

As can be seen in Fig. 3.3, the signal is dominated by galaxies at z < 3, due

to the combined effects of distance dimming and the declining behavior of the

cosmic star formation rate at high redshift.
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CHAPTER 4

Systematics in lensing

reconstruction

Non-parametric lensing methods are a useful way of reconstructing the lens-

ing mass of a cluster without making assumptions about the way the mass

is distributed in the cluster. These methods are particularly powerful in the

case of galaxy clusters with a large number of constraints. The advantage of

not assuming implicitly that the luminous matter follows the dark matter is

particularly interesting in those cases where the cluster is in a non-relaxed dy-

namical state. On the other hand, non-parametric methods have several limi-

tations that should be taken into account carefully. We explore some of these

limitations and focus on their implications for the possible ring of dark matter

around the galaxy cluster CL0024+17. We project three background galaxies

through a mock cluster of known radial profile density and obtain a map for

the arcs (θ map). We also calculate the shear field associated with the mock

cluster across the whole field of view (3.3 arcmin). Combining the positions of

the arcs and the two-direction shear, we perform an inversion of the lens equa-

tion using two separate methods, the biconjugate gradient, and the quadratic

programming (QADP) to reconstruct the convergence map of the mock cluster.

We explore the space of the solutions of the convergence map and compare the

radial density profiles to the density profile of the mock cluster. When the in-

version matrix algorithms are forced to find the exact solution, we encounter

systematic effects resembling ring structures, that clearly depart from the orig-

inal convergence map. Overfitting lensing data with a non-parametric method

can produce ring-like structures similar to the alleged one in CL0024.
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4.1 Introduction

Gravitational lensing is one of the most powerful probes of dark matter. In

particular, galaxy clusters host the strongest gravitational potentials in the Uni-

verse, hence they are rich in gravitational lensing effects. The distortions pro-

duced in the images of background galaxies by a galaxy cluster can be used to

reconstruct the mass distribution of the cluster, which is believed to be largely

dominated by dark matter. Two regimes are distinguished according to the

strength of the lensing distortion. The weak lensing regime refers to small dis-

tortions that usually need to be studied in a statistical way. Large distortions,

on the other hand, can be studied individually (or in pairs) and they are re-

ferred to as strong lensing. Strong lensing occurs when the projected surface

mass density is on the order of the critical mass density Σcrit. In this scenario,

a gravitational lens bends the light in such a way that it can produce multi-

ple images (arcs) of the same background galaxy. Each multiple image can

be used as a constraint of the mass distribution. The mass distribution has to

be such that, when projected back into the source plane, the multiple images

concentrate (or focus) into the same point. In most cases, the number of mul-

tiple images is small, which results in few constraints. If only strong lensing is

available and the number of constraints is small, one needs to rely on paramet-

ric methods. However, more and more often new data reveals large numbers

of multiple images around a single cluster. The cluster A1689 is probably the

most spectacular example to date where hundreds of arcs can be seen around

the cluster, [142, 143]. When the number of constraints is sufficiently large, non-

parametric methods become competitive with the parametric ones and with the

advantage that no a priori assumption is made about the mass distribution of

the cluster. Non-parametric methods applied to lensing mass reconstruction

have been studied in the past, [144–154]. On the positive side, in cases where

the number of constraints is large, the results obtained with the parametric and

non-parametric methods agree well (Diego et al. 2005b) probing, among other

things, that the dark matter does trace the luminous matter and the usefulness

of non-parametric methods as a way of testing that the assumptions made in

the parametric methods are well founded. Non-parametric methods have been

used as well to combine weak and strong lensing data in the same analysis,

[146, 148, 151, 152, 155–157].

On the other hand, non-parametric methods have a series of limitations. In this
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paper we explore one of these limitations related to the limited resolution in the

mass reconstruction and its connection with the accuracy in the reconstructed

arc positions.

The results of this paper may have implications for the results of Jee et al. (2007)

, [31], who use a non-parametric method and find an unusual ring of dark mat-

ter around the cluster. While we do not question the validity of these interesting

results, we explore the possibility that spurious structures might appear when

using non-parametric methods if the limitations of parametric methods are not

taken into account in the analysis.

4.1.1 A ring of dark matter around CL0024+17?

The cluster CL0024+17 (z = 0.395) was one of the first for which strong lensing

was observed, [158]. Four strongly lensed arcs can be clearly seen around the

tangential critical curve (see also Smail et al. 1996 and Broadhurst et al. 2000,

[159, 160]). These arcs have been used to constrain the mass in the central region

of the cluster, [160–163]. These mass constraints have been compared with those

derived from X-ray measurements with CHANDRA, [164], and XMM-Newton,

[165]. These authors estimated that the X-ray masses are a factor 3-4 lower than

the lensing masses. This discrepancy has been interpreted as a sign that the

cluster is not in hydrostatic equilibrium.

In Jee et al. (2007) , the authors reconstruct the mass of the cluster out to 100

arcseconds from its center. This corresponds to a physical size of 0.389 Mpc for

an object located at z ≃ 0.4. In their analysis, they combine strong and weak

lensing with a non-parametric method. The authors find a dark matter ring

surrounding the cluster core, at r ≈ 75 arcseconds from the center (Fig. 10 in

Jee et al. 2007 ). The authors suggest that this ring might be the result of a high

speed collision between two clusters along the line of sight, [166], in a scenario

similar to the ’bullet cluster’, [29], but with the difference that in that case the

collision is perpendicular to the line of sight.

Whether the existence of the dark matter ring is real or not has been debated

by many other authors like Milgrom & Sanders (2008), Qin, Shan & Tilquin

(2008), Zu Hone, Lamb & Ricker (2009), Zitrin et al. (2009), Umetsu et al. (2010),
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[167–171]. Milgrom & Sanders (2008) reconstruct the radial profile of the mass

assuming a model based on modified Newtonian dynamics (or MOND). The

authors claim that a ringlike structure appears at the MOND transition region

(see figs. 3 and 4 in their paper). According to the authors, CL0024 can be con-

sidered as a robust probe of MOND. In Qin, Shan & Tilquin (2008), the authors

study the distribution of galaxies in CL0024, which, being collisionless, should

exhibit a similar ring-like pattern. On the basis of 295 counts, the authors find

no evidence of a ring in the distribution of galaxies. In a different paper, Zu

Hone, Lamb & Ricker (2009) use a hydrodynamical simulation of two colli-

sioning clusters to compute the radial profiles after the collision. They find no

evidence of either a dip or ring in the radial profile outside the core radius after

the collision. They conclude that a ring-like feature could only be explained by

an unlikely and highly tuned set of initial conditions before the collision.

To reanalyze the lensing data for CL0024, Zitrin et al. (2009) analyze this clus-

ter using data from the Hubble Space Telescope (HST) instrument ACS/NIC3.

The dark matter distribution profile was reconstructed using a SL parametric

method based on six free parameters. The results presented in Fig. 1 and Fig. 2

of their paper reveal neither a dip nor ring in the profiles. Finally, Umetsu et al.

(2010) combine a large field of view data set from the SUBARU telescope with

data from HST ACS/NIC3, finding no evidence of the ringlike structure after

the mass reconstruction (see Fig. 21 of their paper).

In this paper, we revisit the debate using a non-parametric method similar to

that used in Jee et al. (2007) but applied to simulated data (weak and strong

lensing). The advantage of using simulations is that the underlying dark mat-

ter distribution and the position and redshifts of the background sources are

perfectly known. This offers the unique possibility of comparing the optimal

solution with the multiple possible solutions obtained by the non-parametric

method. We can also explore the space of solutions obtained when the mini-

mization is done under different assumptions and compare with the original

mass distribution.

In Sections 4.2 and 4.3, we introduce the fundamentals of the gravitational lens-

ing and the non-parametric method used in this paper for the mass reconstruc-

tion. In Section 4.4, we describe the mock data used in our analysis. In Section
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4.5, we present the results obtained by our non-parametric method and com-

pare the different solutions with the optimal one. Finally, in Section 4.6, we

discuss our results and in Section 5.3 our conclusions.

4.2 Gravitational lensing basics

Basics for gravitational lensing have been given in Sect. 1.8, where it can be seen

as a direct consequence of the dark matter paradigm and the halo formation.

However, some technical notion on the mass recontruction method used for

this work are given in the next subsection. More details are given in Appendix

B.

4.2.1 Parameter-free lensing reconstruction

Here we adopt formalism and notation of Diego et al. (2005a) and Diego et al.

(2007).

The mass reconstruction described in those papers is based on a parameter-free

method where the lens plane is divided into a finite number of cells Nc and Eq.

(1.8.1) can be written in algebraic form. The deflection angle α at a position θ is

computed from the net contribution of the discretized mass distribution mi at

the positions θi

α(θ) =
4G
c2

Dls
DosDol

∑
Nc

mi(θi)
θ − θi

|θ − θi|2
. (4.2.1)

The number of cells in the gridded mass must be carefully choosen. The dis-

cretization of the lens plane affects the spatial resolution of the mass reconstruc-

tion, as we discuss in more detail later.

All the positions of the pixels hosting a strong lens image can be described by

the vector θ of dimension Nθ. For each pixel in the θ vector and for a given

discretized mass distribution, a corresponding β pixel can be traced back to

the source plane. The relation between all these elements can be written in

algebraic form

θ = ΥM + β, (4.2.2)

where θ (and β) are vectors containing the x and y components of the Nθ pixels

of the arcs (and sources), M is the vector of the masses inside the Nc cells, and
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the matrix Υ has the dimension of (2Nθ × Nc). The description of this matrix is

given in Diego et al. (2005a).

Eq. (4.2.2) is a system of 2Nθ linear equations whose solution can be achieved

using the methods described in Diego et al. (2005a). The unknowns of the prob-

lem are the masses in the M vector and the central positions of the background

sources. Both vectors can be united into a single one X, rendering the simpler

equation

θ = ΛX, (4.2.3)

where Λ is a matrix similar to Υ but with an extra sparse block containing 1 and

0.

Weak lensing data can be modeled in a similar way. The two components of

the shear are computed through the matrices that represent the contribution of

each mass cell:

(
γ1

γ2

)
=

(
∆1

∆2

)
M. (4.2.4)

A detailed description of the matrices Υ, ∆1 and ∆2 is presented in Appendix

B.1.

After including the weak lensing regime, the joint system of linear equations

can be explicitly written down as


θx

θy

γ1

γ2

 =



Υx Ix 0

Υy 0 Iy

∆1 0 0

∆2 0 0




M
βx

βy

 , (4.2.5)

where the element ij in the matrix Ix is 1 if the θi pixel comes from the β j source,

and is 0 otherwise. The matrix 0 is the null matrix. Eq. (4.2.5) can be written in

the more compact form

Φ = ΓX, (4.2.6)

where Φ is the vector containing the positions of the arcs and the shear mea-

surements, Γ is a non-square matrix, and X is the vector of the unknowns.
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Written in this simple form, the lensing problem could, in principle, be resolved

after the inversion of Eq. (4.2.6), X = Γ−1Φ.

4.3 Inversion of the lens equation

The vector X can be found by inverting Eq. (4.2.6). However, the matrix Γ is

often non-invertible. This is actually not a problem as we seek an approximate

solution with a more physical meaning than the exact solution. One of the

assumptions made in the parametric method is that the background galaxies

are infinitely small. The exact solution of the system of linear equations would

reproduce an unphysical situation where the background galaxies are point-like.

On the other hand, an approximate solution of the system has the benefit that

the predicted background sources are not point-like but extended. In addition,

an approximate solution allows for some error that is needed to compensate

for the other wrong assumption made in non-parametric methods, namely, the

assumption that the mass distribution is discretized. The predicted size of the

background sources can be controlled in the solution by setting an error level

or residual, R, in the system of linear equations

R ≡ Φ − ΓX. (4.3.1)

In the case of WL, the physical meaning of the residual is the associated error

in the determination of the reduced shear.

As discussed in Diego et al. (2005a), a powerful way to find an approximate

solution to the system is through the bi-conjugate gradient algorithm, which

minimizes the square of the residual

RtC−1R = (Φ − ΓX)tC−1(Φ − ΓX)

=
(

ΦtC−1Φ − 2ΦtC−1ΓX + XtΓtC−1ΓX
)

, (4.3.2)

where C is the covariance matrix of the residual R and among other things in-

cludes the relative weights of the SL and WL data. As discussed in Diego et

al. (2007), this residual can be described (to first order) by a Gaussian distri-

bution with a diagonal covariance matrix. This is however an approximation.

The elements of the residual are correlated with each other, in particular those
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elements corresponding to the SL part of the data. The elements of the WL part

of the residual are far more weakly correlated with each other and the diagonal

approximation is a far more valid for this part. For the time being, we assume

that the covariance matrix is diagonal and later discuss its implications. The

diagonal approximation has been also assumed in previous works, including

Jee et al. (2007) . The elements of the diagonal corresponding to the SL data are

set to σSL and the elements of the diagonal corresponding to the WL data are

set to σWL. We adopt σSL ∼ 1 arcsecond (in radians) and σWL = 0.3 (or equiva-

lently 30%). As discussed in Diego et al. (2007), the value of σSL has a physical

meaning. Its value is connected with the angular size of the sources.

An alternative to the bi-conjugate gradient is the non-negative quadratic pro-

gramming (QADP). A brief description of bi-conjugate and quadratic program-

ming is given in Appendix B.2.

Both methods have advantages and disadvantages: the bi-conjugate gradient

is extremely fast, although the final solution may contain unphysical negative

masses. On the other hand, the non-negative quadratic programming algo-

rithm does not produce a solution with negative masses, but it is significantly

slower than the bi-conjugate gradient (its typical computation time is a few

hours compared with a few minutes to reach similar accuracy). In both cases, a

threshold R2 ≈ ϵ is defined to set the level at which the minimization stops.

The method has one drawback when applied to our problem: one can not

choose ϵ to be arbitrary small. If one chooses ϵ to be very small, the algorithm

will try to find a solution that focuses the arcs into Ns sources with unphysically

small sizes. The mass distribution that accomplishes this, is usually very biased

relative to the correct one: it usually has a lot of substructure with large mass

fluctuations in the lens plane. One must then choose ϵ with some carefully se-

lected criteria. Since the algorithm will stop when R2 < ϵ, we should choose

ϵ to be an estimate of the expected error associated with the sources not being

point-like and the reconstructed mass being discretized. Instead of defining ϵ

in terms of R2, the parameter ϵ should be defined in terms of the residual of the

conjugate gradient algorithm rk (see Eq. B.2.7 in Appendix B.2). This would

accelerate the minimization process significantly since we would not need to

calculate R at each step but use the already estimated rk. Both residuals are

connected by the relation

rk = ΓTR. (4.3.3)
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Imposing a prior on the size of the sources means that we expect the residual

of the lens equation, R, to take typical values on the order of the expected dis-

persion (or size) of the sources at the measured redshifts. Hence, we can define

a Rprior of the form

Ri
prior = σi

prior ∗ RND, (4.3.4)

where the index i runs from 1 to Nθ and σi is the dispersion (prior) assumed

for the source associated with pixel i and RND is a random number normally

distributed with zero mean and unity variance. We can then estimate ϵ as

ϵ = rT
krk = RT

priorΓΓTRprior. (4.3.5)

Following Diego et al. (2005a), we construct Rprior assuming that the source

galaxies can be described as Gaussians with σ = 30h−1 kpc. In our particular

problem (a grid with Nc = 32 × 32 cells), this results in a value ϵ ≈ 2 × 10−10.

One has to be careful not to choose a too small σ. They should be larger than

the typical size of a galaxy. Only when the number of grid points, Nc, is large

enough, can the gridded version of the real mass distribution focus the arcs into

sources that are similar in size to real ones. If Nc is not large enough, the grid-

ded version of the true mass focuses the arcs into sources that are larger than

the real sources. This is explained in more detail below.

The choice of the threshold is a crucial point when performing the mass recon-

struction. We illustrate in the next few sections how this affects both the final

mass estimation and the positions of the sources.

4.4 Simulation of mock lensing data

We now describe the simulated data consisting of a simple cluster and lensing

(both strong and weak) data set. The use of simulated data gives us the unique

advantage of being able to compare the reconstructed mass with the true un-

derlying simulated mass and check for biases and systematics.

For the cluster, we assume a single Navarro-Frenk-White, (NFW, [172]) profile

for the radial density. We choose the simplest possible profile in order to avoid

the effects of the uncertainties caused by the complexity of the mass distribu-

tion. We also assume the same redshift of CL0024 (z = 0.4), while the field of
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view corresponds to the field of view of the ACS field (FOV=3.3 arcmins). The

resulting mass in the whole field of view is M(FOV) ∼ 4.8 × 1014M⊙, while

when we consider core radii within 30”, we have M(< 30′′) ∼ 1.28 × 1014M⊙

(the mass reconstruction in Jee et al. 2007 yields M(r < 30′′) ≈ (1.79 ± 0.13) ×
1014M⊙).

The strong and weak lensing data are computed using the full resolution of our

simulated cluster (in the reconstruction process, the lens plane is divided with

a grid that effectively reduces this resolution).

For the strong lensing data, we assume the same number of background sources

(Ns = 3) identified in Jee et al. (2007) and that their redshifts are z1 = 1.675,

z2 = 1.27, and z3 = 2.84. We carefully chose the position of the background

sources in trying to mimic the strong lensing data set used by Jee et al. (2007)

, although this is not really relevant to our work. They identify five arcs from

source 1, two arcs from source 2 and two arcs from source 3, making a total of

nine. Most of the arcs are tangential, particularly those originating from source

1, which indicates that this source has to be positioned very close (in projection)

to the density peak of the lens. In our case, our simulated strong lensing data

set consists of seven arcs, three of which originate from source s1 (two tangen-

tial and one radial), two from source s2 (one tangential and one radial), and two

from source s3 (one tangential and one radial). The map of the lensed images

is represented in Fig. 4.1 (top panel), with the labels identifying the original

sources.

The shear data is computed assuming that the density of available background

galaxies is lower toward the center of the cluster, where the presence of the

cluster itself makes it harder to estimate the reduced shear. For all the shear

data points, we assume a Gaussian noise of 30%. In addition to the cluster

itself, the magnification bias has to be taken into account. Magnification acts on

galaxies (enhancing their flux) but also expanding the area of the sky behind

the cluster. In Broadhurst et al. (2005a), [143], the latter effect is estimated and

showed that a net deficit of background galaxies is expected (see also Umetsu

et al. 2011, [173]). The resulting shear field is shown in Fig. 4.1 (bottom panel).

4.4.1 Simulated vs real data

In Jee et al. (2007) , the authors consider a FOV of 3.5 × 3.5 arcminutes that

is gridded in a 52 × 52 regular grid, but with the four corner points removed.
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Figure 4.1 Left panel: The lensed arcs (θ map) originated from three sources in the

background (not shown in the figure). The total number of pixels forming the arcs

is Nθ = 288. Right panel: shear field derived from the lens and used for the weak lens-

ing computation. The inner points have been removed to mimic the contamination

from cluster member galaxies. Total number of shear points is Nshear = 1301, needed

to set the dimension of the lensing matrix. All points have a Gaussian noise of 30%.

We consider a slightly smaller FOV (3.3 × 3.3 arcminutes) and divide the FOV

using a 32 × 32 regular grid. We chose the side of the grid to be 32 to ensure

that the number of constraints is comparable to the number of unknowns and

hence have a more stable system of equations. A larger number of grid points

will only introduce unnecessary noise in the reconstructed solution.

In Jee et al. (2007) , the strong lensing constraints are derived from 132 knots
identified in the lensed images and the weak lensing constraints are based on an

ensemble of 1297 background galaxies with photometric redshifts zphot ≥ 0.8.

In our simulated data, we instead consider all the pixels of our lensed images

(288 pixels) for the strong lensing, while for the weak lensing we create a simu-

lated vectorial field in 1301 positions.

The solution in Jee et al. (2007) is found after a minimization process involving

the strong and weak lensing data, a regularization term and a model for the

lensing potential. The regularization term improves the smoothness of the re-

covered solution and in principle helps to reduce the overfitting problem. The

method is based on the maximum entropy method (MEM), which has a posi-

tive prior that forces the improved solution to remain positive. Here, we also
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Figure 4.2 Simulated observed arcs (black) versus predicted ones from the optimal so-

lution (white). The difference between the two sets of θ positions is representative of

the error expected when recovering the solution.

use a minimization process but instead of a regularization term we stop the

minimization process at a point that avoids overfitting the data. An interesting

discussion of this point can be found in Jee et al. (2007) . They perform a delens-
ing of the arcs from one particular source. The resulting recovered sources are

reported in Fig. 14 in their paper, where the orientation, parity, and size of the

images are strongly consistent among the different recovered sources. Nonethe-

less, the positions of the the delensed images do not overlap. The same authors

report: ’ When we forced the two locations to coincide in our mass reconstruction,
the smoothness of the resulting mass map was compromised’. This might indicate

a tension between the recovered solution and the corresponding goodness of

fit. Formally the solution is not an optimal one in the sense that the recovered

source positions do not coincide but seem to be good enough to ensure that the

recovered sources resemble the real ones.
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Figure 4.3 Mass reconstruction obtained with the BGA and no overfitting ϵ = 2× 10−10.

Top panel: mass map after smoothing with a Gaussian. The mass inside the FOV is

M3.3′ = 6.1 × 1014M⊙, while the mass inside the core radius of 30” is M30′′ = 1.39 ×
1014M⊙. Bottom panel: Surface mass density profile (in units of Σcrit) as a function of

radius. Darker areas correspond to higher masses.

4.5 The optimal solution

With the simulated data, a very interesting exercise can be done before attempt-

ing the mass reconstruction. Since we know the true underlying mass and the

positions of the background sources, we can predict where the arcs should ap-

pear when we assume the optimal solution possible for X assuming a uniform

grid with 32 × 32 cells. This solution consists of the mean mass in each cell cor-

responding to the true underlying mass and the three real positions. In Fig. 4.2,

we show the true strong lensing or θ-map used to reconstruct the mass, com-

pared with the predicted one derived from the optimal solution X. The black

arcs are obtained from the equation θ = ΓM + β, where the matrix Γ is built

from the real θ positions and the 32 × 32 cells, the vector β contains the real

positions of the background sources, and the vector M contains the mean mass

sampled in the 32 × 32 cells.

The first interesting conclusion we can derive from this exercise is that the arcs

predicted from the optimal solution differ significantly from the true observed

arcs. This is unsurprising as the optimal solution lacks the resolution of the true

underlying mass and hence we should expect a different set of strong lensed
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Figure 4.4 Plots for M3.3′ = 4.34 × 1014M⊙ and M30′′ ≈ 1.9 × 1014M⊙. Overfitting

case. It shows the solution obtained with the BGA when the method is forced to find a

nearly exact solution to the problem (ϵ = 2× 10−15). The density profile inside the core

radius does not follow the profile of the input NFW cluster. Different density peaks

and dips can be seen around the center of the FOV. Darker areas correspond to higher

masses.

arcs. To reproduce the observed arcs, the solution has to bend the light in a dif-

ferent way. This can only be achieved with a mass distribution that is different

(i.e biased away) from the true one.

This exercise summarizes the entire philosophy behind this paper: using a non-
parametric method with a uniform cell size, it is impossible to predict correctly the
strong lensing data with an unbiased solution of the true underlying mass. By de-

fault, the non-parametric method makes the incorrect assumption that the mass

distribution is discrete and ignores the details of the mass distribution on scales

smaller than the cell size. Hence, the derived solution has to be biased by the

method in order to fit the data and compensate for this incorrect assumption.

The best we can hope for is a solution that resembles the true underlying mass

distribution but is unable to fit the observed data perfectly. This margin of error

in the description of the observed data will then compensate the original error

made by assuming that the mass is discretized. However, we note that we seek

a solution as close as possible to the true solution, which can only be achieved

when a realistic error, R, is allowed in the minimization of the system of linear

equations given in Eq. (4.3.1).
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Figure 4.5 Black color indicates the observed (or true) arcs and in white we show the

predicted arcs obtained with the solution shown in Fig. 4.4.

4.6 Mass reconstruction

To solve Eq. 4.2.6, the lens plane is divided into a regular grid of 32 × 32 cells.

This number is smaller than the number of constraints provided by the weak

and strong lensing data. The mass in each cell plus the positions of the back-

ground strong lensing galaxies form a vector of unknown variables X that has

1030 elements (1024 for the mass cells and 6 for the three sources, each one with

the x and y coordinates of the position of the background galaxy).

4.6.1 The bi-conjugate gradient algorithm solution

The bi-conjugate gradient algorithm (BGA) is a fast and powerful algorithm

for finding the solutions of a system of linear equations. As mentioned earlier,

rather than finding the exact solution, we seek an approximated one with an

error large enough to compensate for the discretized mass and that the back-
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ground galaxies are not point-like. The minimization is stopped at a point

where R2 ≈ ϵ. The choice of ϵ is based on the physical size of the background

galaxies and also that the optimal solution should not reconstruct the data per-

fectly as discussed in the previous subsection. A value of ϵ can be computed

from the equation

ϵ =
Nθ

∑
i

r2
k, (4.6.1)

where rk = ΓTRSL,prior + ΓTRWL,prior contains an estimate of the physical size of

the background galaxies (RSL,prior) and the error in the weak lensing measure-

ments (RWL,prior, see previous sections for the definition of ϵ and its relation to

rk).

Once the value of ϵ is estimated, we can solve for the mass and position of

the background sources. In Fig. 4.3, we show the mass reconstruction obtained

with the BGA for a value of ϵ = 1 × 10−10 (computed in Eq. 4.6.1, correspond-

ing to a σSL ∼ 1.2 arcsec and σWL = 0.3 or 30%). The total recovered mass inside

the FOV is M(< 3.3′) = 6.1 × 1014M⊙, while M(r < 30′′) = 1.39 × 1014M⊙.

The radial density profile is shown in the bottom panel of the figure, where it is

compared with the true mass profile.

Values of ϵ significantly smaller than ∼ 10−10 would produce an overfitting of

the data, introducing systematics in the final mass reconstruction. A typical

case of overfitting is shown in Fig. 4.4, where the threshold value of ϵ has been

lowered several orders of magnitude (ϵ = 2 × 10−15). This value pushes the

solution to the limit of the BGA and allows us to predict almost perfectly the

observed data. However, this solution is clearly biased with respect to the true

underlying mass as is clear when looking at the density profile (bottom panel).

The mass map shown in Fig. 4.4 is obviously a poor solution in the sense that

it deviates significantly from the underlying mass distribution. However, from

the point of view of the system of linear equations it is a good solution because

it is able to reproduce the data accurately. This is shown in Fig. 4.5, where the

observed arcs are compared to the predicted ones by the overfitting solution.

This result should be compared with the case in Fig. 4.2 showing the opposite

situation where the closest representation of the mass distribution leads to an

error in the predicted strongly lensed arcs. The conclusion we can extract from

this example is that a simultaneous (unbiased) reconstruction of the mass and the
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Figure 4.6 Plots for M3.3′ = 5.92 × 1014M⊙ and M30′′ = 1.22 × 1014M⊙. Mass re-

construction obtained with the QADP after 100 iterations. This case corresponds to a

reasonable value of ϵ and can be compared with the BGA solution shown in Fig. 4.3.

The QADP recovers a higher mass in the central region (Σ/Σcrit) than the BGA.

lensing data is impossible with a non-parametric method that lacks the details

of the mass distribution.

4.6.2 The quadratic programing algorithm solution

The solution X derived from the BGA might predict negative masses, which

could lead to large fluctuations in the mass density profile as the negative fluc-

tuations have to be compensated for by larger positive fluctuations. However,

Hoekstra et al. (2011), [174, and references within] report that cosmic noise (an

induced shear effect by uncorrelated halos and large-scale structure) has to be

taken into account when estimating the error bars in any cluster mass recon-

struction that might lead to a negative convergence in the regime of the weak

lensing. So a negative convergence is not completely unrealistic.

To avoid the large fluctuations at small radii exhibited by the biconjugate gradi-

ent, which can indicate a non-physical solution, we use the quadratic program-

ming algorithm (QADP, see Appendix B.2), which prevents negative masses

from appearing in the solution. This method resembles the maximum entropy

method introduced in Jee et al. (2007) , since both impose a positive prior on

the mass.
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The QADP has a smooth behavior in the inner regions, where no large fluctua-

tions are found, even in the crucial areas of the lens plane where the transition

between the WL and SL regimes is observed. In addition, QADP provides an

independent solution that should agree with the one derived by the BGA.

The number of iterations of the algorithm can be directly related to ϵ. The over-

fitting solution obtained by the QADP algorithm converges only after a large

number of iterations (∼ 104 − 105) or equivalently after defining a small value

for ϵ.

In Fig. 4.6, we show the solution obtained with QADP after 100 iterations. This

result can be compared with the one in Fig. 4.3. The QADP recovers a higher

mass than the BGA in the central region.

In Fig. 4.7, we show the overfitting case obtained with QADP with a large num-

ber of iterations (Niter = 105, or similarly, with a very small value for ϵ). In this

case, the mass is pushed away from the center towards larger radii in a similar

way to what was observed using the BGA. This is more clearly evident in the

density profile. A peak in the density is observed at r = 20′′ and an additional

bump at r = 50′′. The way in which the WL and SL are weighted is different in

both methods. The overfitting solution differs significantly from the true mass

(and also from Jee’s reconstruction in the central part). The overfitting solution

is dominated in our case by the WL part of the data (as in Jee et al. 2007 ). As

shown in Fig. 5.1, the WL alone case shows a mass deficit at the center that is

compensated for by the ring in the outer regions. Whether a similar situation

occurs in Jee et al. (2007) is unclear but we note that Jee’s mass reconstruction

predicts a lower mass at the center than that of Zitrin et al. (2009), [170], (as

seen in figure 21 of Umetsu et al. 2010,[171]).

In Jee et al. (2007) , their Fig. 10 shows the radial mass density profile of the

cluster, with a Σc given at a fiducial redshift of zf = 3. The authors state that the

resulting profile does not match any conventional analytic profile. The density,

peaking at the center with the value of Σ/Σc = 1.3, rapidly decreases from the

center to the end of the core radius at r = 50′′. The profile then remains almost
constant around a value of Σ/Σc = 0.7. Only at radius r = 70′′ from the center

is an increment observable, extending out to r = 80′′ with a peak at r = 75′′.
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Figure 4.7 Plots for M3.3′ = 6.81 × 1014M⊙ and M30′′ = 1.59 × 1014. Mass reconstruc-

tion obtained with QADP and after 105 iterations (overfitting case). The density peaks

at r ∼ 15′′ and a bump is observed at r ∼ 50′′. Darker areas correspond to higher

masses.

This is what the authors refer to as the bump. In two dimensions, this bump

appears like a ring structure, separated from the core by 20”.

A plateau was detected by Jee et al. (2007) at r ∼ 50′′, that was not found

by Umetsu et al. (2010), who instead measured a monotonically decreasing

density. This plateau might depend on the initial guess. The WL part of the data

displays this plateau more than the SL data, especially in those regions where

WL constraints are weaker. The role that the prior plays in determining the

regularization term in the MEM has to be investigated in more detail and leaves

questions open on how the choice of the prior could affect the radii outside the

central core.

120





CHAPTER 5

Conclusions

The last chapter is left for the conslusions derived from the previous chapters

2, 3 and 4.

5.1 Conclusions about the free-free signal from galaxy groups

and clusters

As can be seen in Fig. 2.3, the mean free-free signal is larger for lower mass

haloes. On the other hand, large mass haloes have larger individual free-free

fluxes but they are much less abundant. Consequently their contribution to the

mean signal decreases quickly with increasing mass.

An interesting result was shown in Fig. 2.4 where the explicit dependency of the

average temperature distortion with the mass is shown for different redshifts

intervals. From this plot, it is clear that the average signal is most sensitive to

halo masses smaller than 1012 solar masses. Also, from the same figure we can

conclude that haloes contribute to the average free-free signal at all redshifts up

to the reionization time.

Even though groups and clusters are expected to contribute less than less mas-

sive haloes to the average signal, it should be possible to detect clusters through

their free-free signal on a one by one basis opening the door for interesting

studies of the intra-cluster medium at radio wavelengths. In this line, Cooray

& Furlanetto (2004), [79], discussed the possibility of detecting the signal from

clumps of IGM with ARCADE. In Burigana et al (2004), [65], the model by Oh

(1999), [71], for unresolved free-free emitters has been exploited arriving to the

indication that the SKA project will be able to detect them with deep exposures.
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Future experiments might focus on the detectability of individual groups and/or

clusters through their free-free signature. This signal can be combined with oth-

ers (SZ, X-rays) in multiwavelength studies.

5.2 Discussion and conclusions on the contribution of

star-forming galaxies to the cosmic radio background

In the present work, we have considered the relationship between the cosmic

star formation rate and the radio background from star-forming galaxies in the

light of recent measurements of the far infrared-radio correlation at different

redshifts, attempting to give a further look into the significant missing flux that

has been reported by the ARCADE2 team.

Our main result is that normal galaxies can not be responsible for the observed

signal.

Although we think this conclusion is fairly robust, there is always some room

for uncertainty. Radio emission in local galaxies has been thoroughly studied,

and its properties are well known (see e.g. Condon 1992, [50]), but different gas

compositions and/or temperatures may affect the conversion factor between

SFR and radio emission by a significant amount, of the order of several tens of

percent.

On the other hand, we use the cosmic star formation rate density to constrain

the average emissivity of the universe, [111]. In contrast to radio source counts,

where a population of faint objects below the detection threshold is very dif-

ficult to rule out, [105, 108], it would be extremely unlikely that our proposed

fit underestimates the average SFR by more than a factor of two (dotted lines

in Fig. 3.2). Uncertainties in the IMF cancel out with the production rate of

ionizing photons given by Eq. 3.2.3 and are not expected to affect the present

analysis significantly.

The most important source of uncertainty is the possible evolution of the far

infrared-radio correlation. Current observations seem to be compatible with

β = 0.705 ± 0.081, increasing the expected emission from normal galaxies by

about 70 per cent with respect to the case of no evolution. Using an extreme

value β = 1 would boost the signal by only an additional 35 percent.

Nonetheless, it is worth noting that the high-redshift points in Figure 3.1 (in the
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sample of Michałowski, Hjorth & Watson 2010, Murphy et al. 2009) are domi-

nated by sub-millimeter galaxies. There is some discussion in the literature that

these sources, whose contribution to the total SFR at z ∼ 1 − 2 is only of the

order of ten per cent (see Figure 4 in Michałowski, Hjorth & Watson 2010), may

be radio-bright compared to normal galaxies and introduce some evolution in

the observed FRC that does not apply to star formation as a whole1 In fact, one

would expect on theoretical grounds that the FRC of normal galaxies evolved in

the opposite direction (β < 0). On the one hand, star formation at z ∼ 1 is heav-

ily obscured by dust, and the approximation that all the ultraviolet luminosity

is re-radiated in the infrared is very good. In the local universe, some fraction of

the ionizing photons is able to escape, and the infrared luminosity per unit SFR

should be lower. On the other hand, galaxies at high redshift should produce

less radio emission because the energy density of the CMB scales as (1 + z)4,

and the relativistic electrons injected by supernovae lose more energy through

inverse Compton scattering (see e.g. Carilli & Yun 1999, Carilli et al. 2008, Mur-

phy et al. 2009, [127, 175, 176]). Both effects, especially the latter, would only

strengthen our conclusions, and the estimate with β = 0.705 should arguably

be regarded as an upper limit.

According to our results, radio emission from star-forming galaxies could ex-

plain up to ∼ 13 per cent of the intensity of the CRB. Even taking all the possible

uncertainties into account, we are still far from the 1.19 Kelvin reported by AR-

CADE2 at 1 GHz. Although evolution of the FRC at z < 3 has to be further

investigated, current data strongly suggest that it only results in a relatively

minor boost to the contribution of normal galaxies, and hence we can rule them

out as the main source for the radio background. As shown in Fig. 3.3, the

contribution of galaxies at higher redshifts is negligible.

Since relatively bright point sources, as well as Galactic or extragalactic diffuse

emission have also been ruled out, (Singal et al. 2010 and references therein,

[105]), there are few alternatives left to explain the observed cosmic radio back-

ground. Some possibilities are:

1. The ARCADE2 measurement is incorrect, or it is contaminated by Galactic

foregrounds. Being perfectly consistent with independent measurements
1Just by removing the Michałowski, Hjorth & Watson (2010) data from the least-squares fit, the best

value of β decreases to 0.57 ± 0.093. Furthermore, the data at z < 1 are compatible with β = 0 (see the

discussion in Sargent et al 2010).
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at longer wavelengths, [177–179], we think this possibility is unlikely.

2. Faint star-forming galaxies at high redshift are extremely radio bright, per-

haps due to an enhanced magnetic field or AGN activity with respect to

the brightest objects at that redshift [the possibility favored by 105].

3. There is a new population of numerous and faint radio sources waiting to

be discovered.

To sum up, the nature of the cosmic radio background poses an exciting chal-

lenge for radio astronomy, to be faced in the upcoming era of Expanded Very

Large Array (EVLA) and Square Kilometre Array (SKA).

5.3 Discussion and conclusions on non-parameter lensing re-

construction of CL0024

The interesting analysis of Jee et al. [31] appears to detect a dark matter ring

around the core of CL0024. This ring might have been caused by a recent high

speed collision between two massive clusters along the line of sight. If con-

firmed, CL0024 would be an interesting laboratory to test different physical

phenomena. We have explored the possibility that spurious ring-like structures

might appear as a consequence of overfitting lensing data in a non-parametric

way. We show how the optimal (unbiased) solution should produce a fit to the

data significantly poorer than the minimal χ2 solution. This error is necessary

to account for the initial error introduced when neglecting the impact of the

small-scale fluctuations on the mass distribution. We demonstrate our argu-

ment by using a simulated data set where all the variables are known a priori

and the reconstructed mass can be compared with the original one. The simu-

lation shows how overfitting the data introduces artifacts in the reconstructed

solution, which can resemble the ring-like structure found in Jee et al. [31]. The

methods in Jee et al. [31] and the one used in this work are different in some

aspects but both methods share many common key features such as the lens

plane is divided into a regular grid and the parameters to be constrained are

basically those for convergence in the pixels. Hence both methods should also

have the same systematic effects and in particular be sensitive in a similar way

to overfitting.
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Figure 5.1 Reconstructed image for the case where only weak lensing data is used in

the reconstruction. A clear ring of matter appears in the area where the density of weak

lensing data gets reduced. Whiter colors indicate more mass.

Another interesting feature shown by the simulations that needs to be inves-

tigated more (with the actual data) is that when the density of weak lensing

data is non-uniform across the field of view, there is a tendency for the overfit-

ted solution to increase the mass density in the areas with fewer weak lensing

data. We show one example in Fig. 5.1, where only the simulated weak lensing

data is used to find the solution. The plot shows the WL data overlaid on the

overfitted solution found for this case. In the case of CL0024, we expect a lower

density of WL points toward the center of the cluster owing to contamination

by the cluster members. While the SL data constraints the inner central region

of the cluster, the outer regions are basically constrained by the WL data alone.

In-between these two regions, the density of WL data points should show a gra-

dient, and the effect of the non-uniformity of the WL data points might have a

negative effect on the solution. The reality of the ringlike structure will need to

be investigated in more detail.

We note that the covariance matrix of the residual might not necessarily be diag-
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onal. As discussed in section 7 of Diego et al. [157], the elements of the residual

are correlated with each other, in particular the strong lensing part of the resid-

ual. The elements of the WL portion of the residual are more weakly correlated

with each other, and the diagonal approximation is in this case more valid. This

is particularly true in our case where the error assigned to the WL measure-

ments is the predominant one (30%). Since the WL data are more relevant to

understanding the ring-like structure, we adopt the diagonal approximation for

the covariance matrix. In addition, the second reason why we prefer to adopt

this approximation in this paper is that Jee et al. [31] assumed that the data are

uncorrelated (the covariance matrix is diagonal for an uncorrelated residual).

The issue of the effect of the covariance matrix in lensing reconstruction has not

been addressed by any method (to the best of our knowledge) and we plan to

do so in a future paper. Another interesting point that deserves discussion is

that in Jee et al. [31] a regularization term is included in the analysis, among

other things, to prevent overfitting. This regularization term, however, does

not guarantee that overfitting is prevented. The main objective of the regular-

ization term is to favor solutions that are smooth by introducing a prior that

represents a smoothed version of the solution. If we consider the extreme case

where the reconstructed solution converges to the prior in their regularization

term (this is not an unrealistic scenario because the prior is updated at each iter-

ation and based on the previous solution), the regularization term tends to zero

forcing the other terms in χ2 to be even smaller and hence closer to an overfit-

ting situation. The SL and WL terms to be minimized are the ones that really

constrain the model and can still be too small even for smooth solutions. Our

work shows that a good solution obtained with our non-parametric method

should predict arcs significantly different from the ones observed. Only when

overfitting is allowed can the reconstructed data closely reproduce the observa-

tions (see Figs. 4.2 and 4.5 above).

Our work shows the validity and usefulness of non-parametric methods but

also shows some of its limitations, in particular that one should not be too am-

bitious when fitting the data.
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Resumen en castellano

En este ultimo capítulo se presenta el resumen en castellano de los capítulos

anteriores.

6.1 Introducción

6.1.1 Estructura a gran escala

El concepto de estructura a gran escala del Universo fue desarrollado en los

primeros años del siglo XX. Einstein formuló la teoría de la Relatividad Gen-

eral (RG), encontrando un punto de contacto con las ideas de Ernst Mach so-

bre los movimentos en sistemas de referencia inerciales. Einstein, como Mach,

estaba convencido de que las fuerzas de inercia que siente un sistema tienen

que ser producidas por el movimento relativo respecto a un cuerpo fijo. El

problema era que en una métrica de Minkowski, donde el tensor metrico es

nij = (1,−1,−1,−1), las fuerzas inerciales son sentidas también fuera del al-

cance de masas fijas. En una época donde lo que se sabía del Universo era lim-

itado sólo al Sistema Solar y a las galaxias más cercanas, el primero que pensó

en la presencia de una masa fija alrededor de lo que se podía oservar fue de Sit-

ter. Einstein y de Sitter llegaron a la conclusión de que, aunque no observada,

hay masa distribuida de manera homogénea en el Universo, y la distribución

de materia es la que da origen a la curvatura del espacio-tiempo. Además, el

Universo tiene que ser isótropo, porque no puede existir una dirección del movi-

mento privilegiada que contradijera la no existencia de un sistema de referen-

cia absoluto. El concepto de un Universo donde la materia está distribuida de

forma homogénea y en el cual cada observador ve lo mismo que otros ha sido
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identificado como Principio Cosmológico de Einstein.

Se llegó a la idea que en el entorno de nuestra galaxia había otras que no son

más que réplicas de ella en una estructura extendida donde los cúmulos de ma-

teria se alternan con vacíos.

No pasó mucho tiempo desde que las observaciónes empezaron a confirmar el

modelo de Einstein y de Sitter (como el mapa de nebulae de Charlier 1922 en la

sección 1.1). Edwin Hubble llegó a una primera estimación de la distribución

de galaxias en base a sus propias magnitudes m

dN(m)
dm

∝ 100.6m, (6.1.1)

comprobando la uniformidad de la materia a gran escala.

6.1.2 El Universo estático

En la teoría de la RG, la relación que liga la métrica del espacio-tiempo con el

contenido de materia es

Rij −
1
2

gijR = 8πGTij, (6.1.2)

donde los índices van desde 0 a 3, Rij y R son el tensor y el scalar de Ricci

respectivamente, gij es el tensor métrico y Tij es el tensor de energía-impulso.

En presencia de materia que ejerce presión, para un fluido en reposo, el tensor

Tij es un tensor diagonal con los elementos de la diagonal principal (ρ, p, p, p).

Esto reduce el número de ecuaciones del sistema 6.1.2 a 10.

La Ec. 6.1.2 se puede reducir a una forma más sencilla si se considera un ele-

mento de fluido en un espacio-tiempo de Minkowski, para el cual las veloci-

dades no son relativisas. Es la ecuación de Poisson

∇g = −4πG(ρ + 3p). (6.1.3)

Indicando con R el término de la curvatura del espacio-tiempo, la Ec. de Pois-

son 6.1.3, para un universo estático, homogéneo e isótropo tiene las soluciones

4
3 πG(ρ + 3p) = 0,

8
3 πGρ − 1

R2 = 0.
(6.1.4)

En el intento de conciliar la teoría de la RG con el descubrimiento de la estruc-

tura a gran escala del Universo, Einstein se dio cuenta de que la primera de
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las soluciones del sistema 6.1.4 preveía una presión o una densidad negativa.

Einstein introducjo un término constante en la Ec. 6.1.2

Rij −
1
2

gijR − Λgij = 8πGTij, (6.1.5)

donde Λ representa la constante cosmológica. El papel de la constante cosmológ-

ica es introducir una presión negativa cuando su densidad se mantiene con-

stante

ρΛ =
Λ

8πG
, pΛ = −ρΛ. (6.1.6)

En el modelo estándar de la cosmología, el termino Λ se usa para indicar la

presencia de una energía oscura que, al igual que la constante introducida por

Einstein, ejerce una presión negativa.

6.1.3 La expansión del Universo

La expansión del Universo se describe con el factor de escala en función del

tiempo, a(t). Una coordenada de tipo comóvil indica una distancia que no

evoluciona con la expansión del Universo. Una coordenada de tipo propio es

una función del tiempo

l(t) = l0a(t). (6.1.7)

El parámetro de Hubble se define como H ≡ ȧ/a, y de lo cual se sigue la ley de

Hubble

v = l̇ = l0 ȧ = l
ȧ
a

= Hl, (6.1.8)

que nos indica que las velocidades de recesión de los objectos lejanos son pro-

porcionales a sus distancias. El valor de H se da en unidades de Km seg−1

Mpc−1. Muchas medidas en cosmología usan un valor sin dimensiones del

parámetro de Hubble, definido como h ≡ H/(100Km sec−1 Mpc−1). El valor

actual del parámetro de Hubble es h = 0.72.

La métrica de Robertson-Walker es la que describe dos eventos separados en el

espacio-tiempo en un Universo que cambia su factor de escala

ds2 = dt2 − a(t)2
[

dr2

1 − Kr2 + r2(dθ + sin2 θdϕ2)
]

, (6.1.9)

El valor de la curvatura K puede ser -1,0 y +1. El caso K = −1 se corresponde

un universo parecido a un hiperboloide, abierto y de tamaño infinito. El caso
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K = 0 se corresponde a un universo de tipo plano, infinito, y euclídeo en 4

dimensiones. El caso K = 1 se corresponde a un universo cerrado, pero sin

bordes, de volúmen finito, de tipo esférico.

Las ecuaciones dinámicas para el factor de escala son las siguentes:

ä
a

= −4
3

G(ρ + 3p) +
Λ
3

, (6.1.10)

H2 =
(

ȧ
a

)2

=
8
3

Gρ +
k
a2 +

Λ
3

. (6.1.11)

Para un modelo donde la densidad de materia es mayor que la curvatura y Λ,

la Ec. 6.1.11 toma una forma más sencilla:(
ȧ
a

)2

=
8
3

Gρ. (6.1.12)

En el caso que la cantidad de materia en un volúmen no aumenta o disminuye,

su varía rescala como el factor de escala ρ ∝ a−3(t). Sustituyendo esta relación

en la Ec. 6.1.12 y separando las variables de integración, se obtiene que a ∝ t2/3,

con el tiempo igual a:

t =
2

3H
=

1
(6πGρ)1/2 . (6.1.13)

En un escenario de tipo Big Bang, el factor de escala llega a cero en un entorno

del tiempo t = 0, con una densidad divergente.

El factor de escala tiene un papel en la definición del redshift (desplazamento al

rojo) de tipo cosmológico

1 + z =
a0

ae
(6.1.14)

donde el factor de escala a0 se refiere al presente y ae se refiere al momento de

la emisión de la radiación. El factor de escala a0 siempre es mayor o igual que

el factor de escala ae, ya que estamos en un universo en expansión, así que el

redshift z siempre es un número mayor que cero.

Con la introducción del redshift, la Ec. 6.1.11 se puede escribir con el uso de los

parámetros de densidad

H2 =
(

ȧ
a

)2

=
(

ż
1 + z

)
= H2

0

[
Ω(1 + z)3 + ΩR(1 + z)2 + ΩΛ

]
, (6.1.15)

donde los parámetros de densidad son

Ω =
8πGρ0

3H2
0

, (6.1.16)
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ΩR =
1

(a0H0R)2 , (6.1.17)

ΩΛ =
Λ

3H2
0

, (6.1.18)

para la materia, para la curvatura y para la energía oscura (Λ) respectivamente.

El parámetro de densidad de la materia se puede escribir también en función

de la densidad crítica ρcrit = 3H2
0/(8πG),

Ω =
ρ0

ρcrit
, (6.1.19)

donde la relación entre ρ0 y ρcrit es un índice de la curvatura del Universo.

De la Ec. 6.1.15 se puede definir la función

E(z) ≡
√

Ω(1 + z)3 + ΩR(1 + z)2 + ΩΛ. (6.1.20)

La distancia comóvil que un fotón viaja desde un redshift 0 a lo largo de la línea

de visión es

DC =
c

H0

∫ z

0

dz′

E(z)
. (6.1.21)

La distancia comóvil transversa, para un parámetro de curvatura ΩR = 0, es igual

a la distancia comóvil, DM = DC. Para un universo abierto e infinito o cer-

rado, la distancia comóvil trasversa es una función del parámetro de curvatura.

Se obtiene que DM > DC para el modelo abiero y DM < DC para el modelo

cerrado.

Otras medidas de distancias de interés son la distancia de diámetro angular

DA = a(t)DM =
DM

1 + z
, (6.1.22)

y la distancia de luminosidad

DL = (1 + z)DM = (1 + z)2DA. (6.1.23)

La distancia de luminosidad es la que liga la luminosidad L de una fuente al

flujo recibido S

S =
L

4πD2
L

. (6.1.24)

El elemento de volúmen comvil se da por elemento de ángulo sólido dΩ y ele-

mento de redshift dz

dVC =
c

H0

(1 + z)2D2
A

E(z)
dΩdz (6.1.25)
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cuya integración, para un universo plano, es el volúmen de una esfera de radio

DM, VC = (4π/3)D3
M.

La corrección de tipo k tiene que ser introducida cuando se recibe un flujo difer-

encial de un objecto lejano, cuya luminosidad es una función de la frecuencia

(longitud de onda)

Sν = (1 + z)
Lνe

Lν

Lν

4D2
L

(6.1.26)

y

Sλ =
1

1 + z
Lλe

4D2
L

(6.1.27)

6.1.4 Crecimiento a través de inestabilidad gravitatoria

La cantidad básica para describir las inestabilidades gravitatorias es el contraste
de densidad en la posición x al tiempo t,

δ(x, t) =
ρ(x, t) − ρb

ρb
, (6.1.28)

donde δ(x, t) es la densidad en ese punto y ρb es la densidad promedio. La co-

ordenada x es de tipo comóvil. Para un fluido ideal sin presión, la ecuación del

movimiento, la ecuación de Euler y la de Poisson son, respecto a una posición

propia r y a una velocidad u que sigue la expansión de Hubble, las siguentes(
∂ρ

∂t

)
r
+ ∇r + ρu = 0, (6.1.29)(

∂u
∂t

)
r
+ (u + ∇r)u = −∇rΦ, (6.1.30)

∇2
r Φ = 4πGρ. (6.1.31)

Se puede pasar a las ecuaciones en coordenadas comóviles con los cambios x =
r/a(t), ∇ = a∇r y u = ȧv(x, t) y se obtiene

∂δ

∂t
+

1
a
∇ · [(1 + δ)v] = 0 (6.1.32)

∂v
∂t

+
ȧ
a

v +
1
a
(v · ∇)v = −1

a
∇ϕ (6.1.33)

∇2ϕ = 4πGρba2δ. (6.1.34)

Cuando el contraste de densidad es δ ≪ 1, las ecuaciones 6.1.32 y 6.1.33 se

pueden escribir quitando los terminos en δv y δ2 y se obtiene la evolución del

contraste de densidad
∂2δ

∂t2 + 2
ȧ
a

∂δ

∂t
= 4πGρbδ. (6.1.35)
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Para un universo con componente de materia dominante (universo de tipo

Einstein-de Sitter) a ∝ t2/3, entonces la evolución del contraste de densidad

se puede esplicitar en función del tiempo

∂2δ

∂t2 +
4
3

∂δ

∂t
=

2
3t2 δ, (6.1.36)

y la solución es

δ = At2/3 + Bt−1. (6.1.37)

El primer término es el modo creciente, el segundo es el modo decadente.

Otra manera de describir la evolución del contraste de densidad es a través

de la longitud de onda de Jeans. En presencia de una componente que ejerce

presión (como la radiación acoplada con la materia en un universo denso), esa

tiene que incluirse en la ecuación de la evolución del contraste

∂2δ

∂t2 + 2
ȧ
a

∂δ

∂t
= 4πGρbδ +

c2
s

a2∇
2δ (6.1.38)

donde c2
s ≡ dp/dρ es la velocidad de las olas de sonido que se propagan en un

medio. Descomponiendo el contraste en una serie de Fourier, la evolución de

los modos δk es
d2δk

dt2 + 2
ȧ
a

dδk

dt
=
(

4πGρb −
k2c2

s
a2

)
δk. (6.1.39)

No hay evolución cuando el término entre paréntesis es nulo, es decir cuando

al número de ondas es

kJ =
2a
cs

(πGρb)1/2. (6.1.40)

Perturbaciones con una longitud propia mayor que la longitud de Jeans seguirán

creciendo bajo el efecto de la propia gravedad, mientras que perturbaciones con

una longitud de onda más corta que la de Jeans se comportan como osciladores

hasta que materia y radiación son desacopladas.

Sobredensidades de simetría esférica que crecen en régimen de linealidad, lle-

gan a un regimen de no-línealidad que produce sus colapso. Una sobredensi-

dad de simetria esferica es parecida a un universo cerrado, por lo cual la posi-

ción y el tiempo son descritos por una solución de tipo cicloide

δ ≃ 3
20

(
6t
B

)2/3

. (6.1.41)

La esfera que contiene la sobredensidad está en expansión de acuerdo con el

flujo de Hubble, pero llega a un punto de inversion, donde su sobredensidad
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alcanza un valor de ≃ 5.6. Calculado en el regimen de línearidad (δ ∝ t2/3) ese

valor es ≃ 1.06. Después de la inversion, el sistema empieza a colapsar bajo su

propia gravedad, pero no llega a una singularidad. El sistema se mantiene en

uno estado de equilibrio gobernado por la condición de virialización, V = −2K,

donde V es la energía potencial y K es la energía cinética. Dependiendo de

donde se considera virializado el sistema (en un camino promedio o en el punto

de maximo colapso), el contraste de densidad tiene un valor mayor que uno,

≃ 147 o ≃ 178. Ese valor suele ser llamado contraste de densidad critico, δcrit

y tiene un papel importante en la teoría de Press-Schecther sobre el número de

halos de materia oscura que se forman a lo largo de la expansión.

6.1.5 Radiación

En un escenario de tipo Bing Bang, con un Universo en evolución, su historia

térmica depende de su cantidad de radiación.

La radiación está acoplada a la materia en el primer periodo del Universo,

cuando este era extremadamente caliente y denso. En equilibrio térmico, los

fotones exhiben un espectro de cuerpo negro

u(ω)dω =
h̄

π2c3
ω3dω

eh̄ω/kT − 1
, (6.1.42)

en función de la frecuencia angular ω. Integrando en todas las frecuencias la

distribución de cuerpo negro, se obtiene la energía de radiación por unidad de

volúmen

u = abT4 (6.1.43)

donde ab es una constante y la temperatura varia como T ∝ (1 + z). La densidad

de la radiación es

ρrad =
abT4

c2 =
ab
c2 T4

0 (1 + z)4, (6.1.44)

que puede ser comparada con la densidad de la materia

ρ(t) =
1

a3(t)
3H3

0
8πG

(6.1.45)

para encontrar el redshift al cual las dos densidades eran iguales

1 + zeq ≃ 3196, (6.1.46)

al cual corresponde un tiempo de 2.6 × 1010Ω−2h−4 segundos. Antes de este

tiempo, el Universo está dominado por la radiación, después está dominado
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por la materia.

La temperatura T0 es la temperatura medida en el fondo cósmico de microon-

das, TCMB = 2.735 ± 0.06 Kelvin. El descubrimiento del fondo cósmico se pro-

dujo de manera casual en 1965 por parte de los ingenieros A. Penzias y R. Wil-

son. Al mismo tiempo, Dicke y Peebles habían formulado la teoría de una ra-

diación de tipo fósil que tiene que estar presente en el Universo como prueba

del acoplamiento entre materia y radiación a redshift muy alto. La observación

de 1965 y después la medida de la temperatura de la radiación por el satelite

COBE en 1991 confirmaron el modelo dinámico del Universo y abrió una nueva

era para la cosmología.

Debido a la alta densidad y a la gran energía cinética de los fotones, la materia

durante el acoplamiento se encuentra en uno estado ionizado. Los frecuentes

choques impiden a los fotones llegar a regiones más lejanas que sus caminos

promedios. Es un Universo de forma completamente ionizada y opaco a la luz.

Su expansión, con la relativa bajada de la temperatura, conlleva dos efectos que

se pueden considerar como ligados. El primero es el desacoplamiento, es decir

que fotones y bariones no estan en equilibrio térmico y evolucionan de acuerdo

a distintas propiedades térmicas. El desacoplamiento no ocurre de manera in-

stantanea, se prolonga un cierto tiempo dando lugar a lo que se llama superficie
de último choque. Los fotones están libres de viajar a grande distancias. Cuando

esos fotones llegan a un observador, conservan información del último choque

y su entorno. El redshift del desacoplamiento ha sido estimado en zdec ≃ 1300.

Tras el desacoplamiento radiación-materia, los iones y los electrones pueden

combinarse para formar átomos de hidrógeno. Aunqueantes no existian áto-

mos neutros, a esta primera formación se le da el nombre de recombinación. En

el proceso de recombinación, también se produce una fracción de moléculas de

hidrógeno H2.

La presencia de fotones afecta la capacidad de los bariones de formar estruc-

turas. Antes del desacoplamiento, bariones y fotones, estrechamentes correla-

cionados, tienen un recorrido medio muy corto. Pero los fotones pueden pasar

de regiones más densas a menos densas y con esto arrastran los bariones.

Por fin, la evolución química de las especies en el Universo primordial crea

una importante fracción de helio, que está estimada en el valor YHe ≃ 0.25,

aunque medidas más recientes han subido su contenido a 0.28. La producción
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de hidrógeno y helio en un contexto de tipo cosmológico, sin intervención de

estructuras como estrellas o galaxias, tiene el nombre de nuclosíntesis primordial.
Además de la produción de estos elementos, la nucleosíntesis llega a formar

una pequeña, pero no despreciable fracción de isótopos pesados como deuterio

y tritio (hidrógeno) y 3He.

6.1.6 Materia oscura

Hasta ahora, con el término “materia” se ha identificado una componente muy

fácil de trazar porque se está correlacionada a la emisión (o absorción) de ra-

diación. Esta componente de la materia bariónica, en el modelo estándar está

aceptado como una pequeña parte de una componente mucho mayor en nú-

mero, que es la que rellena el parámetro de densidad Ω. A esa componente

no se le da carácter emisor de radiación, y los efectos observables son de natu-

raleza puralezamente gravitatoria. Ya con el estudio a principios del siglo XX

de los primeros sistemas ligados a través de la gravedad, como los cúmulos

de Virgo y Coma, surgió la idea que solo la materia luminosa no era capaz de

explicar las fuerzas atractoras observadas. Al pasar los años, con el creciente

descubrimento de la dinámica del movimiento de las galaxias, la necesidad

de introducir una teoría que conectara bien con las observaciones introdujo la

necesidad de la existencia de la materia oscura. Sus propiedades han sido iden-

tificadas, pero todavía no se ha identificado con certidumbre los candidatos.

SÓLo una mínima parte de materia oscura puede ser identificada con mate-

ria bariónica que no se puede observar (estrellas enanas marrón, cometas), la

mayoría de materia oscura tiene que ser de otro tipo.

El candidado más acreditado hasta el presente es la materia oscura fría (CDM).

El término frío se refiere a su propiedad de ser no-relativista, ya que no presenta

una presión y actua sólo con gravedad. La sección de choque eficaz de ese tipo

de materia es muy pequeña, también respecto a los choques que se producen

en el acoplamiento materia-fotones a redshifts z > zdec, por lo cual, sobreden-

sidades con longitud de onda más pequeña de la de Jeans no se ven afectadas

por la presencia de fotones y crecen en regimén líneal también dentro del hor-

izonte. Si n f es el número de partículas de materia oscura, la estimación de la

densidad puede dar el rango de masa

ρd =
n f m

(1 + z)3 =
3H2

0Ωd

8πG
. (6.1.47)
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Para un valor de Ωd del orden de la unidad, la masa m tiene un rango de 2-10

GeV. Un posible candidado en ese orden de masa es la partícula con el nombre

de neutralino, que aparece en la familia de partículas WIMP (Weak Interaction
Massive Particles, partículas masivas de interaccíon debil). De los experimentos

que intentan medir el neutralino, sólo uno ha mostrado una detección en el

rango de masa 7-11 GeV.

Otro tipo de materia oscura fría es el axión que es de tipo bosónico, para el cual

se prevé un rango de masa mucho más bajo, entre 10−6 − 1 eV. Hasta ahora no

se han detectado eventos que confirmen la existencia del axión.

Además de la materia oscura fría, ha tenido mucho éxito también la teoría de

una materia oscura caliente, es decir, con velocidades relativistas y que ejerce

una presión. El candiadato más razonable en este caso es una familia de neu-

trinos masivos, producidos en los decaimientos beta. Sin embargo, ese tipo de

neutrino no podía explicar la constante de Hubble medida, ni podía explicar la

formación de estructuras de tipo adiabático. Aunque se intenta reconciliar las

observaciones con la presencia de materia oscura de tipo caliente (proponiendo

otra familia de neutrinos), el modelo estándar está está basado en la existencia

de materia oscura fría.

En los años 80, en los cuales se iba asentando la idea de la materia oscura, otras

teorías alternativas iban siendo propuestas. La más importante es la teoría de la

modificación de dinamica de Newton (MOND). MOND se realizó a partir de la

medida de las curvas de velocidad de rotación de las galaxias. Las curvas se ob-

servaban constantes también a gran distancia del centro (en una teoría clásica,

con sólo materia bariónica, tienen que caer como v ∝ r1/2). Para explicar eso,

la materia oscura fue introducida como una componente presente en el halo

alrededor del disco de la galaxia, que contenía la masa necesaria para mantener

constante la velocidad. La teoría MOND dice que la fuerza es proporciónal a la

aceleracíon sólo cuando esa acelaración es mayor a una constante a0. Pero a una

distancia para la cual la aceleración de Newton es más debil, la curva de veloci-

dad rotacional es proporcional a esa constante, manteniéndose constante ella

misma. MOND ha sido capaz de explicar varias curvas de rotación de galaxias

lejanas de varios tipos, pero parece no tener la capacidad de explicar la fuerza

de atracción de los cúmulos más masivos y de no tener un esquema para la

formación de estructuras.

De aspecto parecido a MOND es la teoría de gravedad modificada, o MOG,
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introducida en los ultimos años. En vez de una aceleración a0 MOG introduce

un par de parámetros que se ajustan al sistema que se estudia, una masa M0 y

un radio r0. La constate gravitatoria G se sustituye por una función G(r). Los

autores de la MOG han declarado muchos éxitos de la teoría, el último de los

cuales es la explicación del Bullet Cluster a través de únicamente materia bar-

iónica. El caso del Bullet Cluster 1E0657-558 ha sido unas de las observaciones

más importantes para la afirmación de la idea de la existencia de materia os-

cura. El choque de dos cúmulos en el plano del cielo ha permitido por primera

vez medir una componente bariónica (gas caliente que emite en radios X) sep-

arada de una componente mas masiva (materia oscura, medida a través del

efecto lente gravitatoria). Además de representar un laboratorio para la teoría

de materia oscura, también la teorí MOG parece poder explicar la separación

de las componentes y la masa que produce el efecto lente.

6.1.7 Estadística de un campo de densidad

En el espacio real se puede construir la función de correlación a dos puntos, que

es la probabilidad de que dos objectos se encuentran en dos volúmenes V1 y V2

separados por una distancia r. La función de correlación se puede escribir en

función de las sobredensidades de esos objectos. Cuando la distribución sigue

una distribución Gaussiana, la función de correlación tiene su correspondiente

transformada de Fourier. A cada sobredensidad real δ(r) le corresponde una se-

rie con coeficientes en números de ondas δk. El espectro de potencias se define

como

P(k) ≡ ⟨|δk|2⟩, (6.1.48)

o

∆2(k) ≡ V
(2π)3 4πk3P(k), (6.1.49)

y es la medida de cuánto varía el contraste de sobredensidad, respcto a un valor

promedio, en diferentes escalas angulares. La función más sencilla para expre-

sar el espectro de potencia es de tipo P(k) ∝ kn. Ese tipo de espectro se presenta

por fluctuaciones de materia oscura después de la era de la inflación y durante

la era de la radiación. Las fluctuaciones crecen en todas las escalas, porque la

radiación se está expandiendo por el horizonte así que su presión no contrasta

los efectos de la gravedad para escalas mas grandes del mismo horizonte. Ese

espectro se presenta para las sobredensidades resultantes después de la era de
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la inflacion, por esto toma el nombre de primordial y por el hecho que las fluc-

tuaciones crecen a todas las escalas, toma el nombre de invariante.

El espectro de potencias evoluciona según la escala de Jeans, que divide los

modos crecientes de los que oscilan bajo la presión de radiación. Los modos

que entran en el horizonte empiezan a oscilar por el efecto de la presión, así

que fluctuaciónes de longitud corta se suprimen por efecto de la difusion de

los fotones (radiation drag o Silk damping). Los modos que van entrando en el

horizonte corresponden a los ks menores, así se crea un pico a la derecha del

espectro, pico que se va moviendo hacia la izquierda a lo largo de la expan-

sión de el horizonte. La supresión corresponde a una función P(k) ∝ k−3, y se

produce hasta que a > aeq. Desde este momento, la materia es la componente

dominante del universo y todas las fluctuaciones siguen creciendo en regimén

líneal.

La estadística Gaussiana permite una estimación de los halos de materia oscura

que se forman a lo largo del tiempo por unidad de volúmen. Esta estadística

tiene su importancia cuando a un halo de materia oscura se asocia una estruc-

tura bariónica. Dependiendo de la masa, esa estructura bariónica puede ser

un grupo de galaxias o un cúmulo. Un grupo de galaxia tiene una masa más

pequeña (M < 1013M⊙) y es pobre en gas caliente (IGM). Los cúmulos son

estructuras masivas (de hecho, las más masivas observadas, M > 1013M⊙), y

se caracterizan por la presencia de gas exstremadamente caliente (∼ 107 K) que

emite en radio y en rayos X.

La teoría de Press y Schecther indica el número de halos que se forman en un

volúmen comóvil a lo largo del redshift. Es la probabilidad de que un halo

tenga una sobredensidad mayor que una densidad crítica δc en el momento del

desacoplo. La probabilidad es la integral de una distribución de tipo Gaussiano,

por lo cual la desviación estándar σ (sobre un radio de 8h−1 Mpc) es un dato

observado

M
dn
dM

=
(

2
π

)1/2 d ln σ−1

d ln M
v1/2

c e−vc/2, (6.1.50)

donde vc ≡ δc/σ.

La formación de estructuras a través del colapso gravitacional se conoce como

formación de tipo bottom-up porque estructuras más pequeñas se forman antes

y estructuras más masiva se forman después por mutua atracción. Una forma-

ción de estructuras del tipo contrario, top − down, en la cual estructuras masi-

vas se forman al principio y las más pequeñas siguen después un proceso de

140



CHAPTER 6: RESUMEN EN CASTELLANO

desintegración es prevista en un escenario de materia oscura caliente en modo

adiabático.

Las observaciones indican una formación con materia oscura fría, además prue-

bas muy importantes para la teoriía de CDM se han realizado en los ultimos

años a través de las simulaciones cosmológicas.

Una simulación cosmológica consiste en una distribución de elementos de ma-

teria en un volúmen y un conjunto de ecuaciones que describen su evolución

en el tiempo. En este trabajo de tesis se ha usado el código GADGET-2 para

desarollar una simulación cosmológica para rapresentar un conjunto de cúmu-

los de galaxias. GADGET-2 es una simulación de tipo N-cuerpos, en la cual

se fija un número de elementos o partículas que pueden ser de naturaleza no-

bariónica (materia oscura) o de naturaleza bariónica (gas o estrellas). Para cada

de las n partículas se construye una función de Poisson que es la suma de las

n − 1 interaciónes entre dicha partículas y las otras. Para un número muy

grande de partículas, el número de ecuaciones a resolver demasiado grande,

considerando que por cada partícula en un volúmen hay que simular tres coor-

denadas de posición y tres de velocidad. Para reducir el número de ecuaciones

por cada intervalo de integración, GADGET-2 usa el metodo del tree (arbol), de-

scomponiendo el volúmen en subvolúmenes regulares. En cada subvolúmen

se calcula una interacción promedio de las partículas. Cuando una partícula se

encuentra lejana de un subvolúmen, no hay necesidad de cumplir el calculo de

las interaciones de gravidad entre dicha partícula y las partículas del subvolú-

men, sólo es necesario calcular la interación usando el sólo valor promedio. A

través de un umbral definido por el usuario es posible intervenir sobre la de-

scomposición en multipolos del volúmen cosmológico. En el caso de materia

oscura, actúa sólo la interacción gravitatoria. En el caso de materia bariónica,

hay que introducir ecuaciones por la viscosidad y los choques que se producen.

En este caso se calcula la variación de la velocidad en función de términos de

viscosidad artificial.

Aunque las ecuaciones usadas en un código de tipo N-body suelen ser más

complicadas, la idea es que una simulación proporciona el conjunto de partícu-

las en el volúmen en diferentes intervalos de tiempo. Los intervalos son decidi-

dos por el usuario y por cada intervalo se proporciona una lista de posiciones,

velocidades, temperaturas y masa de cada partícula. Estas informaciones, rea-

grupadas en ficheros, dan un fotografía del universo simulado. Cuando se rep-
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resentan, de acuerdo con la resolución espacial alcanzada, se identifican los

aspectos peculiares de las estructuras a gran escala del Universo como nos sug-

ieran las observaciones. Las simulaciones cosmológicas han sido una prueba

crucial para la confirmación del modelo estándar, con materia oscura consti-

tuida en practicamente su totalidad de tipo no-bariónico, una nucleogénesis

primordial que ha producido hidrógeno y helio con una proporción 3:1, for-

mación de estructuras de tipo jerárquico por caída en potenciales gravitatorios,

expansión del Universo de manera acelerada por la presencia de una presión

debida a la existencia de la energía oscura.

6.1.8 Efecto lente gravitatoria

El efecto lente gravitatoria es una evidencia directa de la teoría de la relatividad

general. Este efecto es debido a fuertes potenciales gravitatorios que producen

distorsiones en la trayectoria de los fotones. Aunque toda masa es capaz de

distorsionar el espacio, el efecto lente gravitatoria produce cantidades medi-

bles de esa distorsión. Los primeros efectos de lente gravitatoria se midieron

observando que dos galaxias, en posiciones muy diferentes del plano del cielo,

se observaban con el mismo redshift y con el mismo espectro de emisividad.

Pronto se identificaron esas galaxias como imágenes multiples de otra galaxia

que no era visible. Este tipo de distorsión es conoscido como lente gravitato-

ria fuerte. El potencial gravitatorio necesario para producir una distorición tan

grande se encuentra sólo en galaxias masivas y cúmulos de galaxias. En este

caso se dice que el cúmulo es la lente. Aunque sólo cúmulos muy masivos

son capaces de producir imágenes multiples de una misma fuente, potenciales

gravitatorios más débiles (o el mismo potencial gravitatorio de un cúmulo ma-

sivo a grande distancia desde su centro) producen una distorsión coherente de

las imágenes de las galaxias del fondo. Esa distorsión es una deformación de

la imagen que se puede medir y cuantificar y toma el nombre de efecto lente

débil.

Por el efecto de lente fuerte se puede usar la aproximación de lente fina, en la

cual las distancias entre el observador y la lente y entre la lente y las galaxias

del fondo son mucho mayores que el grosor del cúmulo-lente. Los elementos

que entran en un sistema de lente fuerte son tres: las posiciones de las galaxias

del fondo β, las posiciones de las imagines multiples θ y el ángulo de deflexión
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α,

β = θ − DLS

DS
α(θ), (6.1.51)

donde DLS es la distancia angular entre lente y fuentes y DS es la distancia

angular entre observador y fuentes. Cuando las posiciones β están en el centro

geométrico de la lente, las posiciones θ forman el anillo de Einstein.

En cada posición θ se reconstruye el potencial gravitatorio (bidimensional) a

partir de las distancia entre esa posición y las otras posiciones θ′. Una vez

que se han identificados las distancias entre sus componentes, el sistema tiene

una cantidad definida que es la densidad crítica de superficie Σcrit. En cada

punto θ existe una densidad de superficie Σ(θ) (es una proyección en el cielo

de una densidad de volúmen), entonces, para un mapa de θs existe un mapa de

convergencia

κ =
Σ(θ)
Σcrit

. (6.1.52)

El mapa de convergencia es un sinonimo de densidad de superficie, es decir,

un sinónimo del potencial proyectado, κ = (1/2)∇2ψ. Otra cantidad de un

sistema de lente es la magnificación, definida como la variación de las posiciónes

θs en función de las posiciónes βs.

La transición entre un regimen de lente fuerte y un regimen de lente débil puede

ser pensada en función de la convergencia: un κ ≪ 1 es indicativo un regimén

de lente débil sin efectos de lente fuerte. Asociado al potencial gravitatorio está

lo que llamamos shear, γ. El shear es la medida de la variación del potencial

gravitatorio en función de las θs. El shear reducido g = γ/(1 − κ) es la medida

de la distorsión coherente de la forma de las galaxias del fondo.

6.1.9 Procesos de radiación

Después del desacoplamiento entre materia y radiación, las fluctuaciónes de

densidad son libres de crecer en regimen líneal y colapsar en regimen de no

linealidad. El colapso aumenta la densidad de la materia bariónica, que por

efecto de atracción gravitatoria se une en estructuras mas grandes. Si el de-

sacoplamiento es a un redshift z > 1000, las primeras estructuras son a un

redshift z ∼ 20. Después de la recombinación, el gas de la nucleosintesis

(hidrógeno y helio) se encuentra en un estado neutro. Las primeras estructuras

dan lugar a las primeras regiones de formación estelar. Aunque muchas dudas

quedan sobre el proceso de formación de las primeras estrellas, está claro que
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fotones ionizantes empiezaron a escapar de las regiones estelares para propa-

garse en el medio poco denso alrededor. Una primera fase ve burbujas de gas

ionizado alrededor de fuentes ionizantes. En una segunda fase las burbujas

comienzan a solaparse de modo extendido y en una tercera fase la fracción de

gas neutro se reduce a menos de 1 parte entre 103. La segunda fase se llama

reionización. Al proceso de reionización se asocia un exceso de electrones, cuya

densidad es ne. La medida de la reionización se hace a través de la profundi-

dad óptica τ, que es el producto de la densidad de electrones por la sección de

choque Thomson (entre fotones y electrones), integrado en la línea de visión.

La presencia de electrones libres en el medio intergalactico es la causa de emi-

siones observadas en la banda de radio. La emisión de tipo libre-libre(o de tipo

free-free) es una emisión de tipo térmica porque su espectro está relaciónado

con la distribución de velocidades de Maxwell. El espectro libre-libre es casi

plano, con una ligera dependencia de la frecuencia ϵ ∝ ν−0.1 debido al factor de

Gaunt. La emisividad de libre-libre es una función de la densidad de electrones

al cuadrado, y función inversa de la radiz de la temperatura, ϵff ∝ n2
e /T1/2. Por

una temperatura tipica del medio ionizado de T = 104 K, la emisión libre-libre

tiene un pico a νmax ≃ 1GHz, aunque por la planitud de su espectro, su obser-

vación es posible alrededor de ν ≃ 100 GHz donde no está tan dominado por

emisión de synchrotron o polvo.

La emisión de tipo synchrotron se produce cuando los electrones libres interac-

tuan con un campo magnetico presente en la galaxia. Por esto el synchrotron es

una emisión de tipo no-térmico. La dependencia de la frecuencia es una ley de

potencias mucho más pendiente de la de libre-libre. Una estimación por galax-

ias de tipo normal indica que ϵsyn ∝ ν−0.7. Los campos magneticos que aceleran

los electrones son debidos a los restos de supernovas, entonces son una eviden-

cia de regiones de formación estelar. Por esto la radiación de tipo libre-libre y la

de synchrotron son dos componentes del mismo espectro de emisión de galax-

ias o cúmulos de galaxias. La pendiente del synchrotron permite que sea más

fácil observarlo a frecuencias bajas. A frecuencias altas, una tercera fuente de

emisión domina la de libre-libre y es la radiación de tipo infrarojo emitida por

rl polvo. Aunque no causada por electrones libres, la presencia de polvo sigue

siendo asociada a regiones de formación estelar, entonces las observaciónes han

detectado una correspondencia entre la emisión de synchrotron (o radio) y la

del polvo (infrarojo).
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6.2 Capítulo 2

En este capítulo se presenta un resumen del articulo La señal cosmológica de

libre-libre de grupos de galaxias y cúmulos escrito por Ponente, Diego, Sheth,

Burigana, Ascasibar y Knollman y presentado en la revista Monthly Notices of

the Royal Astronomical Society con referencia MNRAS, 2011, 410, 2353.

El articulo se pone como objetivo sacar un modelo para la emisión de tipo libre-

libre de tipo cosmológico, es decir integrado en todo el espacio a partir de un

redshift que incluya el proceso de reionización. Los reultados del artículo son

relevantes para los nuevos projectos (SKA y ALMA) que contribuiran a dar

mayor luz al marco de formación de las primeras estructuras. La ventana de

observación es la banda radio a frecuencias de pocos GHz. En este contexto se

ha introducido el experimento de ARCADE2 , que ha medido el fondo cósmico

del cielo en bandas desde 3 a 10 GHz. Aunque el espectro de libre-libre es

plano, cuando es observado en temperatura termodinamica, la señal aparece

muy debil debido al cambio en temperatura con ley ∝ ν−2.

La emissiviadad del libre-libre, en unidades de erg cm−3 s−1 Hz−1 sr−1 es

ϵν = 5.4 × 10−39n2
e T−1/2

e gff(ν, Te) exp
(
−hν

kTe

)
. (6.2.1)

La emisión procedente de un único halo viene calculada usando el modelo β

por la densidad de electrones en función del radio y usando relaciónes de es-

calas por el radio y la temperature en función de la masa. La masa del gas viene

calculada como una fracción de la masa del halo que es de materia oscura.

Obtenida la función de emissividad de un halo, se puede estimar la abundan-

cia de halos en redshift con una función de tipo Press-Schecther o su derivada

de Sheth-Tormen. Hemos estimado la abundancia en un intervalo de masas

108 ≤ M ≤ 1016h−1M⊙. Por el redshift de integración se ha usado un intervalo

0.05 ≤ z ≤ 7 en el cual el proceso de reionización se puede considerar conclu-

ido. La función de masa de halos es una función monotóna decreciente: halos

de masa pequeña se forman en mayor cantidad que halos de masas grandes, in-

dependentiemente del redshift. La masa mayor encontrada en nuestro modelo

es ∼ 1015M⊙.

La estimación de la señal promedio de tipo libre-libre es la combinación de un

modelo β de un sólo halo con la función de abundancias de halos. La emis-

sividad es convertida en flujo y convertida en distorsión de temperatura sobre
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la temperatura de fondo cósmico de microondas ∆T/T. Una señal total tiene

una distorsión de temperatura del orden de ∆T/T ≃ 103 µK a la frecuencia

de 1 GHz. La señal aparece más baja que la encontrada por Oh (1999) a partir

de fuentes puntuales. En vez de usar la temperatura del virial por cada halo,

hemos usado una temperatura fija de 104 K. Debida a la dependencia ϵ ∝ T−1/2,

esto ha permitido sacar un valor ligermente más alto por la distorsión.

No todos los rangos de masa dan la misma contribución a la señal. La mayor es

dada por halos de masa entre 108 ≤ M ≤ 1012 que corresponden más a grupos

de galaxias que a cúmulos. La contribución mayor de masas pequeñas se repite

a todos los rangos de redshifts examinados.

La emisión libre-libre se ha calculado también a partir de una simulación cos-

mológica de un conjunto de 5123 partículas de materia oscura y 5123 partículas

de gas con el código GADGET-2 . A una primera simulación de 300h−1 Mpc

de volúmen comóvil ha seguido una segunda de 50h−1 Mpc. En la primera,

cada partícula de materia oscura y gas tiene una masa de MDM = 1.165 ×
1010h−1M⊙ y Mgas = 0.17 × 1010h−1M⊙ respectivamente. En la simulación

de 50h−1 Mpc esos valores son MDM = 6.1 × 107h−1M⊙ y Mgas = 0.873 ×
107h−1M⊙. Por cada partícula de gas, se ha calculada la densidad de elec-

trones como una función de la masa de la partícula, y la temperatura ha sido

calculada a partir de la energía interna asociada a cada partícula. De cada caja
de la simulación, se proyecta un mapa del flujo en dos dimensiones. De cada

proyección se calcula el valor promedio. La integración en redshift en este caso

es la suma de los mapas. El valor de la señal de libre-libre sacado a 1 GHz de

una simulación de 300h−1 es mucho menor que el valor calculado con el mo-

delo analítico. La explicación es que el conjunto de tamaño de la simulación

y partículas usadas no es lo suficiente para crear halos de masa pequeña. La

prueba ha sido obtenida con el código Amiga Halo Finder (AHF) que ha esti-

mado la masa por los conjuntos de partículas que se pueden considerar ligadas

para formar halos. El rango de masa es 1011 ≤ M ≤ 1014 h−1 M⊙ que es capaz

de recrear una distorsion de libre-libre de sólo ∆T/T ≃ 102 µK. En la simu-

lación de 50h−1 Mpc, la señal es aumentada en un factor 5.

Aunque la señal de libre-libre aparece debil, futuros experimentos como el SKA

pueden alcanzar la sensibilidad para detectatar la parte central de halos que

emiten en radio a través de libre-libre en un estadio en lo cual su temperatura

del gas no es tan alta para emitir en rayos-X, tipicamente se habla de temperat-

uras asociadas a grupos de galaxias.
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6.3 Capítulo 3

El capítulo contiene el articulo La contribución de las galaxias con formación

estelar al fondo cosmico en banda de radio escrito por Ponente, Ascasibar &

Diego, publicado en la revista Monthly Notices of the Royal Astronomical So-

ciey (MNRAS).

El objectivo del articulo es cuantificar la emisión radio de fondo a través de un

modelo fenomenologico.

La medida del fondo cósmico de radio ha sido realizada por el equipo del

proyecto Absolute Radiometer for Cosmology, Astrophysics and Diffuse Emis-

sion, ARCADE2 . El fondo difuso ha sido medido en bandas de radio desde 3 a

10 GHz, obteniendo

T(ν) =
hν/k

exp(kTCMB) − 1
+ TR

(
ν

ν0

)α−2

(6.3.1)

donde TCMB = 2.729 ± 0.0004 K es la temperatura termodinamica del fondo

cósmico de microondas, TR = 1.19 ± 0.14 K es el valor a 1 GHz del fondo

cósmico de radio y α = −0.62 ± 0.04 es el indice espectral de la emisión de

synchrotron. El valor de TR parece ser mucho mayor (hasta 5σ) del precedente

valor estimado por COBE/FIRAS. El equipo de ARCADE2 asegura que la señal

es de tipo cosmológico (no de la Via Lactea), no es producida por gas exten-

dido (IGM) y sólo puede ser causada por fuentes puntuales que corresponden

a galaxias normales, en las cuales la actividad del agujero negro central es inex-

istente o despreciable. En el capítulo 2 se ha demostrado que la emisión de tipo

libre-libre es demasiado debil para alcanzar 1 K a 1 GHz.

Usando el analisis en Condon (1992) que relaciona las emisiones de tipo libre-

libre y de synchrotron a la tasa de formación estelar cosmica, se han podido

obtener relaciónes entre la luminosidad de los dos efectos y la tasa formación

estlar sacada de las ultimas observaciónes en varias bandas.

En primer lugar, manteniendo fija la tasa de formación estelar (SFR) la lumi-

nosidad de synchrotron es un factor 10 mayor que la luminosida de libre-libre,

a una frecuencia de referencia (1 GHz). La frecuencia radio de 1.4 GHz es us-

ada para definir el parámetro q, es decir la diferencia logaritmica entre la lumi-

nosidad en banda infraroja y en banda radio. El parámetro q toma el nombre

de correlación infrarojo-radio (FRC) y es un parámetro defindido para las obser-

vaciónes. Pero sigue abierta la cuestion de si ese parámetro se mantiene con-

stante o evolucióna en el redshift. Usando la estimación de q de varios autores,
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hemos podido reducirlo a una forma líneal en logaritmo de (1 + z)

q(z) = q0 − β log(1 + z). (6.3.2)

Bajo la suposición que la luminosidad de infrarojo no evoluciona con el redshift,

el coeficiente β es un indice para la evolución en (1 + z) de la luminosidad de

synchrotron,

Lsyn → Lsyn(1 + z)β. (6.3.3)

La evolución en redshift proporcióna una señal mayor a z altos (aunque suprim-

ida por la mayor distancia de luminosidad), que se traduce en un señal total

mayor cuando se integra en la línea de visión.

Para sacar la luminosidad de synchrotron hemos usado una parametrización

de la SFR. Los cuatros parámetros de la estimación han sido sacados con un

metodo de mínimos cuadrados pesados sobre un conjunto de datos observa-

dos. Una vez obtenidos todos los ingredientes para reconstruir una señal a lo

largo de la lina de visión, por el libre-libre como por el synchrotron estándar y

con dependencia de z. Los valores de temperatura sacados, en función de la

frecuencia, son
Tff

0.0137 K
=
( ν

GHz

)−2.1
(6.3.4)

por el libre-libre,
Tsyn

0.0817 K
=
( ν

GHz

)−2.7
(6.3.5)

por el synchtroen estándar (β = 0) y

Tsyn

0.1402 K
=
( ν

GHz

)−2.7
(6.3.6)

por el synchtron con β > 0. El valor del modelo es β = 0.705. Aunque usando

un limite superior β = 1, la señal de ARCADE2 de T = 1.19 K sigue siendo un

exceso inexplicado.

6.4 Capitúlo 4

Este capitúlo propone el resumen del articulo Errores sistematicos en la recon-

struction a través de lente gravitatoria. ¿Hay anillos de materia oscura en el

cielo? presentado por Ponente e Diego y aceptado por la revista Astronomy &

Astrophysics.
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El trabajo se centra sobre el lensing gravitatorio de tipo fuerte y debil y sobre el

metodo non-paramétrico para reconstruir el perfil de un cúmulo de galaxias a

partir de los efectos que su potencial produce sobre las galaxias del fondo.

Los metodos no-paramétricos no usan suposiciones preliminares sobre la dis-

tribución de la masa en el cúmulo. Eso supone un metodo extremadamente

poderoso al asumir que no hay ninguna información directa sobre la masa,

su magnitud y su distribución, respecto a los resultados que se alcanzan. El

metodo requiere muchas observaciones, así que sólo cúmulos para los cuales

existen imágenes muy detailladas pueden ser analizados a través de meto-

dos no-paramétricos. Unas de las reconstruciónes de cúmulos con metodos

no-paramétrico más importante y descutida es la reconstrución del cúmulo

CL0024+17 hecha por Jee et al. (2007). La peculiaridad de esa reconstrución

es que en el mapa de convergencia aparece una primera estructura central (el

core) y alrededor una estructura en anillo. Los autores reportan que una config-

uración como esa puede ser explicada con un choque de cúmulos como lo que

pasa en Bullet Cluster, con la diferencia que se produce en este caso a lo largo

de la línea di visión. En nuestro articulo se demonstra que, un metodo no-

paramétrico introduce efectos systematicos cuando se intenta ajustar demasi-

ado la solución a los datos reales. En el espacio de las soluciones, los efectos

sistematicos reproducen estructuras parecidas a anillos.

Un problema que se resolve en modo no-paramétrico presenta un sistema

Φ = ΓX, (6.4.1)

donde el vecotor Φ contiene todas las posiciónes de los pixels que forman los

arcos de lente fuerte (por Nθ pixels, el vecor tiene 2Nθ elementos) y los gammas

del campo de shear (también en este caso, para Nγ puntos de shear, el vector

tiene el doble de puntos). El vector X es el vector de las soluciones, donde

por soluciones se entiende un vector de masas M y un par de puntos (corde-

nada x y y) por cada fuente que se intenta reconstruir. La matriz Γ es la matriz

(compuesta) que projecta un elemento (vector) del espacio de soluciones en un

elemento del espacio de términos conocidos. Para conocer la solución X, hay

que invertir el sistema 6.4.1. El vector de masas M depende del número de

celdas en que se divide el plano de la lente. La lente tiene una distribución con-

tinua de masa, pero al introducir una red de celdas, de una distribución suave

de masa se pasa a una distribución discretizada. En nuestro caso, el plano de la
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lente, que tiene un tamaño angular fisico de 3.3 minutos de arco, se divide en

una red de 32 × 32 celdas de tamaño fijo. La inversion del sistema de la lente

se puede alcanzar con varios metodos, pero se han elegido dos, el algoritmo de

biconjugate gradient (BGA) y el quadratic programing. El sistema 6.4.1 se puede

escribir como

R ≡ Φ − ΓX, (6.4.2)

donde R es un vector de residuos. Mínimizar los residuos es equivalente a

incontrar una solución aproximada del sistema. Esto es un concepto crucial en

el proceso de reconstrucción, porque dejar un residuo no-nulo es equivalente a

considerar un tamaño fisico puntual para las galaxias del fondo.

Para comprobar el nivel de sesgo que una reconstrucción no controlada intro-

duce en la solución, se ha simulado un caso de lente gravitatoria con parámetros

conocidos. El cúmulo ha sido creado con un modelo de Navarro-Fenk-White

(NFW), con un perfil de densidad conocido, como conocido es el potential grav-

itatorio que produce los efectos de lente. Detras del cúmulo, se han posiciónado

tres fuentes, porque en el caso de CL0024 el trabajo de Jee et al. (2007) ha iden-

tificado tres fuentes. El código usado por la simulación ha creado un mapa de

θs, es decir un mapa de arcos. Aunque no es necesario, se ha intentado crear

una disposición de los arcos muy parecida a la de l’imagen original del cú-

mulo CL0024 obtenida por la camara del telescopio espacial Hubble. El mapa

de shear también ha sido simulado, y también en este caso se ha ajustado la

simulación a el caso real.

Primero, el mapa de arcos y el mapa de shear vienen analizados con el BGA.

En el BGA se tiene que introducir un parámetro, ϵ, que es la medida de cuanto

se quiere mínimizar los residuos. El valor de ϵ, aunque no es cero, es muy

pequeño. Se han hecho dos reconstrucciónes con el BGA, con los valores ϵ =
2 × 10−10 y ϵ = 2 × 10−15. En el primer caso, la distribución de masa aparece

como un cúmulo central bien definido, que disminuye con un perfil de den-

sidad muy parecido a el original de NFW. En el segundo caso, la estructura

central aparece más pequeña y rodeada de un vacio de forma redonda. Alrede-

dor del vacio aparece otra estructuras redonda.

La misma reconstrucción se ha hecho con el QADP, donde se introduce un

número de iteraciónes que se requieren al algoritmo. Un número de 100 it-

eraciónes es suficiente para reconstruir una masa y un perfil parecidos a los del

cúmulo simulado orginal. Aumentando el número de iteracióne a 105, se obser-
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van las formaciónes de estructuras redondas al rededor de la parte central del

campo de visión (en este caso, la zona central del cúmulo no tiene masa). En el

intento de investigar la formaciónes de estructuras diferentes al perfil original

de NFW, se ha obtenido una analisis de unicamente el campo de shear (lente

debil) y se ha demostrado que structuras en anillo aparecen en la region de

transición entre los datos de lente fuerte y los datos de lente debil. La distan-

cia del anillo en el trabajo de Jee et al. (2007) indica su presencia a la misma

transición.

6.5 Conclusiónes

Una señal de tipo libre-libre, aunque dificil a medir, es una herramienta util

para un mapa de emisión de halos que alcanzan la masa de grupos de galaxias.

Los calculos en el articulo presentado en capitúlo 2 dan una indicación de la

sensibilidad necesaria para detectar grupos con futuros instrumentos. El mo-

delo analitico desarrollado muestra ser robusto y capaz de ser adaptado en red-

shift y rango de masa. Aunque mejorable, el modelo analitico indica que masas

pequeñas contribuyen mucho más a la emisión que masas grandes. También se

muestra que la emisión por parte de gas extendido es despreciable, de acuerdo

con las conclusiones de Oh (1999). Es interesante el hecho de poder combinar

la emisión de libre-libre con otras emisiones como el efecto Sunyaev-Zeldovich

o emisión en rayos-X de el mismo cluster. Aún más, las emisiones de gas ion-

izados se podrian combinar con la emisión en banda 21-cm de gas en estado

neutro.

Hay varias conclusiones que se pueden sacar del modelo de synchrotron del

capitúlo 3. En primer lugar la medida de ARCADE2 es incorrecta, contami-

nada por emissiones de nuestra Galaxia que no se han subtraido corectamente.

Aunque parece que la subtración de emisiones galacticas son consistentes con

otras medidas. Una segunda probabilidad muy favorecida por el mismo equipo

de ARCADE2 es un incremento de la emisión de radio de galaxias lejanas que

aparecen debiles en otras bandas. Una tercera hipótesis es la presencia de una

población de galaxias muy poco brillantes en radio (no detectadas por las ac-

tuales capacidades de los instrumentos) y en gran número. Aún en este caso

se espera que nuevos detectores como el Extended Very Large Array, (EVLA), o
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futuros experimentos como el Square Kilometre Array, (SKA), pueden alacanzar

la sensibilidad necesaria para descubrir esos objectos.

Una reconstruction a través de lente gravitatoria del cúmulo de galaxias Cl0024

ha sido presentada en el trabajo de Jee et al. (2007) . Los autores informan de la

presencia de un anillo de materia oscura alrededor del centro del cúmulo, por

ellos atribuido a un choque entre dos cúmulos a lo largo del línea de visión.

En nuestro trabajo, se ha presentado una reconstrución con lente fuerte y de-

bil a partir de datos simulados con un cúmulo de perfil conocido. El metodo

de reconstrución de tipo no-paramétrico introduce una incertitubre en el re-

sultado final que tiene que tenerse en cuenta. Cuando se intenta minimizar la

incertidumbre, el sistema no es capaz de reconstruir el perfil original e intro-

duce efectos sistematicos que en algunos casos parecen anillos al rededor de

un parte central del cúmulo. Nuestro trabajo indica claramente que los efectos

sistematicos se producen también cambiando los algoritmos de inversion de

la matriz de la lente. Los metodos no-paramétricos se demuestran extremada-

mente poderosos en la reconstrucción de masa de cúmulos, pero no pueden ser

forzados a encontrar una solución exacta.
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Computing the mass function

In ST, the mass function is given in terms of the factor ν ≡ [δc/σM]2, where δc

is the overdensity contrast required for the perturbation to collapse, and σM is

the rms fluctuation in the mass scale M. The function

ν f (ν) = M2 n(M, z)
ρ̄

d log M
d log ν

(A.0.1)

behaves like an almost universal function with respect to changes in redshift,

[180]. The quantity ρ̄ = 2.775 × 1011ΩMh2M⊙ Mpc−3 is today’s average matter

density.

This mass function accounts for the fact that the gravitational collapse of a halo

is not exactly spherical but rather if follows a triaxial model. For a given cos-

mological model, the evolution of an ellipsoidal perturbation is determined by

three parameters, namely the eigenvalues of the deformation tensor. These are

the ellipticity e, the prolateness p and the density parameter δ. In their model,

the collapse is traced independently over the three orthogonal axes and the

virialization of the halo is defined as the time when it collapses along the three

axes. Since each axis collapses independently from the others, collapse along

each axis is frozen once it has shrunk by some critical factor.

The term ν f (ν) in Eq. (A.0.1) is parametrized in the ST formalism as:

ν f (ν) = A
(

1 +
1

ν′p

)(
ν′

2

)1/2 e−ν′/2
√

π
, (A.0.2)

where ν′ = aν, a = 0.707, and p = 0.3. In the standard Press and Schechter

mass function, [37], p = 0. A ≈ 0.3220 is the normalization factor given by the

constraint that the integral of f (ν) in the whole ν range must be equal to 1. For

comparison, in the original formalism of Press and Schechter, the normalization

is 1/2.
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In Eq. (A.0.2), the over-density parameter δc can be estimated, given a cos-

mological model, using the linear growth parameter D(z) and δc(z) (see for

example Mathiesen & Evrard 1998, [39]):

δc =
D0)

D(z)
δc(z). (A.0.3)

Similarly one could have considered δc(z) = const and σM(z) = σMD(z)/D0

with the same results. The mass function, n(M, z), can be easily derived from

Eq. (A.0.1) and Eq. (A.0.2).

We assume a flat ΛCDM model (ΩM + ΩΛ = 1). In this case δc(z) = 1.6866[1 +
0.01256 log10 ΩM(z)]. The linear growth factor is given by Peebles (1980), [181],

D(x) =
√

x3 + 2
x3/2

∫ x

0
x′3/2(x′3 + 2)−3/2dx′, (A.0.4)

where x = a/[(1− ΩΛ)/(2ΩΛ)]1/3. In Eq. (A.0.2) σM is the RMS fluctuation on

the mass scale M:

σ2
M =

1
2π

∫ ∞

0
dkk2P(k)W2(kR). (A.0.5)

The window function W(kR) is a top hat function in Fourier space

W(kR) =
3(sin(kR) − kR cos(kR))

(kR)3 (A.0.6)

with R defined by M = 4
3 ρ̄R3. The power spectrum P(k) can be parametrized

as

P(k) = AknT2(k), (A.0.7)

where A is the amplitude and T(k) the transfer function. This choice for the

amplitude makes it possible to introduce it in Eq. (A.0.5) with R = 8h−1 Mpc

to obtain the value of σ8 = 0.8, while the index for primordial power spectrum

is set to n = 1 (both values are from the fifth year of WMAP analysis, [182]).

For the transfer function we use the expression given in Bardeen et al. (1986),

[34],

T(k) = ln(1+2.34q)
2.34q

[
1 + 3.89q + (16.1q)2 + (5.46q)3 (A.0.8)

+(6.71q)4]− 1
4 ,
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where q = k(h−1Mpc)/Γ, and Γ is the shape parameter of the power spectrum

(Γ ∼ ΩMh). We have compared the mass functions obtained with this transfer

function and the more elaborated one in [183] finding very small differences.

For simplicity we use the Bardeen et al. (1986) transfer function.
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Non-parametrics methods

B.1 How is built the Γ matrix

The Γ matrix is the basis of the Weak and Strong Lensing Analysis Package

(WSLAP) and contains the information about how each cell in the grid con-

tributes to either the jth deflection angle or the kth shear measurement. In the

SL case, it also contains information about the source identity of the jth pixel in

a given lensed arc. All this information is organized in rows, each row corre-

sponding to one constraint (deflection angle for SL and shear for WL). The final

structure of Γ is

Γ =

∣∣∣∣∣∣∣∣∣∣
Υx 1 0

Υy 0 1

∆1 0 0

∆2 0 0

∣∣∣∣∣∣∣∣∣∣
. (B.1.1)

The specific form of the Υ and Γ matrices depends on the choice of basis sys-

tem. For clarity purposes, we assume that this system is based on Gaussians

positioned on the grid. This grid is a division of the lens plane into cells, where

the mass in a cell is assumed to be distributed as a Gaussian of dispersion σ,

which is proportional to the size of the cell. A proportionality factor ∼ 2 gives

very satisfactory results in terms of reproducing the constraints. The integrated

mass at a given distance δ from the center of the cell is then

M(δ) = 1 − exp(δ2/2σ2). (B.1.2)

Since the basis has circular symmetry, the x and y components of the deflection

angle α at the same point can be estimated easily as

αx(δ) = Υx = λ[1 − exp(−δ2/1σ2)]
δx

δ2 , (B.1.3)
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αy(δ) = Υy = λ[1 − exp(−δ2/1σ2)]
δy

δ2 , (B.1.4)

where the multiplying constant λ contains all the cosmological and redshift

dependence

λ = 1015M⊙
4G
c2

Dls

DolDos
h−1 rad . (B.1.5)

The factor δx in Eq. (B.1.3) is just the difference (in radians) between the x po-

sition in the arc (x of pixel θx) and the x position of the cell j in the grid (δx =
θx(i) − θ′x(j)). Similarly, we can define δy = θy(i) − θ′y(j) and δ =

√
δ2

x + δ2
y.

The ∆1 and ∆2 matrices can be computed in a similar way but in this case, since

we need to calculate the derivatives, the deflection angles αx and αy have to be

computed at three points δ1, δ2, and δ3. The first point, δ1, is the same as δ above.

The second and third points (δ2 and δ3) are one (or a few) pixel(s) left (or right)

and up (or down) the pixel at δ1, respectively. Then ∆1 is just the difference

∆1 =
1
2

[αx(δ3) − αx(δ1)] − [αy(δ3) − αy(δ1)]
pix2rad

, (B.1.6)

∆2 =
αx(δ3) − αx(δ1)

pix2rad
=

αy(δ3) − αy(δ1)
pix2rad

, (B.1.7)

where pix2rad is the size of the pixel in radians. Since we included the factor

1015M⊙ in λ (see Eq. B.1.5), the mass in the solution vector will be given in

1015h−1M⊙ units. The h−1 dependency exists because in λ we have the ratio

Dls/(DolDos), which goes as h.

The 0 (null) and 1 (0’s and 1’s) matrices on the right side of Γ add 2Ns additional

columns. The bottom part of thess columns consist entirely of 0’s since the shear

measurements are independent of the position β of the sources. The Nθ × Ns

dimensional matrices 1 contain 1’s in the ij positions (i ∈ [1, Nθ], j ∈ [1, Ns]),
where the ith θ pixel comes from the j source and 0’s elsewhere.

B.2 Minimizing algorithms

B.2.1 Biconjugate gradient algorithm or BGA

The biconjugate gradient [184] algorithm is one of the fastest and most powerful

algorithms for solving systems of linear equations. It is also extremely useful

for finding approximate solutions for systems where no exact solutions exists
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or where the exact solution is not the one we are interested in. The latter is our

case. Given a system of linear equations

Ax = b, (B.2.1)

a solution of this system can be found by minimizing the function

f (x) = c − bx +
1
2

xT Ax, (B.2.2)

where c is a constant. The gradient of the Eq. (B.2.2) is 0 when the same equa-

tion is at its minima

∇ f (x) = Ax − b = 0. (B.2.3)

That is, at the position of the minimum of the function f (x) we find a solution

to Eq. (B.2.1). In most cases, finding the minimum of Eq. (B.2.2) is much eas-

ier than finding the solution of the system in B.2.1, especially when no exact

solution exists for B.2.1 or A does not have an inverse.

The biconjugate gradient finds the minimum of Eq. (B.2.2) (or equivalently,

the solution of Eq. B.2.1) by following an iterative process that minimizes the

function f (x) in a series of steps no longer than the dimension of the problem.

The beauty of the algorithm is that the successive minimizations are carried out

on a series of orthogonal conjugate directions, pk, with respect to the metric A.

That is,

piApj = 0 j < i. (B.2.4)

This condition is useful when minimizing in a multidimensional space because

it guarantees that successive minimizations do not spoil the minimizations in

previous steps.

By comparising Eq. (4.3.2) and Eq. (B.2.2), it is easy to identify the terms, c =
(1/2)θTθ, b = ΓT and A = ΓTΓ. Minimizing the quantity R2 is equivalent to

solving Eq. (4.3.1). To see this, we only have to realize that

b − AX = ΓT(Φ − ΓX) = ΓTR. (B.2.5)

If an exact solution for Eq. (4.3.1) does not exist, the minimum of R2 will be

a more accuratly approximated solution to the system. The minimum can be

found easily: in the case of symmetric matrices A, the algorithm constructs

two sequences of vectors rk and pk and two constants, αk and βk. To begin the

algorithm, we need to make a first guess of the solution, namely X0 and two

vectors r0 and p0
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αk =
rT

k rk

pT
k Apk

, (B.2.6)

rk+1 = rk − αkApk, (B.2.7)

βk =
rT

k+1rk+1

rT
k rk

, (B.2.8)

pk+1 = rk+1 + βpk (B.2.9)

At every iteration, an improved estimate of the solution is given by

Xk+1 = Xk + αkβk. (B.2.10)

The algorithm starts with an initial guess for the solution, X1, and chooses the

residual and the new search direction in the first iteration to be

r1 = p1 = b − AX1. (B.2.11)

We note that p1 is nothing but ∇R2. Thus, the algorithm chooses as a first min-

imization direction the gradient of the function to be minimized at the position

of the first guess. It then minimizes in directions that are conjugate to the pre-

vious ones until either it reaches a minimum or the square of the residual R2 is

smaller than ϵ.

B.2.2 Quadratic programming algorithm (QADP)

The nonnegative quadratic programming algorithm used in this work has the

peculiarity that it finds solutions, X, satisfying the condition X ≥ 0. That is,

negative masses are not allowed in the solution by construction. We follow the

multiplicative updates proposed by Sha et al. [185].

The basic problem we wish to solve is to minimize the quadratic function

F(v) =
1
2

vtAv + btv, (B.2.12)

subject to the constraint vi ≥ 0, ∀i. In Eq. (B.2.12), the vector v is the unknown

vector X, A = ΓTΓ and b = ΓTΦ. We note that the elements of X are all positive,

since the βs can be chosen all positive with respect to an appropriate system of

reference. The matrix A can be decomposed into its positive and negative parts:

A = A+ − A−, where A+
ij = Aij if Aij > 0 and 0 otherwise and A−

ij = −Aij

if Aij < 0 and 0 otherwise (nonnegative matrices). The solution is iteratively

updated by the rule

vk+1,i = vk,iδi, (B.2.13)
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where the updating term is defined as

δi =
−bi +

√
b2

i + 4(A+v)i(A−v)i

2(A+v)i
. (B.2.14)

It is easy to see that generic quadratic programming problems have a single

unique minimum. We denote as v∗ this global minimum of F(v). We attempt

to prove that convergence of the iteration Eq. (B.2.14) corresponds to this min-

imum v∗. At this point, one of two conditions must apply for each component

v∗i : either (i) v∗i > 0 and ∂F/∂vi(v∗i ) = 0 or (ii) v∗i = 0 and ∂F/∂vi(v∗i ) ≥ 0. Now

since
∂F
v∗ = (A+v)i − (A−v)i + bi, (B.2.15)

the multiplicative updates in both cases (i) and (ii) take the value δi = 1, where

the minimum is a fixed point. Conversely, a fixed point of the iteration must be

the minimum v∗.
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