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Abstract 

 

In this work, appropriate management practices for crop production under the variable 

climate conditions of the Mediterranean region, in particular rainfall, were tested with 

the use of a modelling system applied to long-term (i.e. 18 years) field data. The 

calibration of the CropSyst model was performed using data collected from 1996 to 

1999 at three different Mediterranean locations (i.e., HYP-Guissona, MYP-Agramunt 

and LYP-Candasnos, i.e. high, medium and low yield potential, respectively) within a 

degree of yield potential. The model simulated reasonably well barley growth and yield 

to different tillage and N fertilization strategies.    

Simulations of barley performance over 50 years with generated weather data showed 

that yields were often greater and never smaller under no-tillage compared to 

conventional tillage with a mean increase of 36%, 63% and 18% for HYP-Guissona, 

MYP-Agramunt and LYP-Candasnos. In MYP-Agramunt, the long-term data showed a 

40% increase in grain yields when using no-tillage compared to conventional tillage, as 

an average of 18 years.  

The model also predicted that greater N applications in no-tillage were appropriate to 

take advantage of additional water supply. Taking into account the limited amount of 

soil water available, overall N fertilizer applications could be reduced to about half of 

the traditional rate applied by the farmers without yield loss. The 50-yr simulation, 

confirmed by the long-term experimental data, identified no-tillage as the most 

appropriate tillage practice for the rainfed Mediterranean areas. Also, N fertilization 

must be reduced significantly when tillage is used or when increasing aridity. Our work 

demonstrates the usefulness of the combination of long-term field experimentation and 

modelling as a tool to identify the best agricultural management practices. It also 
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highlights the importance of posterior analysis with long-term observed field data to 

determine the performance of simulation results. 

 

 

Keywords 

Conservation tillage; nitrogen fertilization; crop simulation; CropSyst model.  

 



European Journal of Agronomy 79: 119–130 (2016) 

 4

1. Introduction 

In the semiarid Mediterranean region of the Ebro river valley (northeast Spain), 

dryland agriculture is based on continuous cropping of winter cereals (mainly barley and 

wheat). In these areas, rainfall is usually low and erratic with significant high 

evapotranspiration rates. These typical climate characteristics constrain crop 

productivity due to the shortage of available water during prolonged periods (Austin et 

al. 1998; Ryan et al. 2006). Consequently, attending to these highly variable climatic 

conditions, it is difficult to recommend suitable agronomic strategies (Stewart and 

Robinson 1997, Giambalvo et al. 2014) and specially based on short-term 

experimentation (Peterson et al. 2011).  

Two management practices, tillage and nitrogen (N) fertilization are, however, 

appropriate targets to improve profitability and reduce environmental impacts of 

cropping practices. First, they are important determinants of crop yield and are suitable 

technologies to be developed in Mediterranean areas (Cantero-Martínez and Gabiña, 

2004; Ryan et al. 2009). As inputs, they account for more than 40-50% of the cost of 

crop production (Cantero-Martínez et al. 1995a). Second, the major environmental 

challenges in the region are to reduce soil erosion (Grove 1996) and N losses (Ryan et 

al. 2009). Reduced and no-tillage were introduced in the area 35 years ago, with evident 

success in controlling erosion but with limited acceptance by farmers since its adoption 

requires confidence in the long-term performance of the system, including adjustment of 

N fertilization due to modifications in the water and nitrogen balances (Moreno et al. 

2010). According to this last, Pittelkow et al. (2014) stated in a meta-analysis the 

importance and interest of those soil management systems and the need to determine 

locally their suitability.   
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Few years ago, the impact of tillage and N fertilization management on crop 

performance was analysed in Mediterranean dryland conditions (Cantero-Martínez et al. 

2003; Angás et al. 2006; Morell et al. 2011). Though these studies provided valuable 

observed data during three growing seasons, the conclusions and recommendations 

obtained were taken with caution. The short length of the experimental period (only 

three growing seasons) limited the possibility of obtaining robust conclusions in these 

areas with highly-variable climate conditions, making difficult the establishment of 

appropriate cropping strategies with only few years of experimental data. According to 

this, in dryland Mediterranean conditions, strong recommendations for crop 

management would require a large number of experimental years with time and cost 

associated. The combination of experimental work with the use of crop simulation 

models may help to overtake this limitation. Crop simulation models that integrate the 

effects of crop, environment and management to predict crop yield can be used to 

evaluate different management options over long periods using historical or generated 

weather data. When evaluated over the long term, crop models can be used to build 

probability graphs to assess technology options and to analyse their interactions 

regarding the productivity and sustainability of agricultural systems.  

CropSyst (Stöckle and Nelson 1998) is a crop model suitable for simulating yield, 

taking into account crop characteristics and the relevant crop and soil processes. 

CropSyst includes ClimGen that is a complement which is able to generate long-term 

daily weather data by reproducing the observed variability in short-term climate data 

(Acutis et al. 1999). CropSyst and Climgen have been successfully used for various 

crop-environment combinations in semiarid conditions, e.g. Pala et al. (1996) for durum 

wheat in northern Syria (3 years simulation), Donatelli et al. (1997) for crop rotations at 

two locations in Italy (6 years simulation), Ferrer-Alegre et al. (1999) for irrigated corn 
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in the Ebro river valley in Spain (30 years simulation), Marcos et al. (1999) for a 

number of crops in dryland conditions in the western United States (2 years simulation), 

Díaz-Ambrona et al. (1999) for a winter cereal-legumes rotation in the central dryland 

area of Spain (15 years simulation), and Sadras (2002) in southern Australia to evaluate 

the problem of terminal drought during grain filling (40 years simulation). All of them 

with moderate success in the performance of the CropSyst model, but no previous 

attempt has been made to use CropSyst to predict crop yield under different tillage and 

N fertilization strategies in this Mediterranean conditions. 

The objectives of this work were: (i) to evaluate the ability of the CropSyst model 

to simulate growth, yield and water use in a barley monocropping dryland system under 

various tillage and N fertilization regimes; and (ii) to analyse the best tillage and N 

fertilization combinations that might form the basis of recommended long-term 

cropping strategies in Mediterranean dryland areas. 

 

 

2. Materials and Methods 

2.1 Location and selected sites 

The Ebro river valley (about 40.000 km2) is a wide region in northeast Spain, 

highly representative of the arid and semiarid Mediterranean area. Mean annual rainfall 

ranges from 250 to 500 mm, 60% of which occurs between September and January. 

Generally, soils are loamy and clay loamy with available soil water capacity ranging 

between 80 and 250 mm depending on site and soil depth. Mean annual air temperature 

ranges between 13.0 and 14.5 ºC.  

In this study, three sites located within the Ebro river valley were selected. These 

three sites covered the main climate and soil conditions of the area. They represented 
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the major cropping systems in the region covering the gradient of yield potential of the 

area.  

 

2.2 Field experiments  

Experimental data from three field experiments and three growing seasons (i.e., 

1996-1999) were used to evaluate the performance of the model. A detailed description 

of the field experiments, their agronomic evaluation and the physical and chemical 

characteristics of the soils were provided in Cantero-Martínez et al. (2003). The three 

experimental fields were established in 1996. Briefly, field experiments were located at 

Guissona (41º46’N, 1º16’E, 490 m.a.s.l), Agramunt (41º48’N, 1º07’E, 330 m.a.s.l) and 

Candasnos (41º30’N, 0º08’E, 280 m.a.s.l), which vary in the amount of rainfall and 

water holding capacity of their soils, representing a decreasing gradient of yield 

potential (Table 1). According to this gradient, Guissona, Agramunt and Candasnos 

were considered as representative sites of high (HYP), medium (MYP) and low (LYP) 

yield potential, respectively. The experimental field located in Agramunt was 

maintained under the same conditions and with the same treatments until the 2013-2014 

growing season. The 18-year dataset of the Agramunt experiment was used to evaluate 

the ability of the model as a decision tool for management practices over the long-term.  

In all three experimental fields, three tillage systems (i.e., conventional tillage, CT; 

minimum tillage, MT, and no-tillage, NT) and three mineral N fertilization rates were 

tested. The three N fertilization rates consisted in high (150, 120 and 100 kg N ha-1), 

medium (75, 60 and 50 kg N ha-1), and control (no N applied) rates at HYP, MYP and 

LYP locations, respectively. On each area, the traditional N fertilizer rates applied by 

farmers correspond to the high rates tested in the corresponding field experiment. Pre-

sowing applications were carried out with ammonium sulphate while ammonium nitrate 
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was used at tillering. For this study, only CT and NT treatments were considered. The 

CT treatment consisted of one mouldboard plow pass (25-30 cm depth) plus one or two 

cultivator passes (15 cm depth) before sowing, during August and September depending 

on soil moisture. In the NT treatment, sowing was performed by direct drilling after 

spraying with herbicide (1.5 L 36% glyphosate [N-(phosphonomethyl)-glycine] plus 1 L 

of 40% MCPA (2-(4-chloro 2-metilfenoxi) acetic acid) per ha). In the CT treatment and 

at all three sites, crop residues were incorporated into the soil with tillage operations and 

the soil remained bare after tillage. Under NT, crop residues were maintained 

throughout the study period, and at MYP and LYP locations stubble was left and straw 

was chopped and spread on the soil. At HYP, however, due to the high amount of crop 

residues, the stubble was left but the straw was removed after harvest in order to 

facilitate the establishment of the next crop. Daily maximum and minimum 

temperatures and rainfall were collected from the nearest weather stations (1 to 6 km 

far) of the National Weather Institute of Spain (INM). Representative soil data from the 

upper 25 cm layer used for the simulations are shown in Table 1. Stoniness (30%) was 

taken into account at LYP location to calculate the actual soil water content.  

2.3 Overview of the CropSyst model and its evaluation  

The version 4.09.01 of the CropSyst model (Stöckle and Nelson, 1998), which 

includes modules for soil water and nitrogen balances, crop phenology, root growth, leaf 

area index, biomass and yield, crop residue decomposition and soil erosion, was used 

for this analysis. The CropSyst model simulates the performance of individual crops or 

crop rotations, and it was developed as a tool for predicting the effect of management 

practices on crop production and the environment (Donatelli et al. 1997; Stöckle and 

Nelson 1998). The model requires inputs of daily climate data, soil type and information 

about crop management such as N fertilization, irrigation, crop type, cultivar, tillage, 
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and residue management. Crop phenology is simulated by air temperature and 

photoperiod. The model simulates light and water effects on crop growth based on the 

radiation and transpiration-use-efficiency concepts (Monteith 1977; Tanner and Sinclair 

1983). Calculations of soil water content are the result of the water balance including 

evaporation, transpiration and runoff and drainage components. Potential 

evapotranspiration was calculated by the Priestley-Taylor (P-T) equations. Total solar 

radiation was estimated from the air temperature (Bristow and Campbell 1984). The 

value for the aridity factor (used to correct the constant that computes maximum 

daylight vapour pressure deficit) was set to 0.04. The value for the P-T constant (which 

is a proportionality factor that compensates for the elimination of the aerodynamic 

component of the Penman Montheith model) was set to 1.35 (Ferrer-Alegre et al. 1999). 

Soil moisture and soil temperature are considered by the model to calculate a daily soil 

organic matter decomposition rate.  

The model was adjusted through a non-dimensional parameter between 0.6 to 1.8 

depending on the tillage treatment and site. For estimations in the model, a complete 

recharge of the soil water content at field capacity in the winter of the first growing 

season was considered (Cabalguenne and Debaeke 1995). The model estimates grain 

yield through the harvest index that is responsive to water stress.  

The model was parameterized using the published data in Cantero-Martínez et al. 

(2003) and Angás et al. (2006) for the NT and CT treatments and high and low N 

fertilization rates during the 1996 to 1999 period. Table 2 lists the selected values of 

different crop parameters after the parameterization process and for each experimental 

field. In most cases, the parameters were estimated from phenological and physiological 

data of the cultivars collected in the experiments (i.e. crop development, biomass 

accumulation, time course of leaf area index, and yield components).  
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The performance of the model was evaluated with the calculation of the relative 

root mean square error (rRMSE), the mean deviation (MD) and its efficiency (EF): 

rRMSE 	
100

O

1
n

S O 	 

MD 	
1
n	

S O 	 

EF 	
∑ O O 	∑ S O

∑ O O
 

Where n is the number of observations, Si and Oi are the simulated and the observed 

values, respectively and O	is the mean of the observed values. 

2.4 Fifty-year simulation and long-term assessment  

After model parameterization and evaluation, CropSyst was used to simulate 50 

growing seasons of barley continuous cropping for each site without yearly re-

initialization. The ClimGen weather generator was tuned with the available weather data 

for the three sites (i.e., 25 years for the MYP site and 15 years for both HYP and LYP 

sites) and then used to generate 50 years of weather data for each of the three sites. For 

the three locations, soil characteristics were the same as those used when validating the 

model. Initial soil mineral nitrogen and soil water content were the same for all tillage 

and N fertilizer treatments, but varied for locations, being set to the average of the 

measurements at the beginning of each experiment. To run the long-term simulation, 

sowing was fixed on November 1st, which represents the average of the traditional range 

of sowing dates in the area. The date of N fertilizer application was set equally for all 

three locations (October 8th for pre-sowing applications and February 15th for top-

dressing N application at tillering). Nitrogen losses as ammonia volatilization and 

nitrate leaching were calculated by the model. Ammonia losses were considered the 
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same for both tillage systems. Mouldboard plowing was dated at September 1st and 

cultivator tillage at September 21st. For the long-term simulation, crop yield, biomass, 

soil water content, crop water use (WU) and water-use efficiency (WUE) were 

analysed. To assess the performance of each technological practice (tillage and N 

fertilizer rate), the cumulative probability expressed as the probability of exceeding the 

crop yield was calculated (Cantero-Martínez et al. 1995b). Experimental data measured 

in the MYP field experiment, which was maintained for 18 years (until the 2013-14 

season), was used to compare and assess the 50-year simulation with the measured data 

through the cumulative probability curves.  
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3. Results 

3.1 Model evaluation  

Model performance evaluated through the EF statistic reached 0.71, 0.75 and 0.46 

for soil water content, aerial biomass and grain yield, respectively. For the same 

variables, rRMSE was 24, 41 and 43%, respectively. MD was 0.005 m3 m-3 for soil 

water content and 274.8 and 39.6 kg dry matter ha-1 for the aerial biomass and grain 

yield, respectively (Table 3).  

At the HYP site, crop biomass in the unfertilized treatment was underestimated 

during the second year in NT and during the second and third years in CT (Fig. 1). At 

this HYP site, in general, crop biomass values predicted by the model for NT were close 

to the observed values. However, the model underestimated crop biomass in the CT 

treatments (Fig. 1). During the 1998-1999 season (i.e., 900 days after the first sowing), 

the model overestimated the effect of drought, when annual rainfall was an 18% lower 

than the annual average (i.e. 475 mm). This trend was particularly significant in the CT 

treatments (Fig. 1). Contrarily, during the three growing seasons, the model simulated 

acceptably well crop biomass at the MYP location for all fertilization treatments, and 

only in CT, biomass was underestimated by 10 % at the end of each growing season. At 

LYP, the model performed well for CT but was not able to simulate the negative effect 

of pests on biomass growth the last two years in NT (Fig. 1). Leaf area index (data not 

shown) was simulated less accurately than biomass, and was overestimated by 10-15 % 

in the N fertilized treatments and by 40-50% under no fertilized treatments.  

During the three studied years, simulated values for soil water content (SWC) 

agreed reasonably well with observed values (Fig. 2). Two exceptions were observed. 

First, on day 400 after first sowing, at HYP in NT0, simulated SWC was lower than 

observed values. This time period corresponded to the summer of 1997 when wet 
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conditions resulted in the rapid growth of weeds. The second exception was at HYP in 

CT0 in which predicted total SWC was underestimated from day 600 to the end of the 

cropping season. In this treatment, the model simulated high evaporation rates in the 

shallow soil layer leading to the underestimation of total SWC with values below 

wilting point. The significant low SWC simulated in the HYP CT0 treatment affected 

the crop biomass predicted (Fig. 1). In general, at LYP and in both NT0 and CT0, the 

model overestimated SWC up to 15 % with higher differences between observed and 

simulated values in NT than in CT.  

In general, the CropSyst model simulated reasonably well crop yield (Table 3) with 

a deviation lower than 15% (Fig. 3). Some exceptions occurred such as the last 

simulated year (i.e., 1999) in which the model greatly underestimated crop yield. In the 

LYP site, yield was optimally simulated in CT but in NT the model overestimated crop 

yield about 30% (Fig. 3).   

 

3.2 Long-term simulation 

The results of 50-year simulation with CropSyst showed differences in crop yield 

and water use among tillage systems and N fertilization rates (Fig. 4).  

At the HYP site, for any level of water used, higher crop yields were simulated in 

NT than in CT (Fig. 4). The predicted average yield was 37% higher under NT than 

under CT, and more than 50% higher if only N fertilized treatments were considered 

(Fig. 5). For this site and according to the model, there was no response to N 

fertilization under CT, but a positive response for NT (from 0 to 75 kg N ha-1). At this 

location, the probability of obtaining a given crop yield was always higher in NT than in 

CT (Fig. 6). At the MYP site, in the range of 200 to 300 mm of water used, the model 

predicted the greatest crop yield under NT. However, when water use increased to 350-
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400 mm differences between NT and CT were reduced (Fig. 4). Average yields were 

63% higher in NT than under CT and 89% higher if only N fertilized treatments were 

considered (Fig. 5). As observed in the HYP location, there was a positive response to N 

fertilization in NT and also the probability of exceeding a given yield was always 

greater for NT (Fig. 6). At LYP location, simulated water use by the crop was low with 

predicted values ranging between 100 and 300 mm. The low water use predicted by the 

model resulted in low crop yields with a null probability of obtaining more than 1.75 t 

ha-1 (Fig. 6). At this location, the two tillage treatments did not differ significantly on 

water use (Fig. 4). Simulated average yield was 18% higher under NT than under CT, 

and there was no response to N fertilization under either tillage system (Fig. 5). The 

expected yield with 50% probability was about 0.6 t ha-1 in CT and 0.75 t ha-1 in NT 

(Fig. 6). The unfertilized condition showed the highest probability of obtaining a given 

yield because of the strong drought conditions at this location.  

Simulated crop water-use efficiency followed the same pattern since high crop 

yields were related to high WUE (Fig. 7). Simulated WUE ranged between 6 and 9 kg 

ha-1 mm-1 at HYP, 4 and 12 kg ha-1 mm-1 at MYP and 3 and 3.5 kg ha-1 mm-1 at LYP. 

Greater WUE was simulated in NT because of the lower evaporation/transpiration ratio. 

At HYP and MYP locations, simulated WUE was higher in NT and when N fertilization 

was applied at medium and high levels according to yield potential. At LYP location, 

the model predicted minor WUE differences between tillage systems and without 

response to N fertilization (Fig. 7).  

Simulated NUE was high in HYP and MYP (80% and 70% respectively) and much 

lower in LYP (ranging between 23% and 37% for CT and NT, respectively). The 

increase of N rate diminished the simulated NUE by an 8%, 10% and 15% in HYP, 

MYP and LYP, respectively. Simulated nitrate leaching was low in the MYP and HYP 
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sites, with values ranging between 1 and 10 kg NO3
--N ha-1 yr-1 without significant 

differences between tillage systems. In LYP, simulated nitrate losses were higher, being 

21 and 51 kg NO3
--N ha-1 yr-1 for the medium and high N rate, respectively, without 

differences between tillage systems. Simulated N mineralization attained 47, 48 and 61 

kg N ha-1 yr-1 in LYP, MYP and HYP, respectively, showing differences between tillage 

systems only in MYP with 47 and 57 kg N ha-1 yr-1 under CT and NT, respectively.  

Figure 8 compares crop yield cumulative probability calculated from the 18-year 

observed data with the 50-yr crop yield cumulative probability predicted by the model 

for the MYP site. Simulated values showed great similarities with observed ones. Both 

suggest a greater probability of getting higher yields under NT than CT and greater crop 

yield response to medium rates of N fertilizer (i.e. 60 kg N ha-1) compared to the control 

without nitrogen.   
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4. Discussion 

4.1 Model performance as a tool for agricultural practices decision  

The model simulated grain yield and WUE with a deviation lower than 15%. The 

two exceptions were observed during the last simulated year (i.e., 1999) when drought 

conditions were overestimated at HYP in CT and when crop stress due to pest attack at 

LYP in NT was not predicted by the model (Fig. 3). Furthermore, at MYP, fungi 

affected the experiment during the first year, which could explain the slight differences 

between observed and simulated values. These differences were not recorded in CT, 

which was less affected by fungi. However, fungi attacks leading to economic losses are 

rare under rainfed winter cereal production in the Ebro valley given the dry conditions 

during most of the crop development period and the low profitability. At MYP, the 

model simulated yield better than at HYP in the last year (dry year). At LYP, yield was 

optimally simulated in CT. In NT, treatments were greatly affected by pests, and 

average simulated yield was 30% higher than that observed.  

At the HYP site, the simulated average yield for the first two years was 3342 kg ha-

1 (average of all treatments), slightly lower than the obtained 3500 kg ha-1 (Fig. 3). 

Similar limitations due to the climatic variability of these Mediterranean conditions for 

simulating yield, WUE and nitrogen use efficiency (NUE) have been reported by Pala et 

al. (1996) using the CropSyst model and by Asseng et al. (2001) using the APSIM 

model. This is congruent with the results obtained in other works for the same 

conditions for yield and WUE (Harris 1995; Cantero-Martínez et al. 2007; Pala et al. 

2007).  

In the years in which soil water recharge was not a limiting factor, the model 

simulated well soil water content. However, in dry years (i.e., 1999), soil water content 

was not well simulated mainly because CropSyst overestimated soil evaporation. The 
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model considers that the small amount of water that arrives to the soil surface is not able 

to infiltrate to deeper layers and consequently is more susceptible to be lost by 

evaporation. Other cause for such disagreement between observed and simulated data 

could probably be related to the very high evaporation of the surface layer resulting 

from the low amount of crop residues and to the incidence of pests that reduced the 

amount of crop biomass during the growing season particularly in NT. 

Comparison of yield cumulative probability curves between the 50-years simulation 

and 18-years observed data in MYP suggests a very good model performance (Fig. 8). 

However, despite this good agreement, the 18-years crop yield observed data showed 

less response to medium and high N fertilization rates than the simulations carried out 

by the model. In similar studies which used CropSyst and other crop models to simulate 

crop growth in Mediterranean conditions, the same behaviour has been observed. In arid 

and semiarid conditions, Collins et al. (2008) and Ryan et al. (2009) suggested that 

biological and other not well understood processes that affect soil organic matter and N 

mineralization cycle may determine available N for the crop and, finally, crop yield.      

 

4.2 Soil management approach for these conditions  

The agreement between simulated and observed data was better for NT than for CT. 

The difference between tillage systems was more apparent when analysing the effect of 

drought on biomass accumulation. The CropSyst model simulated better drought effects 

on biomass in NT than in CT. During the driest year (i.e., 1999), crop yield and biomass 

were fairly well simulated for the NT unfertilized treatment but the model 

underestimated the NT high N rate treatment. In both cases, soil water content was well 

simulated. Therefore, there is the possibility that the model did not simulate well the 

response to N applications. This fact would explain the lack of adjustment in the NT 
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high N rate treatment. This lack of response could be explained by some water uptake 

by the crop from below 100 cm depth, which was introduced as a threshold depth for 

water uptake in the model. Another reason could be that air temperature and rainfall 

were the only data used to calculate potential evapotranspiration. Stöckle et al. (1997) 

found an underestimation of sorghum yield using the Priestley-Taylor (P-T) submodel 

instead of the Penman-Montheith (P-M) submodel. This was probably because the P-T 

submodel calculates vapour pressure deficit (WPD) from temperature and the P-M 

model from air moisture, and WPD is directly correlated with crop biomass and yield in 

water-limited situations. During the year 1999, the overestimation of the soil 

evaporation from topsoil layers promoted an overestimation in the evapotranspiration 

that affected crop biomass and yield in the CT treatments. Consequently, the model 

simulated low water use by the crop, resulting in crop failure. However, the observed 

soil water content was higher than the modelled and, thus, observed grain yields greater 

than the predicted (Fig. 3). Wythers et al. (1999) suggested that the real process of soil 

evaporation is more complex than the one used by models, and that soil texture and the 

lapse of time since the last wetting could play an important role in the quantification of 

the amount and intensity of soil evaporation.  

Yield potential in Mediterranean areas is limited by water availability to the crop. 

Conservation tillage systems as NT are capable to maintain and improve crop yields 

(Hernanz and Sánchez-Girón 1988; López-Bellido et al. 1996; López and Arrúe 1997; 

Mrabet 2000; Pala et al. 2000; Lampurlanés et al. 2001; Cantero-Martínez et al. 2003; 

Cantero-Martínez and Gabiña 2004; Cantero-Martínez et al 2007; López-Garrido et al 

2014). Most of the works referenced above were carried out in short- or mid-term field 

experiments in the Mediterranean basin. Only in the LYP site, results did not show a 

clear advantage of NT compared to CT because of the already mentioned pest 
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occurrence (Cantero-Martínez et al. 2003; Angás et al. 2006; Cantero-Martínez et al. 

2007). Also, in Mediterranean areas with low yield potential, low crop yields and thus 

limited amount of crop residues result in a key limitation to the proper functioning of 

the conservation tillage systems due to the lack of a proper soil cover (Radford et al. 

1992; Thomas et al. 2007).  

 The cumulative probability curves that we obtained from 50 years of simulation 

and 18 years of observed data showed the better performance of NT compared to CT in 

the long-term. The similarities between long-term observed and simulated data point out 

the usefulness of CropSyst as a decision tool for establishing NT as a best soil 

management practice under Mediterranean conditions.  

 

4.3 N fertilization effect  

Simulated NUE was higher when increasing the yield potential of the site, being the 

amount of soil water a major lever of these lasts. As previously reported by Angás et al. 

(2006) in the same sites, NUE decreased as the amount of fertilizer N increased. 

Simulated nitrate losses as leaching were very low in MYP and HYP as a result of the 

dry conditions of the rainfed semiarid systems of the Mediterranean with fine-textured 

soils where N leaching occurs after high intensity rainfalls and/or under shallow and 

stony soils, such as is the case of LYP (e.g. Ryan et al. 2009), leading to the loss of 

nitrate accumulated in the soil from previous seasons. Nitrogen mineralization values 

simulated by CropSyst were not affected by tillage system in LYP and HYP and were 

slightly higher under NT than CT in MYP. These differences observed between sites 

could be a consequence of the amount of crop residues returned to the soil and their 

management. Thus, while in LYP and MYP straw was spread on the soil, in HYP straw 

was removed to ease the establishment of the succeeding crop, fact that would led to 
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similar C inputs between tillage systems in this site. In LYP, the lack of differences of 

biomass production and carbon inputs to the soil between CT and NT would reduce the 

possibility of an increase in soil organic matter when using NT. Regarding the 

differences simulated by the model between NT and CT in MYP, some authors reported 

a higher N mineralization when NT is maintained in the long-term when crop residues 

are returned to the soil surface as a result of greater substrate available for 

decomposition (e.g. Franzluebbers et al. 1995; Wienhold and Halvorson, 1999). 

Moreover, in semiarid Mediterranean systems, the greater protection of soil organic 

matter within aggregates under NT (Álvaro-Fuentes et al. 2009) could be 

counterbalanced by the higher amount of soil water stored under NT, which would 

enhance microbial activity and soil organic matter decomposition (Skopp et al. 1990; 

Lampurlanés et al. 2016). However, according to the simulations the amount of N 

mineralized in CT and NT in MYP only differed by 10 kg N ha-1 yr-1. This low 

magnitude would not influence significantly the N fertilization strategy to use under the 

conditions of the experiment.  

Unlike tillage system, differences among N fertilization rates were more dependent 

on the climate conditions of the year. In very dry years, with less potential for crop 

production, the probability of obtaining better yield is slightly greater for 0 N. However, 

in years with more available water the probability of achieving 3 t ha-1 is only 4% with 

no fertilization but 24% if N fertilization is applied. In water limited areas, it is quite 

frequent to observe that all available water is consumed by the crop no matter the N 

fertilization rate. However, the simulation runs showed an impact of N fertilization on 

crop biomass, yield and WUE. Using the 50% probability as a selection criterion (Fig. 

6), it is possible to establish the optimum N fertilization strategy. With no N 

fertilization, the probability of yields higher than 1000 kg ha-1 is low. In fact, after 10-20 
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years, the model simulated a substantial depletion of soil nitrogen and an intense 

response of crop yield to N fertilizer. In very arid conditions (i.e., LYP), the model did 

not simulate a positive response to N fertilization. However, as the degree of aridity 

decreased (i.e. MYP and HYP conditions) the response to N increased but only to 

moderate levels of N applied (i.e. from no application to medium doses). The WUE was 

also affected by the N fertilization, increasing in a similar manner. In Mediterranean 

conditions, Pala et al. (2007) reported this same finding.  

The interaction of tillage systems and N fertilization and the agronomic 

recommendations that can be established are two main outcomes from this study. The 

predicted response of crop yield and WUE to N fertilization was stronger under NT than 

under CT (Figs. 5 and 7), because more soil water and possibly less soil nitrogen was 

available (Cantero-Martínez et al. 2003). According to this observation, in the 

Mediterranean region, it is recommendable the use of NT as soil management system 

with moderate applications of N fertilizers.   
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5. Conclusions 

The CropSyst simulation model simulated reasonably well the evolution of soil 

water content during the typical recharge periods of the Mediterranean cereal-based 

cropping systems. However, the model overestimated soil evaporation when rainfall was 

very low. The model predicted properly crop biomass and yield when the availability of 

water and nitrogen was not extremely limiting. Thus, the large underestimation of crop 

yield under drought conditions was associated with the overestimation of evaporation. 

Moreover, the model was not designed to predict the incidence of pests and diseases and 

for this reason it was not able to simulate yield reductions under these circumstances.  

The application of the model to generate long-term series of output variables such as 

crop yield, allows establishing the best strategy for tillage and N fertilization. This 

study, in which three locations representing a wide range of aridity conditions typical of 

the Mediterranean areas were used, confirmed that NT is the best alternative to improve 

crop yield and water use efficiency. The 50 years of continuous simulation validated by 

the 18-year observed data supports this conclusion. In addition, the rate of N 

fertilization can be reduced about 50% of the current rates due to the lack of enough 

available water in the soil and depending on the degree of aridity no application is 

needed. According to the simulated and the observed long-term data, a higher rate of N 

fertilization can only be applied to NT systems in which greater soil water is available to 

the crop. Unlike, under intensive tillage no effect of N fertilization was observed and, 

thus, significant reductions of N rates are possible.  
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Figure captions 

Fig. 1 Simulated (lines) and observed (symbols) total crop biomass at HYP, MYP and LYP, 

high, medium and low yield potential sites, respectively, during three years (1996-1999) for the 

tillage (NT, no tillage and CT, conventional tillage) and N fertilization rate treatments (0 and 

100, 120 and 150 kg ha-1, for the HYP, MYP and LYP sites, respectively). Please, note the 

different Y-axis scale between sites. 

 

Fig. 2 Simulated (lines) and observed (symbols) soil water content at the HYP and LYP (high 

and low yield potential, respectively) sites during three years (1996-1999) for the tillage 

treatments (NT; no-tillage and CT, conventional tillage) with no N applied.  

 

Fig. 3 Simulated (■) and observed (□) grain yields at the HYP, MYP and LYP (high, medium 

and low yield potential, respectively) sites during three years (1996-1999) for the tillage (NT, 

no tillage and CT, conventional tillage) and N fertilization rate (no N and high N) treatments. 

Vertical bars indicate the standard error. 

 

Fig. 4 Linear relationships between crop grain yield and water use for 50 simulated years at 

three fertilization rates under conventional (CT) and no-tillage (NT) at the HYP, MYP and 

LYP (high, medium and low yield potential, respectively) sites. Solid and dashed linear 

relationship lines correspond to CT and NT, respectively. *** indicates P≤0.001. 

 

Fig. 5 Simulated barley grain yields for 50 years as a function of tillage and N fertilization at 

the HYP, MYP and LYP (high, medium and low yield potential, respectively) sites. Please, 

note the different Y-axes between sites. Vertical bars indicate the standard error. 
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Fig. 6 Probability of crop yields after 50-year simulation for the three N fertilization rates and 

two tillage systems at the HYP, MYP and LYP (high, medium and low yield potential, 

respectively) sites. Please, note the different X-axes between sites. 

 

Fig. 7 Water-use efficiency (kg ha-1 mm) for 50-year simulation as a function of tillage and N 

fertilization rate the HYP, MYP and LYP (high, medium and low yield potential, respectively) 

sites. Vertical bars indicate the standard error. Please, note the different Y-axes between sites. 

 

Fig. 8 Probability of crop yields after 18-year of observed data and 50-year simulation for three 

N fertilization rates (0, 60 and 120 kg N ha-1) and two tillage systems (CT, conventional tillage; 

NT, no-tillage) in the MYP (medium yield potential) site. 
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Table 1. Site and soil characteristics for the 0-25 cm soil layer in the three experimental sites 

(HYP, MYP, LYP: high, medium and low yield potential, respectively). 

 
Site and soil characteristics Guissona 

(HYP) 
Agramunt 
(MYP) 

Candasnos 
(LYP) 

Annual precipitation (mm) 475 430 352 
Annual ETo (mm) 800 855 1224 
Annual water deficit (mm) a 325 425 872 
    

Soil classification b 
Fluventic Mesic 
Xerocrept 

Typic 
Xerofluvent 

Typic 
Haplocalcid 

Effective depth 100 100 50 
Soil organic matter concentration (%) 2.52 0.90 2.00 
Stoniness (% vol.) 0 0 30 
Texture Silty loam Loam Silty loam 
Particle size distribution    

Sand (%) 27.0 46.4 23.2 
Silt (%) 53.0 41.8 54.2 
Clay (%) 20.0 11.8 22.6 
Bulk density (Mg m-3) 1.39 1.45 1.20 
Soil water content at permanent wilting point 
(m3 m-3) 

0.150 0.050 0.125 

Soil water content at field capacity (m3 m-3) 0.316 0.310 0.270 
 

a Calculated as the difference between mean annual precipitation and mean annual ETo. 
b According to the USDA classification (Soil Survey Staff, 1994). 
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Table 2. Crop parameters required by CropSyst of the barley cultivars Barbarrosa (used at 

Guissona, HYP), Hispanic (used at Agramunt, MYP) and Albacete (used at Candasnos, LYP). 

HYP, MYP and LYP stand for high, medium and low yield potential, respectively. 

Parameter Barbarrosa Hispanic Albacete 

Measured or estimated from field data    

Harvest index 0.43 0.42 0.39 
Maximum expected LAI 4.5 7.0 3.0 
Fraction of max. LAI at physiological maturity 0.2 0.2 0.2 
Specific leaf area (m2 kg-1) 25.7 27.9 16.6 
Maximum N concentration during early growth (%) 3.50 4.40 3.50 
Maximum N concentration at maturity (%) 1.20 1.30 1.40 
Minimum N concentration at maturity (%) 0.80 0.90 0.90 
Maximum N content of standing stubble (%) 0.40 0.75 0.70 
Area to mass ratio of residue cover (m2 kg-1) 3.50 3.50 3.00 
Maximum rooting depth (m) 1.20 1.20 1.20 
ET crop coefficient at full canopy 1.15 1.15 1.15 

    

CropSyst manual and other references    

Light to above ground biomass conversion (g MJ-1) 2.56 2.56 2.56 
Actual to potential transpiration ratio that limits leaf area growth 0.20 0.20 0.20 
Actual to potential transpiration ratio that limits root growth 0.20 0.20 0.20 
Optimum mean daily temperature for growth (ºC) 15 15 10 
Maximum water uptake (mm) 8.5 8.5 8.5 
Leaf water potential at the onset of stomata closure (J Kg-1) -2000 -2000 -2000 
Wilting leaf water potential (J Kg-1) -3000 -3000 -3000 
Stem/leaf partition coefficient 3.0 3.0 3.0 
Leaf duration (degree-days) 800 800 800 
Leaf duration sensitivity to water stress 1.50 1.50 1.50 
Extinction coefficient for solar radiation 0.50 0.50 0.50 
Sensitivity to water stress:    
   During flowering 0.05 0.05 0.10 
   During grain filling 0.05 0.05 0.30 
Translocation to grain factor 0.30 0.30 0.30 
Decomposition time constant for residues 60 60 60 
Nitrogen uptake adjustment 1.0 1.0 1.0 

    

Calibrated    

Above ground biomass transpiration coefficient (KPa kg m-3) 4.90 5.60 4.20 
Degree days at emergence 120 120 120 
Degree days to maximum LAI 1140 1050 1100 
Degree days to begin flowering 1300 1200 1300 
Degree days to begin grain filling 1400 1350 1400 
Degree days to begin physiological maturity 1870 1770 1810 
Amount of residual nitrogen per soil layer (kg ha-1) 4.0 5.0 2.0 
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Table 3. Statistical criteria showing the performance of the CropSyst model when 

simulating different soil and crop variables. Data corresponds to the conventional- and 

no-tillage treatments without N fertilization and with high N fertilization rates in the 

Guissona, Agramunt and Candasnos experimental fields i.e., HYP, MYP and LYP, 

high, medium and low yield potential, respectively).  

 

Statistical criteria 
Soil water content 

(m3 m-3) 

Aerial biomass 

(kg DM ha-1) 

Grain yield 

(kg DM ha-1) 

n 144 144 36 

EF 0.71 0.75 0.46 

MD 0.005 274.8 39.6 

rRMSE (%) 24 41 43 

 

  



European Journal of Agronomy 79: 119–130 (2016) 

 36

Figure 1 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6  

 

  

0

0,2

0,4

0,6

0,8

1

0 1000 2000 3000 4000 5000P
ro

b
ab

il
it

y 
of

 e
xc

ee
d

an
ce

CT

NT

HYP
0

0,2

0,4

0,6

0,8

1

0 1000 2000 3000 4000 5000

0

75

150

HYP

0

0,2

0,4

0,6

0,8

1

0 1000 2000 3000 4000 5000

P
ro

b
ab

il
it

y 
of

 e
xc

ee
d

an
ce

CT

NT

MYP
0

0,2

0,4

0,6

0,8

1

0 1000 2000 3000 4000 5000

0

60

120

MYP

0

0,2

0,4

0,6

0,8

1

0 500 1000 1500 2000P
ro

b
ab

il
it

y 
of

 e
xc

ee
d

an
ce

Yield (kg ha-1)

CT

NT

LYP
0

0,2

0,4

0,6

0,8

1

0 500 1000 1500 2000
Yield (kg ha-1)

0

50

100

LYP



European Journal of Agronomy 79: 119–130 (2016) 

 42

Figure 7 
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Figure 8 

 

 

 


