Hot topic: Measurement of W⁺W⁻ production cross section in CMS at 8 TeV

CMS

Alicia Calderón Instituto de Física de Cantabria, CSIC-UC On behalf of the CMS collaboration

SM@LHC: Standard Model at LHC April 23, 2015

CMS

Outline

- WW production at LHC
- Analysis WW event selection
- WW production cross section measurement
- Sources of systematic uncertainties
- WW fiducial and normalized differential cross section measurements
- Search for Anomalous Trilinear Gauge Couplings (ATGCs)
- Summary

- Cross section available at NNLO QCD [1408.5243]
 - ~ 7% higher wrt NLO
 - The gg → H → WW is considered as background (only 3% of expected signal yields)
- W⁺W⁻ production cross section larger than W[±]Z and ZZ production.
- Crucial to check the gauge structure of the Standard Model
- Irreducible background to new physics searches and Higgs boson analysis.
- Sensitive to new physics: probe the presence of ATGCs

CMS

Higher order corrections

- Lots of theoretical interest in previous discrepancy, particularly w.r.t. jet-veto efficiency [1407.4481] [1407.4537]
- The 0-jet (or 1-jet bin) veto applied in this analysis makes the kinematical distributions particularly sensitive to higher-order QCD corrections.
 - Improve modelling of gluon resummation, by reweight p_T(WW) of the qq → WW MC to a NLO+NNLL p_T resummation calculation → correlated with jet veto
 - ~ 3.5% effect on the 0-jet cross section.
 - the resummation scale also provides a convenient handle to determine the acceptance uncertainty

Event selection

- Data: 19.4 fb⁻¹ at 8 TeV
- The fully-leptonic (ee/μμ/eμ) final state.
 - 2 leptons with $P_T > 20$ GeV, and $|\eta| < 2.4$ (2.5) for μ (e)
 - real MET from the neutrinos.
- Selection optimized to enhance ratio signal / background.
 - Tight lepton ID/Isolation
 - Events outside Z mass window
 - min(proj. MET, proj. Track MET) > 20 GeV
 - Dedicated MVA to further reduce offpeak contribution
 - Apply top-veto based on jet b-tagging and soft muon tagging
 - Reject events with a third lepton passing identification requirements

Z→ll + jets (fake MET)

tW and ttbar production

WZ backg.

WW selected events

- The events are analyzed in four exclusive categories:
 - Separated between <u>different</u>- and <u>same-flavor</u> leptons
 - Separated between events with 0 or 1 reconstructed jet with p_{T} > 30 GeV and $|\eta|$ < 4.7

WW production cross section

$$\sigma_{W^+W^-} = \frac{N_{data} - N_{bkg}}{\mathcal{L} \cdot \epsilon \cdot (3 \cdot \mathcal{B}(W \to \ell \overline{\nu}))^2}$$

- N_{data} N_{bkg}
- $\mathcal{L} = \text{luminosity}, 19.4 \text{ fb}^{-1}$
- ε = signal efficiency
- B (W→lv) = branching ratio to leptons , 10.80± 0.09%

• Results per channel :

Event category		W ⁺ W ⁻ production cross section (pb.)		
0-jet category	Different-flavor	59.7 ± 1.1 (stat.) ± 3.3 (exp.) ± 3.5 (th.) ± 1.6 (lum.)		
	Same-flavor	$64.3 \pm 2.1 \text{ (stat.)} \pm 4.6 \text{ (exp.)} \pm 4.3 \text{ (th.)} \pm 1.7 \text{ (lum.)}$		
1-jet category	Different-flavor	$59.1 \pm 2.8 (\text{stat.}) \pm 6.0 (\text{exp.}) \pm 6.2 (\text{th.}) \pm 1.6 (\text{lum.})$		
	Same-flavor	65.1 ± 5.5 (stat.) ± 8.3 (exp.) ± 8.0 (th.) ± 1.7 (lum.)		

Combined by performing a profile likelihood fit

 $\sigma_{W^+W^-} = 60.1 \pm 0.9 \text{ (stat.)} \pm 3.2 \text{ (exp.)} \pm 3.1 \text{ (th.)} \pm 1.6 \text{ (lum.) pb.}$

• The result is below one standard deviation of the NNLO theoretical prediction of $59.8^{+1.3}_{-1.1} \, \mathrm{pb}$

Sources of uncertainties

Source	Uncertainty (%)
Statistical uncertainty	1.5
Luminosity	2.6
Lepton efficiency	3.8
Lepton momentum scale	0.5
$E_{\rm T}^{\rm miss}$ resolution	0.7
Jet energy scale	1.7
tt+tW normalization	2.2
W + jets normalization	1.3
$Z/\gamma^* \rightarrow \ell^+ \ell^-$ normalization	0.6
$Z/\gamma^* \rightarrow \tau^+ \tau^-$ normalization	n 0.2
W γ normalization	0.3
$W\gamma^*$ normalization	0.4
VV normalization	3.0
$H \rightarrow WW$ normalization	0.8
Jet counting theory model	4.3
PDFs	1.2
MC statistics	0.9
Total uncertainty	7.9

- Total uncertainty ~ 8%
- Systematic limited result dominated by:

from data

Ο

Ο

Ο

Ο

the jet counting $\sim 4.3\%$

Luminosity ~ 2.6%

Lepton efficiencies ~ 3.8%

Background normalization

A. Calderón. Standard Model at LHC, 2015.

WW fiducial phase space

- Measure "fiducial" cross section to minimize the dependence on theoretical prediction, especially that related to the requirement on the number of reconstructed and identified jets
- <u>Two</u> WW fiducial phase space requirements:

1 No jets with $|\eta| < 4.7$ and a given maximum jet p_{T}

No jets with $|\eta| < 4.7$ and a given maximum jet p_T and prompt leptons with pT > 20 GeV and $|\eta| < 2.5$

- Prompt leptons before final state radiation
- Leptons from τ decay not considered

- The fiducial cross section measured in the eµ and 0-jet category.
- Results in fiducial phase space ①

$p_{\mathrm{T}}^{\mathrm{jet}}$ threshold (GeV)	σ_{0jet} measured (pb)	σ_{0jet} predicted (pb)
20	$36.2 \pm 0.6 (\text{stat.}) \pm 2.1 (\text{exp.}) \pm 1.1 (\text{th.}) \pm 0.9 (\text{lum.})$	36.7 ± 0.1 (stat.)
25	$40.8 \pm 0.7 \text{ (stat.)} \pm 2.3 \text{ (exp.)} \pm 1.3 \text{ (th.)} \pm 1.1 \text{ (lum.)}$	40.9 ± 0.1 (stat.)
30	$44.0 \pm 0.7 \text{ (stat.)} \pm 2.5 \text{ (exp.)} \pm 1.4 \text{ (th.)} \pm 1.1 \text{ (lum.)}$	43.9 ± 0.1 (stat.)

For a jet p_T > 30 GeV: 1.6% (stat) 5.7% (exp.) 3.2% (th.) 2.6% (lumi.)

• Results in fiducial phase space (2)

$p_{\rm T}^{\rm jet}$ threshold (GeV)	$\sigma_{0jet,W \to \ell \nu}$ measured (pb)	$\sigma_{0jet,W \rightarrow \ell \nu}$ predicted (pb)
20	0.223 ± 0.004 (stat.) ± 0.013 (exp.) ± 0.007 (th.) ± 0.006 (lum.)	0.228 ± 0.001 (stat.)
25	0.253 ± 0.005 (stat.) ± 0.014 (exp.) ± 0.008 (th.) ± 0.007 (lum.)	0.254 ± 0.001 (stat.)
30	0.273 ± 0.005 (stat.) ± 0.015 (exp.) ± 0.009 (th.) ± 0.007 (lum.)	0.274 ± 0.001 (stat.)

For a jet p_T > 30 GeV: 1.8% (stat) 5.6% (exp.) 3.2% (th.) 2.6% (lumi.)

WW normalized differential cross section

- Measured in the e μ and 0-jet category. Fiducial phase space (2)
- Data-background unfolded (SVD method), tested to be independent of the MC used (Powheg, Madgraph, MC@NLO)

Anomalous triple gauge couplings

- Look for deviations in triplegauge-boson couplings from SM: use only the 0-jet bin
- A model-independent way of describing high-energy new physics
 - If the scale of New Physics is large, it can be described by an Effective Field Theory (EFT)
 - Six different EWK dimension-six operators generate ATGC and Higgs anomalous couplings, at three level
- Use m_{II} distribution.
 - Signal includes qqWW, ggWW and ggH

Anomalous triple gauge couplings

- Consider models with with
 C- and P-conserving operators
- **Poisson ΔNLL scans** over each parameter space, profiling over systematic uncertainty nuisance parameters.

$$\mathcal{O}_{WWW} = \frac{c_{WWW}}{\Lambda^2} \operatorname{Tr}[W_{\mu\nu}W^{\nu\rho}W^{\mu}_{\rho}],$$
$$\mathcal{O}_W = \frac{c_W}{\Lambda^2}(D^{\mu}\Phi)^{\dagger}W_{\mu\nu}(D^{\nu}\Phi),$$
$$\mathcal{O}_B = \frac{c_B}{\Lambda^2}(D^{\mu}\Phi)^{\dagger}B_{\mu\nu}(D^{\nu}\Phi)$$

Coupling constant	This result	This result 95% interval	World average
	(TeV^{-2})	$({\rm TeV}^{-2})$	(TeV^{-2})
c_{WWW}/Λ^2	$0.1^{+3.2}_{-3.2}$	[-5.7, 5.9]	-5.5 ± 4.8 (from λ_{γ})
c_W/Λ^2	$-3.6^{+5.0}_{-4.5}$	[-11.4, 5.4]	$-3.9^{+3.9}_{-4.8}$ (from g_1^Z)
c_B/Λ^2	$-3.2^{+15.0}_{-14.5}$	[-29.2, 23.9]	$-1.7^{+13.6}_{-13.9}$ (from κ_{γ} and g_1^Z)

 Inclusive W⁺W⁻ production cross section measurement at 8 TeV and luminosity 19.4 fb-1 is now in agreement with the NNLO SM prediction of 59.8^{+1.3}_{-1.1} pb

 $\sigma_{W^+W^-} = 60.1 \pm 0.9 \text{ (stat.)} \pm 3.2 \text{ (exp.)} \pm 3.1 \text{ (th.)} \pm 1.6 \text{ (lum.) pb.}$

- We have achieved overall better understanding of the jet-veto efficiency + better estimation of associated theoretical uncertainties.
- We also have measured W⁺W⁻ cross section in a fiducial phase space reducing theory uncertainties and normalized differential cross section as function of lepton kinematics.
- No evidence for anomalous WWZ and WWγ triple gauge-boson couplings is found
- Further information under: CMS PAS SMP-14-016

Signal samples

- The qq → WW is generated with POWHEG
 - For comparison also we used MADGRAPH and MC@NLO
- The gg → WW is generated using the GG2VV.

- The gg → H → WW is generated with POWHEG
 - Considered as <u>background</u> (only 3% of expected signal yields
 - Set of PDF: CTEQ6L for LO generators and CT10 for NLO generators
 - All generators interfaced with **PYTHIA**

A. Calderón. Standard Model at LHC, 2015.

MET Definition for $H \rightarrow WW \rightarrow IvIv$ Selection

- If the momentum of a lepton from Z decay is mis-measured
 - Invariant mass is also mis-measured
 - Event passes Z veto
 - Instrumental MET is generated
 - Event passes MET selection
- To reduce instrumental MET
 - Define a "Projected MET"
 - The MET component perpendicular to the lepton with the smallest ΔΦ(MET, I)
 - Projected MET also reduces background from DY→ττ

Projected MET Definition $\Delta \phi_{min} = min(\Delta \phi(\ell_1, E_{\rm T}^{\rm miss}), \Delta \phi(\ell_2, E_{\rm T}^{\rm miss}))$ $E_{\rm T}^{\rm miss}$ $E_{\rm T}^{\rm miss} \qquad \text{if } \Delta \phi_{min} > \frac{\pi}{2}, \\ E_{\rm T}^{\rm miss} \sin(\Delta \phi_{min}) \quad \text{if } \Delta \phi_{min} < \frac{\pi}{2} \end{cases}$ Problem I lepton p₁(measured) p₁(true) Instrumental MET p_2 (measured) lepton₂

MET Definition for $H \rightarrow WW \rightarrow IvIv$ Selection

- Multiple proton-proton interactions per bunch crossing can produce instrumental MET
- Select events by taking the minimum of two different estimators of MET
 - Projected MET
 - Projected Track MET
- Track MET definition
 - Negative vector sum of tracks
 - $|Z_{track} Z_{PV}| < 0.1 \text{ cm}$
- The two estimators are more correlated for real MET than instrumental MET

D. Evans

Data-driven backgrounds

Top background (ttbar and tW) (syst. 2.2%)

 Jet veto efficiency applied to MC events to obtain normalization determined from a data control sample with inverted top veto.

W+jets background (syst. 1.3%)

- normalization and shape estimated from dilepton control region enriched in misidentified leptons.
- Matrix method, using a (η, pT)-dependent fake rate measured with a QCD control sample.

Z+jets background (syst. 1%):

 Extrapolate to get the residual yield in the signal region using the expected ratio "Rout/in" w.r.t the Z mass window

Results: 0-jets bin

Results: 1-jets bin

Event yields

Drogoog	0-jet category		1-jet category	
Process	Different-flavor	Same-flavor	Different-flavor	Same-flavor
$qq ightarrow \mathrm{W^+W^-}$	3516 ± 271	1390 ± 109	1113 ± 137	386 ± 49
$gg \rightarrow W^+W^-$	162 ± 50	91 ± 28	62 ± 19	27 ± 9
W^+W^-	3678 ± 276	1481 ± 113	1174 ± 139	413 ± 50
ZZ + WZ	84 ± 10	89 ± 11	86 ± 4	42 ± 2
VVV	33 ± 17	17 ± 9	28 ± 14	14 ± 7
Top-quark	522 ± 83	248 ± 26	1398 ± 156	562 ± 128
$Z/\gamma^* \to \ell^+ \ell^-$	38 ± 4	141 ± 63	136 ± 14	65 ± 33
$ m W\gamma^*$	54 ± 22	12 ± 5	18 ± 8	3 ± 2
$W\gamma$	54 ± 20	20 ± 8	36 ± 14	9 ± 6
W + jets(e)	189 ± 68	46 ± 17	114 ± 41	16 ± 6
$W + jets(\mu)$	81 ± 40	19 ± 9	63 ± 30	17 ± 8
Higgs	125 ± 25	53 ± 11	75 ± 22	22 ± 7
Total bkg.	1179 ± 123	643 ± 73	1954 ± 168	749 ± 133
W^+W^- + Total bkg.	4857 ± 302	2124 ± 134	3128 ± 217	1162 ± 142
Data	4847	2233	3114	1198

Systematics

- PDF + α_s: PDF4LHC prescription, ~ 1.3%(0.8%) for qqWW (ggWW)
- Higher order corrections [1407.4481]
 - reweight Powheg by varying resummation scale at NLO+NNLL by half and twice the nominal value: 2.8%(6.9%) for 0-jet (1-jet)
 - renormalization by half and twice the nominal: 2.5%(6.3%) for 0jet (1-jet)

→ Same order systematic on the final signal efficiency obtained from Stewart-Tackmann recipe [1107.2117]

• UE+PS:

 three different showering tunes of the UE (CMS tune Z2*, ATLAS tune AUET2, new Tune 64 Z2*-Lep CMS) and two different PS (pythia and herwig). 3.5%

WW normalized differential cross section

WW particle level definition (1/2)

- Fiducial and differential WW cross sections at Particle Level only (not at Parton Level)
- Particle Level definition:
 - stable particles from full ME+parton shower generators. WW results just <u>before</u> Final State Radiation (FSR).
 - without any simulation of the interaction of these particles with the detector components or any additional proton-proton interactions.
- Definition of jets at particle level:
 - define with anti-k_t algorithm, with R= 0.5, built from stable truth particles: electrons, muons, taus and neutrinos are removed from the collection of gen-particles.

WW particle level definition (2/2)

- **Definition of leptons** at particle level:
 - No isolation condition is imposed
 - Leptons just after W decay before FSR (BORN leptons)
 - Parent of the lepton require to be a W boson.
 - Taus considered as background: electrons and muons from tau decays are not considered as part of the signal.

• Further cuts in the event:

- Defined with hard jet veto in particle levels: No jets with |η| < 4.7 and a given maximum jet p_T (nominal value in the analysis is jet p_T > 30 GeV)
- Selected only eµ events with leptons=electron/muon are defined as before, and fulfilling:
 - pT > 20 GeV and |η| < 2.5