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Two-level boson systems displaying a quantum phase transition from a spherical (symmetric) to a deformed
(broken) phase are studied. A formalism to diagonalize Hamiltonians with O(2L + 1) symmetry for large
number of bosons is worked out. Analytical results beyond the simple mean-field treatment are deduced by using
the continuous unitary transformations technique. In this scheme, a 1/N expansion for different observables is
proposed and allows one to compute the finite-size scaling exponents at the critical point. Analytical and numerical
results are compared and reveal the power of the present approach to compute the finite-size corrections in such
a context.
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I. INTRODUCTION

The study of two-level systems has been a topic of interest
since the first steps in the development of quantum mechanics.
The main advantage of these models is that they can be
numerically diagonalized for very large dimensions and, at
the same time, they can model realistic quantum many-body
systems. Typical examples are the Jaynes-Cummings model
of quantum optics [1], the vibron model (VM) of quantum
chemistry [2], the two-level pairing model in condensed matter
[3] and in nuclear physics [4], the Lipkin-Meshkov-Glick
model (LMG) [5–7], and the interacting boson model (IBM)
[8] of nuclear structure. Although some of these models
describe two-level fermion systems, the model Hamiltonian
can always be written in terms of SU (2) pseudospin operators.
Subsequently, the spin Hamiltonian can be expressed in terms
of bosons using either the finite Schwinger representation or
the infinite Holstein-Primakoff representation of the SU (2)
algebra. An example is the LMG model, which has recently
been newly revived as a model of quantum spins with
long-range interactions to investigate the relationship between
entanglement and quantum phase transitions (QPTs) [9–15].
In its boson representation, it has also been recently used as
a simplified model to describe the Josephson effect between
two Bose-Einstein condensates [16].

In this work, we focus on finite two-level boson Hamiltoni-
ans, having the common feature that the lower level is always
a scalar L = 0 boson, hereafter written as s boson. The upper
level can have different multipolarities, generically noted as
L, whose value defines a particular model. The LMG model
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in the Schwinger representation has a second scalar (L = 0)
boson for the upper level. A dipolar (L = 1) boson leads to the
VM and a quadrupolar (L = 2) boson corresponds to the IBM.
Higher angular momentum bosons can lead new models, such
as, for example, a model of octupole vibrations in terms of s
and octupolar (L = 3) bosons. A schematic representation of
the model is shown in Fig. 1.

All these two-level boson models are governed by an alge-
braic structure that is constructed of all bilinear combinations
of creation and annihilation boson operators that generate the
algebra of U (2L + 2). One of the main features of these
models is that one can construct dynamical symmetries in
which the Hamiltonian can be written in terms of Casimir
invariants of a nested chain of subalgebras of U (2L + 2).
In these particular cases, the problem is analytically solvable
providing a powerful tool to check approximate methods and
a reference for more detailed calculations. In addition, if the
Hamiltonian is written as a linear combination of Casimir
invariants of the subalgebras U (2L + 1) and O(2L + 2) the
model is still quantum integrable but then requires solving
Bethe-like equations numerically [17]. The exact solution,
given by Richardson almost 40 years ago [18], is reduced
to a set of M nonlinear coupled equations, where M is the
number of boson pairs. For two-level boson models it turns
out that the numerical diagonalization of the Hamiltonian
presented below is more efficient than solving the Richardson
equations.

The aim of this work is to study the QPT that occurs in
the two-level boson system as it evolves from the spherical
vibrational U (2L + 1) symmetry to the deformed O(2L + 2)
symmetry, as a function of a control parameter. Although,
strictly speaking, QPTs are defined for macroscopic systems,
there is a renewed interest in studying structural changes in
finite-size systems as the precursors of a QPT in the thermo-
dynamic limit. Traces of these QPTs are readily observed in
finite systems and their properties are then correlated with the
idealized thermodynamic system [19]. The understanding of
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FIG. 1. Schematic representation of the two-level boson model
studied in this article.

the modifications on the characteristics of the QPT induced by
finite-size effects is of crucial importance to extend the concept
of phase transitions to finite systems. Several techniques have
long been used to extrapolate numerical results obtained by
large-scale diagonalizations or Monte Carlo calculations to
the infinite system. Here, we focus on a somewhat inverse
problem, which is the finite-size corrections to the observables
in two-level boson models such as the ground-state energy,
the gap, the occupation number, and some electromagnetic
transition rates. Although the zeroth order in the boson
number N is given by the Hartree mean-field approach for
the ground state and the random phase approximation for
the excited states, going beyond this order implies the use
of more sophisticated techniques. We make use here of the
continuous unitary transformations (CUTs) and give the first
1/N corrections to the observables in the whole U (2L + 1) to
O(2L + 2) transition.

The structure of the article is the following. In Sec. II
we introduce the two-level boson models and the formalism
for the numerical diagonalization for a very large number
of bosons. Section III describes the mean-field treatment
of the two-level boson models. Section IV is devoted to
the study of the symmetric phase using CUTs. Analytical
expressions for different orders in the 1/N expansion of the
ground-state energy, the gap, the expectation value of the
number of L bosons in the ground state, and the transition
matrix element between the ground state and the first excited
state are obtained. In Sec. V the broken phase is analyzed,
and in Sec. VI the study of the critical point is presented
from the spherical phase. In this section, we obtain the
finite-size scaling exponents for the quantities cited above by
analyzing the divergence of their 1/N expansion. In Sec. VII
a comparison of the numerical results obtained using the
formalism presented in Sec. II with the analytical CUTs results
is presented. Section VIII is for summary and conclusions.
Technical details concerning flow equations can be found in
appendices.

II. TWO-LEVEL BOSON MODELS

In this section, we present a simple algorithm for diago-
nalizing boson Hamiltonians with O(2L + 1) symmetry for
large boson numbers. The formalism is based on previous
studies [20,21] and is a generalization of the one presented
recently for treating the IBM [22].

We consider the following boson pairing Hamiltonian

H = xnL + 1 − x

4(N − 1)
(P †

LPL + P †
s Ps − P

†
LPs − P †

s PL), (1)

with

nL =
+L∑

µ=−L

L†
µLµ, (2)

P †
s = (Ps)

† = s†s†, (3)

P
†
L = (PL)† =

+L∑
µ=−L

(−1)µL†
µL

†
−µ. (4)

L†
µ creates a boson in the excited L level with projection

µ, whereas Lµ destroys it. We have introduced above the
pair P †

ρ operators with ρ = s or L, which is used later on.
The total number of bosons N = ns + nL is a conserved
quantity. For x = 0,H can be cast into a linear combination
of the quadratic Casimir operators of O(2L + 2) and the
corresponding subalgebras, whereas for x = 1,H is the linear
Casimir operator of the U (2L + 1) algebra. Here, x plays
the role of a control parameter, driving the system from
the O(2L + 2) deformed phase to the U (2L + 1) spherical
phase.

The boson pairing Hamiltonian (1) can be studied in an
elegant way by means of the noncompact SU (1, 1) algebra
of boson pair operators. For the subspace of ρ bosons, where
ρ stands generically either for s or L bosons, the SU (1, 1)
generators are the raising operator K+

ρ , the lowering operator
K−

ρ = (K+
ρ )† and the Cartan operator K0

ρ defined as

K+
ρ = 1

2P †
ρ , (5)

K−
ρ = 1

2Pρ, (6)

K0
ρ = 1

2

∑
µ

(
ρ†

µρµ + 1

2

)
= 1

2
nρ + 1

4
Dρ, (7)

with Dρ = 2ρ + 1. The three operators {K+
ρ ,K−

ρ ,K0
ρ} satisfy

the SU (1, 1) commutator algebra[
K0

ρ,K±
ρ ′

] = ±δρ,ρ ′K±
ρ , (8)

[K+
ρ ,K−

ρ ′ ] = −2δρ,ρ ′K0
ρ. (9)

The Casimir operator is

C2
ρ = 1

2
(K+

ρ K−
ρ + K−

ρ K+
ρ ) − (K0

ρ)2 = −Dρ

4
(
Dρ

4
− 1).

(10)

The complete set of eigenstates of the pairing Hamiltonian (1)
can be constructed as a direct product of subspaces associated
to s and L bosons. Each subspace can be written in terms of
the rising operators K+

ρ acting on the corresponding subspace
of unpaired ρ bosons

|ñρ, νρ〉 = 1√
C

ñρ

ρ,νρ

K
+ñρ

ρ |ñρ = 0, νρ〉, (11)

where νs = νL=0 = 0, 1 and νL �=0 = 0, 1, 2, . . . The quantity
νρ is known as the boson seniority for ρ bosons and gives
the number of bosons of type ρ not coupled in pairs to zero.
Note that from now on the label ñ means number of boson
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pairs coupled to zero angular momentum. The total number of
bosons is 2ñs + 2ñL + νs + νL. The normalization constant in
Eq. (11) can be obtained from the action of K−

ρ and K0
ρ on the

ρ subspace |ñρ = 0, νρ〉
K−

ρ |ñρ = 0, νρ〉 = 0, (12)

K0
ρ |ñρ = 0, νρ〉 = (

1
2νρ + 1

4Dρ

)|ñρ = 0, νρ〉, (13)

and the commutation relation

[[K−
ρ ,K+

ρ ],K+
ρ ] = 2K+

ρ , (14)

then

K−
ρ (K+

ρ )ñρ |ñρ = 0, νρ〉

= ñρ(ñρ + Dρ

2
+ νρ − 1)(K+

ρ )ñρ−1|ñρ = 0, νρ〉, (15)

and

〈ñρ, νρ |ñρ, νρ〉 = ñρ

2
(2ñρ + 2ρ + 2νρ − 1)

×〈ñρ − 1, νρ |ñρ − 1, νρ〉, (16)

and finally

〈ñρ, νρ |ñρ, νρ〉 = ñρ!(2ñρ + 2ρ + 2νρ − 1)!!

2ñρ (2ρ + 2νρ − 1)!!

= C
ñρ

ρ,νρ
. (17)

Remember that the label ρ stands for s or L bosons and
takes the following numerical values: 0 for s bosons and L
for L bosons. Once the basis for each subspace is obtained
[Eqs. (11) and (17)], the complete basis set for the pairing
Hamiltonian [Eq. (1)] is easily constructed,

|ñs , νs ; ñL, νL〉 = 1√
C

ñs
s,νs

C
ñL

L,νL

(K+
s )ñs (K+

L )ñL

× |ñs = 0, νs ; ñL = 0, νL〉. (18)

We now diagonalize the Hamiltonian given in Eq. (1) in the
basis of the states given by Eq. (18). Note that in the following
n refers to boson number operators but ñ are number of boson
pairs. The relevant matrix elements for the construction of the
Hamiltonian matrix are as follows:

〈ñs , νs ; ñL, νL|ns |ñs , νs ; ñL, νL〉 = 2ñs + νs, (19)

〈ñs , νs ; ñL, νL|nL|ñs , νs ; ñL, νL〉 = 2ñL + νL, (20)

〈ñs , νs ; ñL, νL|K+
s K−

s |ñs , νs ; ñL, νL〉 = ñs

(
ñs + νs − 1

2

)
,

(21)

〈ñs , νs ; ñL, νL|K+
L K−

L |ñs , νs ; ñL, νL〉 = ñL

(
ñL+L+νL− 1

2

)
,

(22)

〈(ñs − 1), νs ; (ñL + 1), νL|K+
L K−

s |ñs , νs ; ñL, νL〉
= 1

2

√
ñs(ñL + 1)(2ñs + 2νs − 1)(2ñL + 2L + 2νL + 1).

(23)

It is clear that the Hamiltonian does not mix states
with different boson seniority quantum numbers. Thus, the

Hamiltonian matrix is block diagonal. In addition, within one
block the matrix is tridiagonal, making the diagonalization
simple. The different states are obtained as follows: one starts
with the boson subspace containing N/2 boson pairs coupled
to zero angular momentum, νs = νL = 0. The diagonalization
of H in this subspace provides states with angular momentum
zero and the first eigenstate is the ground state. Next, one
goes to the block with one broken boson pair. This block
is composed of two separate blocks because the two bosons
can be one s boson and one L boson (νs = 1, νL = 1) or two
L bosons not coupled to zero because the coupling to zero is
included in the first block, (νs = 0, νL = 2). Notice that two
unpaired s bosons are not possible because they are always
coupled to zero and consequently they are counted in the
first block. For the case of the LMG model in which L = 0,
the block νs = 0, νL = 2 is not allowed for the same reason.
The block νs = 1, νL = 1 provides states with angular mo-
mentum L, the first of them is the first excited state of the
system. The block νs = 0, νL = 2 contains states with two
L bosons not coupled to zero angular momentum; it contains
angular momenta: 2L, 2L − 2, . . . , 2. Next, there is another
block with two broken boson pairs composed of two subblocks:
νs = 1, νL = 3 and νs = 0, νL = 4. Again, the block νs = 0,

νL = 4 is absent for the LMG model. This construction
continues for 3, 4, . . . , N/2 broken boson pairs. Few first
low-lying Hamiltonian eigenstates are depicted schematically
in Fig. 2.

Direct block diagonalization of the Hamiltonian in the basis
of the states given by Eq. (18) provides observables as the
ground-state energy or the gap and also the wave functions
of the states. With the wave function of the ground state the
expectation value of the number of L bosons in the ground state
can be easily calculated. One can also calculate the transition
probability from the ground state to the first excited state
provided with the appropriate operator. The natural transition
operator for the pairing Hamiltonian we are considering is as
follows:

TLµ
= L†

µs + (−1)µs†L−µ. (24)

N
2 boson pairs

ν  = 0; ν  = 0s L

ν  =1; ν  =1s L
ν  =0; ν  =2s L

ν  =1; ν  =3s L

ν  =0; ν  =4s L

1 broken boson pair 2  broken boson pairs

. .
 .

0

0

0

L

L

. .
 . . .

 .

. .
 . . .
 .

2L,2L−2,...,2

2L,2L−2,...,2

3L,3L−2,...,0

3L,3L−2,...,0
4L,4L−2,...,0

4L,4L−2,...,0

FIG. 2. Schematic representation of the level sequence obtained
by diagonalizing the Hamiltonian for the two-level boson mod-
els studied in this article. Numbers above the lines are angular
momenta.
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The action of TLµ
on the subspace νs = 0, νL = 0 that includes

the ground state is as follows:

TLµ
|ñs , 0; ñL, 0〉

= 1√
C

ñs

s,0C
ñL

L,0

[ñs(K
+
s )ñs−1(K+

L )ñL s†L†
µ + ñL

× (K+
s )ñs (K+

L )ñL−1s†L†
µ]|ñs = 0, 0; ñL = 0, 0〉, (25)

where the state |ñs = 0, νs = 0; ñL = 0, νL = 0〉 ≡ |0) is the
boson vacuum.

Then, the matrix elements of TLµ
connecting the subspaces

νs = 0, νL = 0 and νs = 1, νL = 1 (which includes the first
excited state) are as follows:

〈(ñs − 1), νs = 1; ñL, νL = 1|TLµ
|ñs , νs = 0; ñL, νL = 0〉

=
√

2ñs(2ñL + 2L + 1)

2L + 1
, (26)

〈ñs , νs = 1; (ñL − 1), νL = 1|TLµ
|ñs , νs = 0; ñL, νL = 0〉

=
√

2ñL(2ñs + 1)

2L + 1
. (27)

If we write each eigenstate of the Hamiltonian as

|�i, νs, νL〉 =
∑
ñs ,ñL

c
νs ,νL

ñs ,ñL
|ñs , νs ; ñL, νL〉, (28)

the matrix element of the TLµ operator between the ground
state |0〉 ≡ |�0, 0, 0〉 and the first excited state |1〉 ≡ |�0, 1, 1〉
is

〈1|TLµ|0〉 =
∑
ñs ,ñL

[√
2ñs(2ñL + 2L + 1)

2L + 1
c

0,0
ñs ,ñL

c
1,1
ñs−1,ñL

+
√

2ñL(2ñs + 1)

2L + 1
c

0,0
ñs ,ñL

c
1,1
ñs ,ñL−1

]
. (29)

The formalism presented in this section provides the exact
full solution of the problem. A simpler approach to study
ground-state properties in the large N limit is provided by the
mean-field analysis presented in the next section. This limit is
a good benchmark to test more elaborate results.

III. MEAN-FIELD ANALYSIS

The geometrical interpretation of the Hamiltonian [Eq. (1)]
can be obtained by introducing a Hartree axial coherent state
that allows us to associate to it a geometrical shape in terms
of a deformation variable β. For a system with N bosons, this
state is obtained by acting N times with a condensed boson �†

on the boson vacuum |0)

|N, β〉 = 1√
N !

(�†)N |0), (30)

where the basic condensed boson operator is given by the
following:

�† = 1√
1 + β2

(s† + βL
†
0), (31)

0 1 2

β

0.1

0.2

0.3

0.4

0.5

e
0  (

ar
bi

tr
ar

y 
un

its
)

x=0.4
x=0.5
x=0.6

FIG. 3. (Color online) Energy surfaces per boson for the
Hamiltonian [Eq. (1)] for different values of the control parameter x.

which depends on the β shape variable. The energy surface is
defined as the expectation value of H in the intrinsic state

E(N, β) = 〈N, β|H |N, β〉

= N

[
x

β2

1 + β2
+ 1 − x

4

(
1 − β2

1 + β2

)2
]

. (32)

Minimizing the variational energy E(N, β) with respect to
β leads to a critical point at xc = 0.5. For x > xc (symmetric
phase), the ground state is spherical and is obtained for β = 0,
whereas for x < xc (broken phase) it is deformed since the
minimum of the energy per boson e0 = E(N, β)/N is obtained
for β = √

1 − 2x as can be seen in Fig. 3. At the critical point,
it is worth noting that the energy surface is a flat β4 surface
near β = 0 [22,23]. Within this mean-field (variational)
approach, one thus gets the following ground-state energy per
boson:

e0(x � xc) = 1 − x

4
, (33)

e0(x � xc) = x

4

2 − 3x

1 − x
. (34)

One can also straightforwardly compute the expectation value
of nL in the ground state, which is found to vanish in the
symmetric phase and equals

〈nL〉 = N
1 − 2x

2(1 − x)
, (35)

in the broken one.
However, other properties, as excitation energies or transi-

tion probabilities, that imply excited states require to go one
step beyond this simple mean-field level. In the following,
we use a combination of several methods already detailed for
the simple case L = 0 in Ref. [24] that allow us to compute
the corrections to these mean-field results as well as the gap
or the transition rates that require the knowledge of excited
states.
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IV. THE SYMMETRIC PHASE (1/2 < x < 1)

The starting point of our analysis is the elimination of the
s boson by means of a Holstein-Primakoff boson expansion
[25] of s and L bosons (for a review in boson expansion
techniques see Ref. [26]). Therefore, we introduce a set of
bµ bosons such that the mapping

L†
µLν = b†µbν, (36)

L†
µs = N1/2b†µ(1 − nb/N )1/2 = (s†Lµ)†, (37)

s†s = N − nb. (38)

fulfills the commutation relations at each order in N in the
Taylor expansion of the square root.

With these notations, we have the following:

nL = nb, (39)

P
†
LPL = P

†
b Pb, (40)

P †
s Ps = (N − 1)(N − 2nb)+ : n2

b :, (41)

P
†
LPs =

∑
µ

(−1)µL†
µsL

†
−µs,

= N
∑

µ

(−1)µb†µ(1−nb/N)1/2b
†
−µ(1−nb/N )1/2, (42)

where: A : denotes the normal-ordered form of the operator A.
The Holstein-Primakoff mapping eliminates the s boson at

the cost of introducing infinitely many boson terms. However,
each term in the expansion has a definite 1/N order. As shown
in the preceding section, for 1/2 < x < 1, the number of
L boson in the ground state goes to zero in the thermodynamical
limit. Thus, to capture the finite N corrections, one performs a
1/N expansion of the Hamiltonian considering that nb/N 	 1.
In this phase, the Hamiltonian [Eq. (1)] reads as follows:

H = N1

(
1 − x

4

)
+ N0

(
1 − x

4

)

×
[

2(3x − 1)

1 − x
nb − (P †

b + Pb)

]
+ N−1

(
1 − x

4

)

×
[

: n2
b : +P

†
b Pb − 1

2
(P †

b + Pb) + P
†
b nb + nbPb

]

+N−2

(
1 − x

4

)

×
[

: n2
b : +P

†
b Pb − 3

8
(P †

b + Pb) + P
†
b nb + nbPb

]
+O(1/N3). (43)

Here, we have restricted this expansion to order (1/N )2 but
the method we used can, in principle, be applied beyond this
limit as shown in Ref. [24] for the LMG model (L = 0).
Our aim is to diagonalize H order by order. At the leading
order, one obviously recovers the mean-field ground-state
energy per boson e0(N ) = (1 − x)/4 + O(1/N ). At order
(1/N )0, the Hamiltonian is quadratic and it can thus be
easily diagonalized through a Bogoliubov transform, giving

rise to the boson random phase approximation formalism
presented in Ref. [27] and more recently exploited to describe
the properties of the symmetric and broken-symmetry phases
in the interacting boson model [21,28]. Higher-order terms
cannot be diagonalized by a Bogoliubov transformation, so
that one has to resort a more sophisticated method.

A. CUTs formalism

The CUTs technique has been conjointly proposed by
Wegner [29] and Głazek and Wilson [30,31]. For a pedagogical
introduction, we refer the reader to Refs. [32,33]. Here we only
sketch the main lines of this simple and powerful approach.

The idea of the CUTs is to diagonalize the Hamiltonian in a
continuous way starting from the original (bare) Hamiltonian
H = H (l = 0). A flowing Hamiltonian is thus defined by the
following:

H (l) = U †(l)H (0)U (l), (44)

where l is a scaling parameter such that H (l = ∞) is
diagonal, and U (l) is a unitary transformation, i.e., satisfying
U (l)U †(l) = U †(l)U (l) = 1. Taking the derivative of Eq. (44)
with respect to l yields the differential (flow) equation

∂lH (l) = [η(l),H (l)], (45)

where the generator of the unitary transformation η(l) is

η(l) = ∂lU
†(l)U (l) = −U †(l)∂lU (l). (46)

CUTs are also a powerful tool to compute the expectation
value of any observable 
. As for the Hamiltonian, we define
a flowing operator


(l) = U †(l)
(0)U (l), (47)

which obeys

∂l
(l) = [η(l),
(l)], (48)

with 
 = 
(l = 0). The expectation value of 
 on an
eigenstate |ψ〉 of H is then given by the following:

〈ψ |
|ψ〉 = 〈ψ |U (l = ∞)
(l = ∞)U †(l = ∞)|ψ〉, (49)

where U †(l = ∞)|ψ〉 is simply the eigenstate of the diagonal
Hamiltonian H (l = ∞).

The key point of this approach is an appropriate choice of
the generator η, which, in fact, depends on the problem under
consideration. Here, the Hamiltonian H expressed in terms of
b boson can be schematically written as follows:

H (0) = H0(0) + H+
1 (0) + H−

1 (0) + H+
2 (0) + H−

2 (0), (50)

where H−
1,2 = (H+

1,2)† and 0, 1, or 2 subscripts indicate the
number of created (+) or annihilated (−) excitations.

To perform the CUTs, we choose the so-called quasiparticle
conserving generator first proposed by Mielke [34] in the
context of finite matrices and generalized to many-body
problems by Knetter and Uhrig [35], which reads

η(l) = H+
1 (l) − H−

1 (l) + H+
2 (l) − H−

2 (l). (51)

In the symmetric phase (H±
1 = 0) this choice coincides with

the generator proposed by Stein [36]. The flow equations are
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then simple quadratic functions of the Hamiltonians:

∂lH0(l) = 2([H+
1 (l),H−

1 (l)] + [H+
2 (l),H−

2 (l)]), (52)

∂lH
+
1 (l) = [H+

1 (l),H0(l)] + 2[H+
2 (l),H−

1 (l)], (53)

∂lH
+
2 (l) = [H+

2 (l),H0(l)]. (54)

In the limit l = ∞, the Hamiltonian conserves the number of
b boson so that H±

1,2(∞) = 0 and H (∞) = H0(∞). Following
the method developed for the LMG model in Ref. [14,24],
we convert these equations, which deal with operators, into
equations involving coupling constants. This is achieved by
expanding Hamiltonians H0 and H±

1,2 in powers of 1/N (see
Sec. IV B).

B. Flow equations for the Hamiltonian

In the symmetric phase (H±
1 = 0), we have three elemen-

tary operators : nb :, P †
b , Pb from which H0 and H±

2 are built.
More precisely, the 1/N expansion of these Hamiltonians can
be written as follows:

H0(l) =
∑

α,β,δ∈IN

h
(δ)
0,α,β (l)P †

b

β
: nα

b : Pb
β

Nα+2β+δ−1
, (55)

H+
2 (l) =

∑
α,β,δ∈IN

h
(δ)
2,α,β (l)P †

b P
†
b

β
: nα

b : Pb
β

Nα+2β+δ
. (56)

Note that for L = 0, one has P
†
b Pb =: n2

b :, so that h
(δ)
k,α,β =

h
(δ)
k,α+2β,0. One then readily recovers expressions given in

Ref. [24] for the case of a scalar b boson. Using this
expansion and Eqs. (52)–(54), we can easily derive the flow
equations for the couplings h

(δ)
k,α,β(l), which are given in App-

endix A up to order (1/N)2. These flow equations can be solved
exactly and, at order (1/N )2, one finally obtains the following:

H (∞) = h0,0,0(∞) + h0,1,0(∞)nb + h0,2,0(∞) : n2
b :

+h0,0,1(∞)P †
b Pb + h0,3,0(∞) : n3

b :

+h0,1,1(∞)P †
b nbPb + O(1/N3) (57)

with

h0,α,β (l) =
∑
δ∈IN

h
(δ)
0,α,β (l)

Nα+2β+δ−1
, (58)

and

h
(0)
0,0,0(∞) = 1 − x

4
, (59)

h
(1)
0,0,0(∞) = 2L + 1

2

[
1 − 3x

2
+ 
(x)1/2

]
, (60)

h
(2)
0,0,0(∞) = (2L + 1)(1 − x)x

×
[−(2L + 5) + (6L + 13)x

16
(x)
− L + 2

4
(x)1/2

]
, (61)

h
(3)
0,0,0(∞) = − (2L + 1)(1 − x)x2

[
(2L + 1) − (8L2 + 6L − 33)x + (32L2 − 2L − 149)x2 − (24L2 − 38L − 179)x3

128
(x)5/2

− 2L + 5 + (2L2 − 3L − 17)x − (2L2 − 5L − 20)x2

16
(x)2

]
, (62)

h
(0)
0,1,0(∞) = 
(x)1/2, (63) h

(1)
0,1,0(∞) = (1 − x)x

[−1 + (2L + 5)x

4
(x)
− L + 2

2
(x)1/2

]
, (64)

h
(2)
0,1,0(∞) = −(1 − x)x2

[
L + 1 − (2L2 + 3L − 6)x + (12L2 + 15L − 23)x2 − (10L2 + 5L − 32)x3

16
(x)5/2

− 1 + (2L2 + 5L − 1)x − (2L2 + 3L − 4)x2

4
(x)2

]
, (65)

h
(0)
0,2,0(∞) = (1 − x)x2

4
(x)
, (66)

h
(1)
0,2,0(∞) = −(1 − x)x2

×
[

1 − 3x + (12L + 29)x2 − 3(4L + 9)x3

32
(x)5/2

− x
L + 1 − Lx

4
(x)2

]
, (67)

h
(0)
0,0,1(∞) = x(1 − x)(3x − 1)

8
(x)
, (68)

h
(1)
0,0,1(∞) = − (1 − x)x2

[
(2L + 5)

1 − 3x + 11x2 − 9x3

128
(x)5/2

− x
1 + (L − 3)x − (L − 4)x2

8
(x)2

]
, (69)

h
(0)
0,3,0(∞) = − (1 − x)2x4

8
(x)5/2
, (70)

h
(0)
0,1,1(∞) = − (1 − x)2x2(1 − 2x + 9x2)

64
(x)5/2
, (71)

where we have set 
(x) = x(2x − 1).
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The ground-state energy per particle is thus given by the
following:

e0(N ) = h
(0)
0,0,0(∞) + 1

N
h

(1)
0,0,0(∞) + 1

N2
h

(2)
0,0,0(∞)

+ 1

N3
h

(3)
0,0,0(∞) + O(1/N4), (72)

whereas the gap reads

�(N ) = h
(0)
0,1,0(∞) + 1

N
h

(1)
0,1,0(∞) + 1

N2
h

(2)
0,1,0(∞)

+O(1/N3). (73)

Of course, these expressions coincide for L = 0 with those
given in Refs. [14,24]. For L = 2, one recovers the results
given in Ref. [37]. The mean-field result (33) is also recovered
in the thermodynamical limit.

It is important to note that the Hamiltonian H (∞) = H0(∞)
is not diagonal in the eigenbasis of nb (except for L = 0) even
though it always commutes with nb. Consequently, for each
number of excitations, H must be diagonalized.

As can be observed in Eqs. (59)–(71), some divergences
appears, for x = xc, in the subleading corrections. We will see
in Sec. VI that the structure of this singular 1/N expansion
at the critical point allows us to extract nontrivial scaling
exponents whose determination is one of the main motivation
of this work.

C. Flow equations for b†
µ

We now proceed to derive the flow equation for the
operator b†µ(l) from which any other observable can be
obtained. Analogously to the treatment of the Hamiltonian
flow equations, the first step consists in transforming the
flow equation [Eq. (48)] for 
(l) = b†µ(l) into a set of flow
equations for couplings. Therefore, we expand b†µ(l) in power
of 1/N . Generically, one may expect to generate any terms

b†µ
α
P

†
b

β
: n

γ

b : Pb
ηbµ

ν . Here, we shall restrict our discussion
to order 1/N for which one only has eight operators

b†µ(l) = A+(l)b†µ + A−(l)b̃µ + B+(l)b†µnb + B−(l)nbb̃µ

+C+(l)P †
b b̃µ + C−(l)b†µPb + D+(l)b†µP

†
b

+D−(l)Pbb̃µ + O(1/N2), (74)

where we have introduced b̃µ = (−1)µb−µ and where, as
previously, each function has a canonical 1/N expansion given
by the number of bosonic operators it is associated with,
namely

A±(l) = A(0)±(l) + A(1)±(l)

N
+ O(1/N2), (75)

B±(l) = B(0)±(l)

N
+ O(1/N2), (76)

C±(l) = C(0)±(l)

N
+ O(1/N2), (77)

D±(l) = D(0)±(l)

N
+ O(1/N2). (78)

The initial condition is of course given by: b†µ(l = 0) = b†µ
so that one only has a nonvanishing initial coupling which
is A

(0)
+ (0) = 1. The flow equations are then obtained for

these couplings order by order using Eq. (48). The full set
of equations is given in Appendix B. As for the couplings
defining the running Hamiltonians, these equations can be
solved exactly and lead to

A(0)
s (∞) = 1

2�(x)1/4
, (79)

A(1)
s (∞) = − (1 − x)

16x

[
2L + 3

�(x)7/4
− 2(L + 2)

�(x)5/4

]
, (80)

A
(0)
d (∞) = �(x)1/4

2
, (81)

A
(1)
d (∞) = (1 − x)

16x

[
2L + 3

�(x)5/4
− 2(L + 2)

�(x)3/4

]
, (82)

B(0)
s (∞) = − 1 − x

8x�(x)7/4
, (83)

B
(0)
d (∞) = 1 − x

8x�(x)5/4
, (84)

C(0)
s (∞) = − 1 − x

16x�(x)7/4
, (85)

C
(0)
d (∞) = 1 − x

16x�(x)5/4
, (86)

D(0)
s (∞) = (1 − x)(3x − 1)

32x2�(x)7/4
, (87)

D
(0)
d (∞) = 1 − x2

32x2�(x)5/4
, (88)

where we have set �(x) = (2x − 1)/x, Fs = 1
2 (F+ + F−) and

Fd = 1
2 (F+ − F−), for each function F = A,B,C,D.

The above expansion of b†µ(∞) allows us to compute
〈�|
|� ′〉 for any operator 
 that can be expressed in terms
of b†µ and for any eigenstates |�〉 and |� ′〉 of the Hamiltonian
H (∞). In the following, we consider two different examples
to show the power of this approach.

D. Expectation value of the occupation number nL

Let us first consider the case where 
 = nL and where
|�〉 = |� ′〉 is the ground state of H. This quantity normalized
by the number of bosons can be computed straightforwardly
by means of the Hellmann-Feynman theorem which states

〈nL〉
N

= ∂

∂y
[(1 + y)h0,0,0], (89)

where y = x/(1 − x). Because we have the expansion of h0,0,0

up to order (1/N )3, one can easily get 〈nL〉 at this order. Here,
instead, we compute it in terms of the flow equation for the
operator b†µ obtained in the preceding section, using the fact
that:

nL(∞) = nb(∞) =
∑

µ

b†µ(∞)bµ(∞), (90)
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where b†µ(∞) is given by Eq. (74) with final values Eqs. (79)–
(88). The ground state of the Hamiltonian (57) being defined
as the zero b boson state |0〉, one has the following:

〈0|nL(∞)|0〉
N

= 1

N

∑
µ

〈0|b†µ(∞)bµ(∞)|0〉,

= 1

N

∑
µ

A2
−(∞)〈0|bµb†µ|0〉 + O(1/N3),

= 1

N
(2L + 1)

[
A

(0)
− (∞)2 + 2

N
A

(0)
− (∞)A(1)

− (∞)
]
+O(1/N3),

= (2L + 1)

N

[
3x − 1

4
(x)1/2
− 1

2

]
+ (2L + 1)

N2

x(1 − x)2

16

×
[
− (2L + 3)x


(x)2
+ 2(L + 2)


(x)3/2

]
+ O(1/N3), (91)

where, as previously, 
(x) = x(2x − 1). It can be easily
verified that this expression coincides with Eq. (89).

E. Transition probability between the ground state and the first
excited state

As explained above, the real power of the CUTs method is
that it allows to easily compute off-diagonal matrix elements
of any operator between any eigenstates of the Hamiltonian
provided one knows the expression of the associated running
operator. As an example, we focus here on the transition
probability T = |〈1|TL0 |0〉|2 between the ground state |0〉 and
the first excited state |1〉. The operator TLµ

was defined in
Eq. (24). It is important to note that here the ground state has
a zero angular momentum, whereas the first excited state has
an angular momentum L. To determine the matrix element of
TL0 of interest, we shall proceed as for the occupation number
and consider its 1/N expansion in terms of the b boson:

TL0 = s†L0 + L
†
0s

= N1/2

[
b
†
0 + b0 − 1

2N
(b†0nb + nbb0) + O(1/N2)

]
. (92)

To be consistent, given that we only have the expression
of b

†
0(∞) + b0(∞) at order 1/N , we need to consider

b
†
0(∞)nb(∞) + nb(∞)b0(∞) at order (1/N)0. Using the ex-

pression (74) of the operator b
†
0, one easily gets

〈1|b†0(∞) + b0(∞)|0〉 = A+(∞) + A−(∞), (93)

and

〈1|b†0(∞)nb(∞) + nb(∞)b0(∞)|0〉
= (2L + 3)A+(∞)A−(∞)2 + A−(∞)

× [(2L + 2)A−(∞)2 + A+(∞)2]. (94)

Truncating these expressions at order 1/N and (1/N)0 respec-
tively and using Eqs. (75), (79) and (80), one finally obtains

the following:

T

N
= x


(x)1/2
+ x2

N

×
[
− (2L + 1) − 4(2L + 1)x + (10L + 7)x2

4
(x)2

+ −L + (3L + 2)x

2
(x)3/2

]
+ O(1/N2). (95)

As for the expansion of the spectrum, some singularities
appears, and we shall see that they also provide the scaling
exponents at the critical point.

V. THE BROKEN PHASE (0 < x < 1/2)

As shown by the mean-field analysis, for x < 1/2, the order
parameter 〈nL〉/N has a nonvanishing value. This implies that
we have to consider a new vacuum for the Holstein-Primakoff
expansion. Therefore, we shift the bosonic modes by a term
proportional to

√
N . We thus define the c bosons by the

following:

b†µ =
√

Nλ∗
µ + c†µ (96)

where the λµ’s are complex numbers that form a (2L + 1)-
dimensional vector. Of course, the symmetric phase results
are recovered when setting λµ = 0. Then, using Eqs. (36)–(38)
and assuming that nc/N 	 1, we expand the Hamiltonian that
now contains some a term proportional to

√
N that reads as

follows:

(c†· λ̃ + λ†· c̃)

{
x + 1 − x

4
[−2(1 − nλ) + P

†
λ + Pλ]

}

+ 1 − x

2
[(c†· λ†)(Pλ − 1 + nλ) + (λ · c)(P †

λ − 1 + nλ)], (97)

where λ†
µ = λ∗

µ and λ̃µ = (−1)µλ−µ. There are several choices
of the λµs that allow one to get rid of these terms. Here, we have
chosen to set λµ = λ0δµ,0 with λ2

0 = (1 − 2x)/[2(1 − x)].
Note that in the thermodynamical limit, we recover the
mean-field value [Eq. (35)]

〈nL〉
N

=
∑

µ

|λµ|2 = 1 − 2x

2(1 − x)
. (98)

Further, we emphasize that this choice of the λµs is the same
as the one proposed in the mean-field analysis where we have
broken the spherical symmetry by populating macroscopically
µ = 0 boson level only. With this choice, the Hamiltonian
reads as follows:

H = −Nx
3x − 2

4(1 − x)
+ N0

[
(1 − 3x)(1 − 2x)

8(1 − x)
+ x

2
nc

+ 5

4
(1 − 2x)c†0c0 − x

4
(P †

c + Pc) + 3

8
(1 − 2x)

(
c
†
0

2 + c2
0

)]

+O(1/
√

N ). (99)

Contrary to the symmetric phase, we do restrict our
discussion to this order because, as shown later, the existence
of gapless modes at this level does not allow us to go beyond
this order with the CUTs.
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A. The spectrum

The Hamiltonian (99) can be easily diagonalized via a
Bogoliubov transform. Therefore, we introduce the d bosons
defined by the following:

c†µ = cosh(�µ/2)d†
µ + sinh(�µ/2)d̃µ, (100)

c̃µ = sinh(�µ/2)d†
µ + cosh(�µ/2)d̃µ. (101)

The angles �µ are chosen so that H written in terms of the d’s is
diagonal. From Eq. (99), it is clear that modes with µ �= 0 and
µ = 0 plays a different role and actually decouple. As can be
easily seen, eliminating off-diagonal terms for µ �= 0 implies
to set �µ �=0 = ∞ and gives 2L gapless modes. Because such
a transform is singular, one has to use another route. The
contribution of terms with µ �= 0 in the Hamiltonian reads as
follows:

Hµ + H−µ = x

2
[c†µcµ + c

†
−µc−µ − (−1)µ(c†µc

†
−µ + c−µcµ)].

(102)

Introducing the position and momentum operator

Xµ = c†µ + cµ√
2

, Pµ = i
c†µ − cµ√

2
, (103)

one has

Hµ + H−µ = −x

2
+ x

4
[(Pµ + (−1)µP−µ)2

+ (Xµ − (−1)µX−µ)2]. (104)

Because [Pµ + (−1)µP−µ,Xµ − (−1)µX−µ] = 0,Hµ is writ-
ten in a diagonal form and its spectrum is indeed found to be
gapless and continuous. The correction to the ground-state
energy coming from this contribution is thus −Lx/2.

Let us now consider the µ = 0 part of the Hamiltonian that
reads:

Hµ=0 = (
5
4 − 2x

)
c
†
0c0 + (

3
8 − x

)(
c
†
0

2 + c2
0

)
. (105)

For this contribution, the Bogoliubov transform can be simply
achieved and one obtains the following:

Hµ=0 = 1
2

(√
1 − 2x − 5

4 + 2x
) + √

1 − 2x d
†
0d0. (106)

The correction to the ground-state energy coming from this
contribution is thus given by the d0 boson state. As a result, e0

at this order reads as follows:

e0(N ) = x

4

2 − 3x

1 − x
+ 1

N

[−2 − 2(L − 2)x + (2L − 1)x2

4(1 − x)

+ 1

2

√
1 − 2x

]
+ O(1/N2). (107)

As in the symmetric phase, the leading corrections coincide
with the mean-field result (34) and L only appears in the
subleading terms.

Concerning the gap, the above analysis indicates the
existence of 2L gapless modes and a gapped one with
excitation energy

�′(N ) = √
1 − 2x + O(1/N ). (108)

As previously, one can simply obtain 〈nL〉/N by replacing
h0,0,0 by e0(N ) in Eq. (89), and the result is as follows:

〈nL〉
N

= 1 − 2x

2(1 − x)
− 1

2N

×
[
L + x√

1 − 2x
+ x

x − 1

]
+ O(1/N2). (109)

At this stage, one can understand the difficulty to go beyond
this order in the presence of gapless modes. Indeed, computing
the next-order corrections would imply to keep on making
the 1/N expansion around the (broken) vacuum, but such a
procedure does not take into account the degeneracy because
of the gapless modes. Note that for L = 0 where no gapless
modes emerge, we have been able to compute these corrections
using CUTs [24]. To conclude this subsection, we wish to
underline that in the two-level BCS model where gapless
modes also exist, Richardson has obtained the finite-size
corrections in the broken phase beyond the Bogoliubov order
using the 1/N expansion of the exact solution [38], whereas we
computed them more recently using CUTs in the symmetric
phase [39].

B. Transition probability between the ground state and the first
excited state

As in the symmetric phase, we now compute the transition
T = |〈1|TL0 |0〉|2, where TL0 = s†L0 + L

†
0s. However, the

important difference is that, in the broken phase, one has 2L

gapless modes that renders the definition of the first excited
states more tricky. In the thermodynamical limit, the ground
state thus becomes infinitely degenerate and one actually has
to simply consider the expectation value of TL0 over the ground
state. To avoid any confusion, we call this quantity T ′ instead
of T. Using the expansion (93) and the shift (96) with the
choice of the λµ given previously, one obtains the following:

T ′ = |〈0|TL0 |0〉|2,
= N24λ2

0

(
1 − λ2

0

) + O(N ),

= N2 1 − 2x

(1 − x)2
+ O(N ). (110)

First, it is important to note that T ′ is proportional to N2 in this
phase, whereas T scales as N in the symmetric phase. Second,
in the broken phase, T ′ vanishes at the critical point, whereas
T diverges when approaching from the symmetric phase. This
result clearly suggests an anomalous scaling behavior at the
critical point that we shall now investigate in details.

VI. THE CRITICAL POINT

In this section, we analyze the behavior of the 1/N

expansion of the quantities considered in this study: the
ground-state energy, the gap, the expectation value of nL in
the ground state, and the transition rate T between the ground
state and the first excited state. The common point of all
these expansions is that they become singular at the critical
point. Following the arguments presented in a recent series
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of papers [14,24,37,39] we now recall how this intriguing
property allows one to extract the finite-size scaling exponents
at this point.

All quantities considered in this study display a singular
behavior for x = xc. This singular behavior can emerge in
subleading corrections as for the ground-state energy but also
in the leading term as illustrated by the transition rate in the
symmetric phase [see Eq. (95)]. Thus, schematically, the 1/N

expansion of a physical quantity � can be decomposed into a
regular and a singular part as

�N (x) = �
reg
N (x) + �

sing
N (x), (111)

where, contrary to �
sing
N ,�

reg
N and all its derivatives with

respect to x do not diverge when x goes to xc. Furthermore,
at each order of the expansion, the divergence of �

sing
N is

dominated by a single term. To be more concrete, let us
consider the ground-state energy in the symmetric phase for
which

�
reg
N (x) = 1 − x

4
+ 1

N

(2L + 1)(1 − 3x)

4
, (112)

�
sing
N (x) = 1

N

(2L + 1)
(x)1/2

2
+ 1

N2
h

(2)
0,0,0(∞)

+ 1

N3
h

(3)
0,0,0(∞) + O(1/N4). (113)

In the vicinity of the critical point, these diverging terms
have a leading contribution that is proportional to 
(x)−1 for
h

(2)
0,0,0(∞) and to 
(x)−5/2 for h

(3)
0,0,0(∞). This has lead us to

conjecture that near xc the singular part behaves as follows:

�
sing
N (x) � 
(x)ξ�

Nn�
F�[N
(x)3/2], (114)

where F� is a function that only depends on the scaling
variable N
(x)3/2. We underline that for the LMG model
(L = 0) we have checked this scaling hypothesis up to a
high order in the 1/N expansion. For the ground-state energy
discussed above, one has ξ� = 1/2 and n� = 1.

Once the form [Eq. (114)] is accepted, the scaling
exponents are directly obtained. Indeed, because at fi-
nite N, physical quantities must not diverge, we conclude
that, necessarily, F�(x) ∼ x−2ξ�/3 so that finally one has,
�

sing
N (xc) ∼ N−(n�+2ξ�/3). In Table I we have gathered the

exponents obtained for the quantities discussed in this article.
We wish to emphasize that the scaling exponents related

to the spectral quantities, i.e., e0,� and, using Eq. (89), 〈nL〉,
can also be obtained in a different way. Indeed, as explained
in Sec. III, the energy surface is the one of a quartic oscillator

TABLE I. Scaling exponents for the ground-state energy per
boson e0, the gap �, the number of L bosons in the ground state
〈nL〉, and the T transition probability.

� ξ� n� −(n� + 2ξ�/3)

e0 1/2 1 −4/3
� 1/2 0 −1/3
〈nL〉 −1/2 0 1/3
T −1/2 −1 4/3

(β4-like potential) and this can be used as a starting point of
a semiclassical description to show that the spectrum, at the
critical point scales as N−1/3. For technical details, we refer
the reader to Ref. [13] for the LMG model or [40] for the
IBM with L = 2, and we also note that the “critical” scaling
exponents do not depend on L. However, the present approach
has a real advantage as compared to this latter method because
one can compute the scaling exponents of any observables
using the expression of bµ(∞). We are further not restricted
to expectation value but we can also investigate off-diagonal
terms as illustrated with the transition rate T.

VII. NUMERICAL RESULTS

In this section we check the validity of the analytical
expressions obtained in the preceding sections using CUTs.
The observables studied are the ground-state energy per boson
e0, the gap �, the expectation value of the number of L bosons
in the ground state 〈nL〉, and the transition probability between
the ground state and the first excited state T.

In Fig. 4 we present the general features of the selected ob-
servables as a function of the control parameter x for L = 2 and
for N = 500. Note that in the broken phase (x < xc), we have
plotted � and T/N2 instead of �′ and T ′/N2, these two latter
quantities are discussed under Sec. VII B. We can thus clearly
appreciate the emergence of Goldstone modes in the broken
phase. We emphasize that 〈nL〉/N as well as the transition
probability T/N2 may be considered order parameters because
they vanish in the symmetric phase and acquire a finite value
in the broken one. However, although 〈nL〉/N is directly
related to the physical ground state, T involves the first
excited state that turns out to collapse into the ground state
in the broken phase. This latter property makes it a more
controversial candidate for an order parameter as recently
discussed in Refs. [19,41].

In Fig. 5, we plot the difference between the numerical and
the mean-field value of e0 (dashed line) and 〈nL〉/N (full line)
as a function of the boson number, N, for three characteristic
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0

0.1

0.2

N=500 ,  L=2

e
0 ∆

<n
L
>/N T/N

2

FIG. 4. General features of the observables studied in this work
as a function of the control parameter x obtained by numerical
diagonalization.
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FIG. 5. (Color online) Differences between numerical (num) and
mean-field (m.f.) results for the ground-state energy (per boson) e0

and expectation value of the number of L = 2 bosons in the ground
state (per boson) 〈nL〉/N as a function of the boson number N for
three values of the control parameter as follows: x = 0.25 (broken
phase), x = 0.5 (critical point), and x = 0.75 (spherical phase).

values of the control parameter as follows: x = 0.75 in the
symmetric phase, x = 0.5 at the critical point, and x = 0.25
in the broken phase. As can be seen, the mean-field results
become exact when increasing the number of bosons. It is
interesting to note the change in sign in the deviations of
the order parameter showing that the mean-field approach
underestimates (overestimates) it in the symmetric phase (in
the broken phase). To emphasize this effect, we plot in Fig. 6
the same quantities for N = 20 bosons as a function of the
control parameter x. Although deviations in the ground-state
energy behave smoothly around the critical point, there is a
well-defined cusp in the deviations of the 〈nL〉/N .

Now that we have shown the main characteristics of the
physical quantities of interest and the general agreement, in
the thermodynamical limit, with the simple mean-field results

0 0.2 0.4 0.6 0.8           1
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FIG. 6. (Color online) Differences between numerical (num) and
mean-field (m.f.) results for the ground-state energy (per boson) e0

and expectation value of the number of L = 2 bosons in the ground
state (per boson) 〈nL〉/N as a function of the control parameter x at
fixed N = 20.
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FIG. 7. (Color online) Comparison between the numerical (sym-
bols) and analytical (line) ground-state energy per boson e0 for
different values of N at leading order.

presented in Sec. III, let us analyze in details the finite-size
corrections in each phase independently.

A. The symmetric phase

In Sec. IV, we have obtained analytical expressions for
the different corrections in the 1/N expansion of the selected
observables. To check these results, we present several plots
focusing in a first step, on the case L = 2 and the dependence
with x, whereas, in a second step, we discuss the dependence
with L.

Let us first consider the ground-state energy per boson e0

whose expansion in the symmetric phase is given in Eq. (72).
In Fig. 7, the leading term in Eq. (72) is compared with the
numerical results for different N values confirming that the
h

(0)
0,0,0 is indeed the true asymptotic value of e0.

Next, we compare in Fig. 8 the numerical and analytical
subleading corrections to e0 at each order. The numerical
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FIG. 8. (Color online) Comparison in log-normal scale between
the numerical (symbols) and analytical results (lines) order by order
for the ground-state energy per boson e0 (see text for definitions).
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FIG. 9. (Color online) Comparison in log-normal scale between
the numerical (symbols) and analytical results (lines) order by order
for the gap � (see text for definitions).

corrections of order p to e0 are defined from the numerical
value enum

0 as Np|enum
0 − ∑p−1

α=0 h
(α)
0,0,0(∞)/Nα|, whereas the

analytical correction is obviously given by h
(p)
0,0,0(∞). We

present results for p = 1, 2, 3 and N = 10, 100, 1000. As can
be clearly seen, for the largest value of N = 1000, numerical
and analytical results are almost indistinguishable even for
values of x close to the critical point where h

(2)
0,0,0 and h

(3)
0,0,0

are known to diverge. Note that the critical point xc = 0.5
was explicitly excluded. Of course, the smaller N the larger
the discrepancy because the numerical correction defined
above still contains higher-order terms which play a role in
this case.

Along the same line, we analyze in Fig. 9 the corrections
for the gap � defining the numerical correction of order p
from the numerically calculated gap �num as Np|�num −∑p−1

α=−1 h
(α)
0,1,0(∞)/Nα| with h

(−1)
0,1,0(∞) = 0. The analytical

correction of order p is h
(p)
0,1,0(∞).
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FIG. 10. (Color online) Comparison in log-normal scale between
the numerical (symbols) and analytical results (lines) for the expec-
tation value of the occupation number in the L level per boson in the
ground state 〈nL〉/N . n

(1)
L stands for the 1/N term and n

(2)
L stands for

the 1/N 2 term in Eq. (91).
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FIG. 11. (Color online) Comparison in log-normal scale between
the numerical (symbols) and analytical results (lines) for the transition
probability per boson between the ground and the first excited state
T/N . T (0) stands for the N-independent term and T (1) stands for the
1/N term in Eq. (95).

Finally, we perform the same analysis for 〈nL〉/N (see
Fig. 10) and T/N (see Fig. 11) by comparing the two first terms
of their expansion with the numerical results. The numerical
corrections are computed as for the gap. All these plots reflect
that the x dependence of the analytical expressions obtained
with CUTs are in complete agreement with the exact numerical
results for large values of N.

To end up with these checks, we have investigated the
L dependence of the analytical results. We present in Fig. 12 the
same observables (with the same notations) as those presented
in Figs. 8–11 for fixed x = 0.6 and N = 1000 as a function
of L. Once again, the agreement between the numerical results
and the analytical expressions is excellent and confirms the
validity of our analytical results.

10
-2

10
0

10
2

0 2 4 6 8

L

10
-1

10
0

10
1

0 2 4 6 8

N=1000  ,  x=0.60

T
(1)

h
(1)

0,0,0

h
(2)

0,0,0
h

(3)

0,0,0

h
(0)

0,1,0

h
(1)

0,1,0

h
(2)

0,1,0

n
(1)

n
(2)

T
(0)

FIG. 12. (Color online) Comparison in log-normal scale between
numerical (symbols) and analytical results (lines) as a function of L.
Notations are the same as in Figs. 8–11.
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FIG. 13. (Color online) Comparison between numerical (sym-
bols) and analytical (lines) results. We plot here only the leading
terms for each quantity.

B. The broken phase

As explained in Sec. V, the presence of Goldstone modes
in the broken phase prevents computation of the corrections at
a high order. Therefore, we restrict our discussion here to the
first nontrivial order. We present in Fig. 13 a direct comparison
between numerical results (symbols) and the analytical ones
given in Eqs. (107), (108), (109), and (110) (lines) as a function
of the control parameter x for N = 1000 and L = 2.

It is worth reminding the reader that the gap associated
with a one-phonon state in the symmetric phase turns into a
Goldstone boson in the broken phase. The first excited state in
the latter phase thus corresponds to a two-phonon state in the
symmetric phase. However, this gapped mode [Eq. (108)] goes
to zero at the critical point in the thermodynamic limit N = ∞.
As in the symmetric case, one can appreciate the agreement
between analytics and numerics as already discussed, at this
order, in Ref. [21].
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FIG. 14. (Color online) Comparison between numerical (sym-
bols) and analytical (lines) results for L = 2. As in the symmetric
phase, we have substracted from the numerical data the leading term
given by the mean-field treatment.
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FIG. 15. (Color online) Comparison between numerical (sym-
bols) and analytical (lines) results for the subleading corrections.
As in the symmetric phase, we have substracted from the numerical
data the leading term; e

(1)
0 and n

(1)
L refers respectively to the term

proportional to 1/N in Eq. (107) and Eq. (109) respectively.

We have also checked that the subleading terms of e0

and 〈nL〉/N (beyond the mean-field results), which contains
a nontrivial dependence with L, were fitting with numerics.
In Fig. 14, we show for L = 2, a comparison between
numerical and analytical results for N = 10, 100, 1000. As
in the symmetric phase, the larger N the better the agreement.
The dependence with L is tested in Fig. 15 at fixed x and N.

C. The critical point

We now turn to the critical point study. To check the value
of the finite-size scaling exponents derived in Sec. VI, we
have performed diagonalizations for large system size (up to
N = 213 bosons). Let us recall that for L = 0, we have checked
these values for larger system size in Ref. [24]. We show in
Fig. 16 our results for different values of L = 0, 1, 2, 3. Note
that we plot the log2 of each quantity.
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FIG. 16. (Color online) Plot of the singular parts of e0, �, 〈nL〉,
and T at the critical point xc = 1/2 as a function of the boson number N
for different values of L.
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In this figure, only the singular part of the physical
quantities of interest is plotted; the regular one is removed
using the ad hoc expressions given in this work. As can
be seen, the exponents are independent of L as expected
from our calculations and match very well the predicted
values.

For L = 0, these exponents can also be obtained by
noting that the LMG model can be seen as an Ising model
in a transverse field with long-range interactions [42,43].
Then, the scaling variable N
3/2 is obtained from the upper
critical dimension of the equivalent model with short-range
interactions that are known to be dc = 3 in this case. For
L �= 0, the two-level system studied in this article cannot be
simply mapped onto a short-range interaction model. Thus, it
is rather a remarkable fact that the finite-size scaling exponents
are independent of L. However, as explained in Sec. VI,
this is because the β4-like potential underlying the critical
theory.

VIII. SUMMARY AND CONCLUSIONS

In this article, we have studied two-level boson models
where the lower boson has a zero angular momentum (s boson)
and the upper one an angular momentum L. All these models
are defined by the U (2L + 2) algebra, from which one can
find chains of subalgebras going down to the O(3) angular
momentum algebra. When the Hamiltonian is written as a
combination of Casimir operators of a chain of subalgebras, it
is said that a dynamical symmetry occurs and the problem
is analytically solvable. In this article, we focused on the
study of the quantum phase transition that appears when the
boson system has a O(2L + 1) symmetry, i.e., a transition
from U (2L + 1) to O(2L + 2) dynamical symmetries. This
second-order transition is well described by a mean-field
approach and the subtleties arise in the finite-size corrections.
Here, we have explicitly computed these corrections for several
physical quantities using, first, a 1/N expansion naturally
given by the Holstein-Primakoff representation of the angular
momenta, and, second, the continuous unitary transformations
to diagonalize the Hamiltonian. In the spherical (symmetric)
phase, we have thus been able to capture corrections beyond
the standard random phase approximation and to show that
the 1/N expansion is singular at the critical point. The
analysis of these singularities has allowed us to compute
the finite-size scaling exponents that have been found to be
independent of L. In the deformed (broken) phase, we have
only computed the first corrections via a simple Bogoliubov
transformations, to show the main difference with the spherical
one.

We have also presented a formalism based on boson
seniority that provides a simple and efficient way of solving
numerically the problem for a large number of bosons
(a few thousands). Using this powerful algorithm, we have
compared order by order analytical and numerical results and
found an excellent agreement between both. We hope that the
present work will help in understanding the approach to the
macroscopic limit in such models, a problem that has recently
drawn much attention [19,40].
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APPENDIX A: FLOW EQUATIONS FOR THE
HAMILTONIAN IN THE SYMMETRIC PHASE

In this appendix, we give at each order the flow equations
for the couplings and the initial conditions obtained from the
1/N expansion of the Hamiltonian [Eq. (43)], For clarity, we
have not explicitly written the l dependence of all functions
h

(δ)
k,α,β .

1. Order (1/N)−1

At this order, one has one flow equation

∂lh
(0)
0,0,0 = 0, (A1)

with

h
(0)
0,0,0(0) = 1 − x

4
. (A2)

2. Order (1/N)0

At this order, one has three flow equations

∂lh
(1)
0,0,0 = −4(2L + 1)h(0)

2,0,0

2
, (A3)

∂lh
(0)
0,1,0 = −8h

(0)
2,0,0

2
, (A4)

∂lh
(0)
2,0,0 = −2h

(0)
0,1,0h

(0)
2,0,0, (A5)

with

h
(1)
0,0,0(0) = 0, (A6)

h
(0)
0,1,0(0) = 3x − 1

2
, (A7)

h
(0)
2,0,0(0) = −1 − x

4
. (A8)

3. Order (1/N)1

At this order, one has six flow equations

∂lh
(2)
0,0,0 = −8(2L + 1)h(0)

2,0,0h
(1)
2,0,0, (A9)

∂lh
(1)
0,1,0 = −8h

(0)
2,0,0

[
2h

(1)
2,0,0 + (2L + 3)h(0)

2,1,0

]
, (A10)

∂lh
(1)
2,0,0 = −2

{
h

(0)
0,1,0h

(1)
2,0,0 + h

(0)
2,0,0

×[
h

(1)
0,1,0 + h

(0)
0,2,0 + (2L + 1)h(0)

0,0,1

]}
, (A11)

∂lh
(0)
0,2,0 = −16h

(0)
2,0,0h

(0)
2,1,0, (A12)

∂lh
(0)
0,0,1 = −8h

(0)
2,0,0h

(0)
2,1,0, (A13)
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∂lh
(0)
2,1,0 = −2

[
h

(0)
0,1,0h

(0)
2,1,0 + 2h

(0)
2,0,0

(
h

(0)
0,2,0 + h

(0)
0,0,1

)]
, (A14)

with

h
(2)
0,0,0(0) = 0, (A15)

h
(1)
0,1,0(0) = 0, (A16)

h
(1)
2,0,0(0) = −1 − x

8
, (A17)

h
(0)
0,2,0(0) = 1 − x

4
, (A18)

h
(0)
0,0,1(0) = 1 − x

4
, (A19)

h
(0)
2,1,0(0) = 1 − x

4
. (A20)

4. Order (1/N)2

At this order, one has 10 flow equations

∂lh
(3)
0,0,0 = −4(2L + 1)

(
h

(1)
2,0,0

2 + 2h
(0)
2,0,0h

(2)
2,0,0

)
, (A21)

∂lh
(2)
0,1,0 = −8

[
h

(1)
2,0,0

2 + 2h
(0)
2,0,0h

(2)
2,0,0 + (2L + 3)

×(
h

(0)
2,0,0h

(1)
2,1,0 + h

(1)
2,0,0h

(0)
2,1,0 + 1

2h
(0)
2,1,0

2)]
, (A22)

∂lh
(2)
2,0,0 = −2

{
h

(0)
2,0,0

[
h

(2)
0,1,0 + h

(1)
0,2,0 + (2L + 1)h(1)

0,0,1

]
+h

(1)
2,0,0

[
h

(1)
0,1,0 + h

(0)
0,2,0 + (2L + 1)h(0)

0,0,1

]
+h

(2)
2,0,0h

(0)
0,1,0

}
, (A23)

∂lh
(1)
0,2,0 = −8

[
2
(
h

(0)
2,0,0h

(1)
2,1,0 + h

(1)
2,0,0h

(0)
2,1,0

)
+ (2L + 5)h(0)

2,0,0h
(0)
2,2,0

]− 4(2L + 7)h(0)
2,1,0

2, (A24)

∂lh
(1)
0,0,1 = −8

[
h

(0)
2,0,0h

(1)
2,1,0 + h

(1)
2,0,0h

(0)
2,1,0 + h

(0)
2,0,0h

(0)
2,2,0 + h

(0)
2,1,0

2

+ 2(2L + 3)h(0)
2,0,0h

(0)
2,0,1

]
, (A25)

∂lh
(1)
2,1,0 = −2

{
h

(0)
2,0,0

[
2
(
h

(1)
0,2,0 + h

(1)
0,0,1

) + 3h
(0)
0,3,0

+ (2L + 3)h(0)
0,1,1

] + 2h
(1)
2,0,0

(
h

(0)
0,2,0 + h

(0)
0,0,1

)
+h

(0)
2,1,0

[
h

(1)
0,1,0 + 3h

(0)
0,2,0 + (2L + 3)h(0)

0,0,1

]
+h

(0)
0,1,0h

(1)
2,1,0

}
, (A26)

∂lh
(0)
0,3,0 = −8

(
h

(0)
2,1,0

2 + 2h
(0)
2,0,0h

(0)
2,2,0

)
, (A27)

∂lh
(0)
0,1,1 = −8

(
h

(0)
2,1,0

2 + 2h
(0)
2,0,0h

(0)
2,2,0 + 4h

(0)
2,0,0h

(0)
2,0,1

)
, (A28)

∂lh
(0)
2,2,0 = −2

[
h

(0)
2,0,0

(
3h

(0)
0,3,0 + 2h

(0)
0,1,1

)
+ 2h

(0)
2,1,0

(
h

(0)
0,2,0 + h

(0)
0,0,1

) + h
(0)
0,1,0h

(0)
2,2,0

]
, (A29)

∂lh
(0)
2,0,1 = −2

(
h

(0)
2,0,0h

(0)
0,1,1 + h

(0)
0,1,0h

(0)
2,0,1

)
, (A30)

with

h
(3)
0,0,0(0) = 0, (A31)

h
(2)
0,1,0(0) = 0, (A32)

h
(2)
2,0,0(0) = −3(1 − x)

32
, (A33)

h
(1)
0,2,0(0) = 1 − x

4
, (A34)

h
(1)
0,0,1(0) = 1 − x

4
, (A35)

h
(1)
2,1,0(0) = 1 − x

4
(A36)

h
(0)
0,3,0(0) = 0, (A37)

h
(0)
0,1,1(0) = 0, (A38)

h
(0)
2,2,0(0) = 0, (A39)

h
(0)
2,0,1(0) = 0. (A40)

APPENDIX B: FLOW EQUATIONS FOR b†
µ IN

THE SYMMETRIC PHASE

In this appendix, we give at each order the flow equations
for the couplings involved in the 1/N expansion of b†µ(l) [see
Eq. (74)] and the corresponding initial conditions. For clarity,
we have not explicitly written the l dependence of all functions.
Further, it is convenient to introduce Fs = 1

2 (F+ + F−) and
Fd = 1

2 (F+ − F−), for each function F = A,B,C,D.

1. Order (1/N)0

At this order, one has two flow equations

∂lA
(0)
s = −2h

(0)
2,0,0A

(0)
s , (B1)

∂lA
(0)
d = 2h

(0)
2,0,0A

(0)
d , (B2)

with

A(0)
s (0) = A

(0)
d (0) = 1/2. (B3)

2. Order (1/N)1

At this order, one has eight flow equations which decouples
in two sets of four equations.

∂lA
(1)
s = −2h

(0)
2,0,0

[
A(1)

s + B(0)
s + (2L+ 1)C(0)

s + (2L+ 3)D(0)
s

]
− 2h

(1)
2,0,0A

(0)
s , (B4)

∂lB
(0)
s = −2h

(0)
2,0,0

[
B(0)

s + 2
(
C(0)

s + D(0)
s

)] − 2h
(0)
2,1,0A

(0)
s , (B5)

∂lC
(0)
s = −2h

(0)
2,0,0

(
B(0)

s + D(0)
s

) − h
(0)
2,1,0A

(0)
s , (B6)

∂lD
(0)
s = −2h

(0)
2,0,0

(
B(0)

s + C(0)
s

) + h
(0)
2,1,0A

(0)
s , (B7)

∂lA
(1)
d = 2h

(0)
2,0,0

[
A

(1)
d + B

(0)
d + (2L + 1)C(0)

d − (2L + 3)D(0)
d

]
+ 2h

(1)
2,0,0A

(0)
d , (B8)

∂lB
(0)
d = 2h

(0)
2,0,0

[
B

(0)
d + 2

(
C

(0)
d − D

(0)
d

)] + 2h
(0)
2,1,0A

(0)
d , (B9)

∂lC
(0)
d = 2h

(0)
2,0,0

(
B

(0)
d − D

(0)
d

) + h
(0)
2,1,0A

(0)
d , (B10)

∂lD
(0)
s = −2h

(0)
2,0,0

(
B

(0)
d + C

(0)
d

) + h
(0)
2,1,0A

(0)
d , (B11)

with A(1)
s (0) = B(0)

s = C(0)
s = D(0)

s = A
(1)
d = B

(0)
d = C

(0)
d =

D
(0)
d (0) = 0.
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APPENDIX C: SOLVING THE FLOW EQUATIONS

The flow equations given in the above appendices have to
be solved order by order in 1/N . At order (1/N)−1, nothing
has to be done, so let us turn to order (1/N )0. The equations
for h

(0)
0,1,0(l) and h

(0)
2,0,0(l) are easily solved by noticing that

h
(0)
0,1,0(l)2 − 4h

(0)
2,0,0(l)2 is a constant of the flow. One gets the

hyperbolic solutions

h
(0)
0,1,0(l) = �∞

tanh[2�∞(l + l0)]
, (C1)

h
(0)
2,0,0(l) = −sgn(ε)�∞

2 sinh[2�∞(l + l0)]
. (C2)

We have denoted �∞ the gap of the system at the ther-
modynamical limit, that is h

(0)
0,1,0(∞) [see Eq. (63)]. The

quantity l0 is such that the initial conditions are fulfilled,
namely h

(0)
0,1,0(0) = �∞/ tanh[2�∞l0], and we also introduced

ε = −h
(0)
2,0,0(0)/[2h

(0)
0,1,0(0)]. As already explained in Ref. [24],

the best way to solve the flow equations is in fact to introduce
a new “time scale” that is more adapted to the problem and
defined by the following:

t = sgn(ε) exp[2�∞(l + l0)], (C3)

with initial conditions now given at

t0 = sgn(ε) exp(2�∞l0). (C4)

After some algebra t0 can also be shown to be equal to

t0 = 1

ε
(1 +

√
1 − ε2). (C5)

Eqs. (C1) and (C2) now read as follows:

h
(0)
0,1,0(t) = �∞

t2 + 1

t2 − 1
, (C6)

h
(0)
2,0,0(t) = −�∞

t

t2 − 1
, (C7)

which are rational expressions in t. The renormalized values at
l → ∞ are now found by taking the limit t → t∞ = sgn(ε)∞.
Let us remark that the off-diagonal coupling h

(0)
2,0,0(t) goes to

zero and behaves like t−1 for t → t∞. This will be true for all
off-diagonal couplings creating two excitations because the
energy cost of such excitations, in the thermodynamic limit
and for large t, is nothing but 2�∞, so that the couplings must
vanish as exp(−2�∞l).

The last flow equation (for the spectrum) at order (1/N)0

is solved by noticing that 2h
(1)
0,0,0(t) − (2L + 1)h(0)

0,1,0(t) is
a constant of the flow, equal to its initial value, namely
−(2L + 1)(3x − 1)/2.

The last task at order (1/N )0 is to obtain the solution for
the observable. For this, one simply has to insert Eq. (C7) into
Eqs. (B1) and (B2) and then replace ∂l with 2�∞t∂t and solve
the resulting equation. This yields

A(0)
s (t) = 1

2

√
(t − 1)(t0 + 1)

(t + 1)(t0 − 1)
, (C8)

A
(0)
d (t) = 1

2

√
(t + 1)(t0 − 1)

(t − 1)(t0 + 1)
. (C9)

The next orders are solved in the same fashion: one inserts
the expressions known from the previous orders, replaces ∂l

with 2�∞t∂t , and solves the equations (which is most simply
achieved thanks to a computer algebra program). We refer the
interested reader to the details given in Ref. [24], where some
more technical details are given.

Let us emphasize that the usefulness of the t variable comes
from the fact that there exists only one basic energy scale in
the problem, namely the gap. All energy scales are integer
multiples of this gap. As previously mentioned, off-diagonal
couplings associated to an energy scale 2�∞ decay as t−1,
and in the general case, an off-diagonal coupling whose
energy scale is n�∞ decay as t−n/2. Such a time variable
would be useless in a problem where many different energy
scales exist.
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