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Application of the density matrix renormalization group to the two level pairing model
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We introduce the density matrix renormalization group as an efficient truncation scheme which can be
applied to nuclear shell model problems. To illustrate the power of the method we perform a calculation for the
two level pairing model showing its convergence proper{i€9556-28139)50406-9

PACS numbsgps): 21.60.Cs, 21.10.Pc, 21.30.Fe

Shell model exact diagonalization has been a powerfutlot corresponds to a single statésite” ). We assume to
technique to describe low energy spectra in nuclei althoughave a complete knowledge of thestates of the left block
limited, by the dimensions of the matrices involved, to the(L) of sizel (I is equal to 4 in the figupg and of the matrix
study of light nuclei. Quite recently the scope of the shellelements of all relevant operators inside the block. We would
model has been extended to nuclei in fap shell[1]. The like to increase the size of the block by one incorporating the
largest diagonalization performed so far has been done fatentral block C) with one site, but in doing so the dimen-
52Fe [2] with a Hamiltonian matrix of dimension $dn m  sion of the new enlarged block is doubledhfR The aim of
scheme. Future improvements, like including the use of théhe DMRG method is to truncate the dimension of the new
j-j coupling scheme and quasispin formali§si, are not block retaining the “optimum”m states and neglecting the
expected to go beyond thep shell in the near future due the Otherm states. Subsequently the relevant operators are also
enormous increase in memory required. truncated to this subspace of dimensionin this way we

Shell model Monte Carlo methodid] provide an alterna- increase the size of the block by one, while preserving the
tive to go beyond the limits of direct diagonalization but they dimensionm. The procedure is continued from left to right
can predict only overall nuclear propertigaasses, strength until the size of the left block exhausts the complete system
distributions, deformation, etc.Another possible way to ex- finishing a sweep. For finite systems we may have to perform
tend the applicability of the shell model, which we will in- several sweeps from left to right and from right to left until
troduce in this Rapid Communication, is to set up an efficientve reach the desired precision.
truncation scheme able to reduce significantly the shell Before going to a more detailed description of the method
model space such that the resultant dimensions are still traé? the TLPM, we will show how to determine the “opti-
table by actual computers. Such a technique, the density m&um” states in each step of the procedure. Suppose we are
trix renomalization grougDMRG), has recently been devel- in an intermediate step in which the system is divided in the
oped in the context of one-dimensional spin systdBls  two blocks of Fig. 1. We have already incorporated the cen-
Since then it has been widely applied to low dimensionaltral block (C) to theL block to compose the enlarged block
quantum lattice models like the Hubbard model, th@ L’ shown in Fig. 1 by the dashed line. The other bl@dght
model, the Holstein model, etc., with great succéfss a block R) of size M-I-1 plays the role of the environment.
review seg6]). The method is based on an iterative proce-We will assume that we have a knowledge of the ground-
dure which beginning from a small part of the systemstate wave function of the entire syst¢f). Let|«) be the
(block), whose dimensions are manageable, it then increaseet of 2m states of the.’ block and|B) the set of states of
the block size step by step performing a truncation in eaclthe R block. Expanding the ground-state wave functjdn)
step such that the dimension of the block stays constant. The the product space’XR, |¥)=% 5V ,5|a)|B) we are
key point of the DMRG is the truncation method which al- now able to define the reduced density matrix oflthiélock
lows us to retain the most important many body states that
optimally represent the ground state and low lying excited p{m,:z qf:(ﬁq,a’ﬁ” 1)
states of the complete system. I3

The aim of this Rapid Communication is to introduce the
DMRG in the framework of nuclear models and to exemplify Which plays a central role in the DMRG method. We would
its power in selecting the optimal states to be retained in eaclike now to find a subset o states of the.” block |p)
step of the procedure in a squematic two level pairing model
(TLPM). Suppose that we want to obtain a reliable descrip- r L Cl R
tion of a system of sizeM. In its original derivation the
DMRG was applied to a one-dimensional spin system, con-
sequentlyM had the meaning of the number of spin sites. For
a finite Fermi systentlike a nucleuy M might be related to FIG. 1. Block separation of the system in the first iteration with
the number of single particle stateaj(n). We first divide 1=4. L’ represents the enlarged left block after the first renormal-
the system in three blocks like in Fig. 1, where each blackzation step.

0556-2813/99/5@)/30054)/$15.00 PRC 59 R3005 ©1999 The American Physical Society


https://core.ac.uk/display/80861722?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

RAPID COMMUNICATIONS

R3006 J. DUKELSKY AND G. G. DUSSEL PRC 59

=3,-1me"| @), such that the truncated wave functibﬁ> For a system at half filling, the total number of partichés
-5 Bq_’ g|p>|,3) optimally represents the ground-state equgls half the'total sy;tem degenerably=2(}). The nor- '
wav% furﬁ'ction|\lf>, or in a more clear mathematical state- malized states in the Hilbert subspace of the monopole pairs

ment, “optimal” representation means maximization of the are

overlap(¥|¥). The solution to this problertfor details see Q%
ErYIl) g)gwen by a diagonalization of the reduced density ma- )= mAInAt(il—n)l(D, 0<n=<0Q. 6)

Heren is the number of monopole pairs in the upper level.
> paa,<pz,:wpcp2. 2 The_ matrix _HamiItonian is a tridiagonal of dimensiéh
o' +1, with matrix elements

The eigenvalues, represent the probability of the sys- hn,n=(n|H|n):s(2n—Q)—G(ZQn—2n2+ Q),
tem being in the statgp) . Consequently, the “optimal’m
states of the.’ block correspond to then highest eigenval- hp-1n=(n—1|H|n)=-Gn(Q—n+1). (7)
uesw. Since the trace of the reduced density matrix is nor- o ) )
malized to 1 ggglwp: 1) we can define the quantity,, The Hamiltonian(4) has two different phases depending

e On the adimensional parameter2G()/e. For x<1 the
system is characterized by pairing fluctuations on top of a

If we want to obtain several excited low lying states from Hartree-Fock reference state. The particle-particle self-

the DMRG procedure, we will have to construct at each stegonsistent RPASCRPA [8] describes very well this region
of the iteration a mixed state for the system built on severa}Ntil its breakdown fox~1. Forx>1 the system becomes
states of the superblocdkP?). Assuming that we want to SuPerfluid. _ ) .
work out the DMRG procedure fos states §—1 excited The DMRG method which we will apply here acts di-

states plus the aground statle reduced density matrix will rectly on the Hamiltonian matrix7), dividing it into three
be of trl?e form g 2 y blocks. The left block. of sizel, the central blockC with

only one site, and the right blodR of size ((2-1) sites. This
s procedure has some similarities with the one used by White
= W Parpd 3 and Noack[Q] to study the tight-binding model in one d|_—
Paa qzl d Eﬁ ap T a'p @ mension which was the precedent for the formal derivation
of the DMRG[7]. The total system wave functions can be

Once the mixed reduced density matrix is defined in EqProjected onto the subspaces of the three blocks as
(3) the procedure follows in the same way as before, but by

=Epm=lwp such that - P, gives an idea of the importanc
of the states we are neglecting.

choosing equal mixing probabilitie®/, the lowests of them LP(0) I<i<l
preserved block states in each step will represent optimally PP(i)=4 CP(i) i=l+1
the s targeted superblock states. Here obviouslghould be RP(I) 1+2<i<Q+1.

greater thars.

Having presented the general ideas of the DMRG method  aAssuming that we want to obtain as a result of the renor-
we will now proceed to apply it to the TLPM. The TLPM is mgajization procedure the lowest states of the systefin-
a model of two orbits with degenera€y=j +; and asingle  ¢juding the ground staté.s)], we will have to diagonalize

particle energy splitting:. The pairing Hamiltonian in this n each step a superblock Hamiltonian matrix of dimension
model space is 2s+1,

Fod + H|_ HLC O
1732 Ezr: oNo GQE,:' Aohars @ Heg=| Her his1y+1 Her],
0 Hrc Hg
where o takes the values 1 for the upper level and for
the lower level.N, and A! are the number and monopole whereH, is ansx s matrix with the matrix elements of the
pair operator of the levet, respectively, Hamiltonian between the state§(1<p=<s), H_ is a vec-
tor of dimensions containing the interaction between site
i +1 and the block. for each of thes statesHg is ansXs
N,= 2 ajwaow matrix with the matrix elements of the Hamiltonian in the
=] block R, andH R is a vector of dimensios containing the
interaction between sitet 1 and the bloclR for each of the
1 _ s states.
— > (=) #alal_,, (5) From the Z+1 eigenvectors of the superblock matrix
Q w0 Hsg we retain the lowess eigenvectorspP. Since in this
simple model the wave functions are unvalued we only need
whereaf,m creates a particle in levet with z angular mo-  to project thes superblock eigenvectors onto the spadéeof
mentum projectiorn.. the first two blocks I andC for a sweep from left to right,

Al=
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see Fig. 1 of dimensions+ 1 instead of following the more -5100 . T
general procedure outlined before for general many body i
wave functions:
5120 -
P
Pu .
P - =
o3 — , a=1,...m+1. (8) 5140 |
2 (eh)? i
a=1 w
S 5160 |- —
In order to continue the procedure we have to neglect onéH! R i
state. Note that in general we will have to disregard half of « 2
the states. Following White we construct a reduced density 5180 = 7]
matrix p in the (s+1)-dimensional subspace mixing tise - .
wave function(8) with probability W, 5200 - -4 3 - |
S - -
Ppq=— 2 Wkd’:;(ﬁg (9) 5290 1 ] ] ] ] | | | ]
k=1 350 370 390 410 430 450
To ensure that the states are equally represented in the |
mixed density me}tri>(9) we assume egual prpbabilitiwk FIG. 2. Ground-state energy of the TLPM with=1000, ¢
=1/s . We next diagonalize the density matrix =2, andx=5 for each sweep as a function of the renormalization
step(site).

n n
2 PpgXd= @nXp- (10) . . .
g vta A the already renormalized wave functiohsand the Hamil-

, , , tonian matricesH, of the previous sweep as the environ-

The eigenvalues», of the density matrix represent the ment. In each sweep we improve the representation of either
probability of finding the corresponding” eigenvector in  |eft or right wave functions and Hamiltonian matrices. At the
the mixed state of the total system. Consequently we disrésg of each sweep we compare thenergies with those of
gard the eigenvector correspondin.g to the lowest eig_envalu@e previous sweep to check convergence. The procedure
and Fhen_ we proc_;eed to renormalize th_e wave f‘_mC“O” angontinues from right to left and from left to right until we
Hamiltonian matrix of the new block’ with | +1 sites, reach the desired precision.

In order to illustrate the power of the DMRG method we
have applied it to a TLPM witf2 =1000, =2, andx=5,
corresponding to a well established superconducting phase.
We demand the DMRG method to provide the ground state

LI (D=x0,1, (12) plus three excited states implying th&t 4. In the DMRG
procedure we will have to obtain iteratively the lowest four
s eigenstates of a’99 superblock matrix of Eq(8) and then
Ho(l+1)pq= > Hu(+1)6xPxd, (120  completely diagonalize the density mat®) of dimension
rs=1 5X5. Here the advantages of the DMRG are clearly seen,
we have to diagonalize iteratively matrices of dimensions 9
and 5 as compared to a large scale diagonalization of dimen-
H, HLC) sion 1001 in this simple case. After each sweépfinished

S
Li”(l+1)=p21Lip(I)Xg for i<l and n<s,

where

we calculate the relative mean deviation energy of the

H Lr(L + 1) = (
four states compared with those of the previous sweep,

Her higpgge

The renormalization procedure begins with a warm up in 4 |Ej _ Ej,ll
which we construct the first guesses for the wave functions ob=> P2
and the Hamiltonian$d, . We first diagonalize a (2+1)- p=1 |E1p’1|
dimensional superblock matrix constructed with the bare _
Hamiltonian in the first 2+ 1 sites. With thes lowest super-  The iteration is stopped i< 101 which for the present
block eigenvectors projected as in E8) we obtain the den- system requires five sweeps.
sity matrix p (9) of dimensions+1. With the highests In Figure 2 we show the convergence of the g.s. energy in
eigenvectors we renormalize the wave functlorill) and  each iteration of the five sweeps, the horizontal axis corre-
the Hamiltonian(12) for the augmented block of size=s  sponds to the sites. Odd sweeps go from left to right improv-
+1 and then proceed to the next site to the right alwaysng the description of the left blocks while even sweeps go
using s sites for the right blockR. The warm up finishes from right to left improving the right blocks, as indicated by
when we arrive at the positiof2-s having now a first rep- the arrows. The energy in the fifth sweep is indistinguishable
resentation for the wave functioris and the Hamiltonians from that of the fourth sweep. The figure is restricted to the
H_ . In the next sweep we go from right to left constructing portion between site 350 and site 450 in which there is an
the wave functiorR and the Hamiltonian matricddg using  appreciable variation of the energy after the first sweep. This

(13
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the environmenfright block R) and the use of a mixed den-
sity matrix, the approximated ground-state wave function is
strongly mixed with the excited states. As seen in the figure,
the situation is dramatically improved after the second sweep
in which the warm up for the left and right blocks is finished.

We have restricted here to a relative small degeneracy
=1000 in order to exemplify the convergence properties of
the DMRG method. Larger systems can be treated within the
same procedure at the cost of using more CPU time in each
sweep, but the memory requirements and the CPU time in-
creases linearly witif).

In summary, we have introduced the DMRG as a poten-
tially useful truncation scheme to treat shell model problems
beyond the capabilities of large scale diagonalizations. We
have applied the method to the TLPM to demonstrate how
the procedure works, improving at each step of the iteration
the wave functions, the Hamiltonian matrix, and any other
operator matrix desired. Though the DMRG method is firmly
established for spin and fermion systems in one dimension

FIG. 3. Ground-state wave functions at the end of the left to@nd for small clusters in two dimensions, more work is still

right sweeps in the region 250 <450.

needed to optimize the method for general nuclear shell
model calculations. Once this is done we believe that the

region in which the energy is modified along the sweep ismethod would be able to accurately describe the low lying

directly correlated with the extension of the wave funCtion.States of medium and eventua”y heavy nuclei far beyond the
The figure also shows the variational character of the DMRGyctual limits of large scale diagonalizations.

[10], the energy is continuously improved until the conver-

gence point. The convergence of the three excited states in- _ _
cluded in the calculation follows the same pattern as the We would like to thank M. A. Martin-Delgado and G.

convergence of the g.s. displayed in the figure.
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