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Application of the density matrix renormalization group to the two level pairing model
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We introduce the density matrix renormalization group as an efficient truncation scheme which can be
applied to nuclear shell model problems. To illustrate the power of the method we perform a calculation for the
two level pairing model showing its convergence properties.@S0556-2813~99!50406-8#

PACS number~s!: 21.60.Cs, 21.10.Pc, 21.30.Fe
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Shell model exact diagonalization has been a powe
technique to describe low energy spectra in nuclei altho
limited, by the dimensions of the matrices involved, to t
study of light nuclei. Quite recently the scope of the sh
model has been extended to nuclei in thef -p shell @1#. The
largest diagonalization performed so far has been done
52Fe @2# with a Hamiltonian matrix of dimension 108 in m
scheme. Future improvements, like including the use of
j -j coupling scheme and quasispin formalism@3#, are not
expected to go beyond thef -p shell in the near future due th
enormous increase in memory required.

Shell model Monte Carlo methods@4# provide an alterna-
tive to go beyond the limits of direct diagonalization but th
can predict only overall nuclear properties~masses, strength
distributions, deformation, etc.!. Another possible way to ex
tend the applicability of the shell model, which we will in
troduce in this Rapid Communication, is to set up an effici
truncation scheme able to reduce significantly the s
model space such that the resultant dimensions are still
table by actual computers. Such a technique, the density
trix renomalization group~DMRG!, has recently been deve
oped in the context of one-dimensional spin systems@5#.
Since then it has been widely applied to low dimensio
quantum lattice models like the Hubbard model, thet-J
model, the Holstein model, etc., with great success~for a
review see@6#!. The method is based on an iterative proc
dure which beginning from a small part of the syste
~block!, whose dimensions are manageable, it then incre
the block size step by step performing a truncation in e
step such that the dimension of the block stays constant.
key point of the DMRG is the truncation method which a
lows us to retain the most important many body states
optimally represent the ground state and low lying exci
states of the complete system.

The aim of this Rapid Communication is to introduce t
DMRG in the framework of nuclear models and to exempl
its power in selecting the optimal states to be retained in e
step of the procedure in a squematic two level pairing mo
~TLPM!. Suppose that we want to obtain a reliable desc
tion of a system of sizeM. In its original derivation the
DMRG was applied to a one-dimensional spin system, c
sequentlyM had the meaning of the number of spin sites. F
a finite Fermi system~like a nucleus! M might be related to
the number of single particle states (a jm). We first divide
the system in three blocks like in Fig. 1, where each bla
PRC 590556-2813/99/59~6!/3005~4!/$15.00
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dot corresponds to a single state~‘‘site’’ !. We assume to
have a complete knowledge of them states of the left block
(L) of size l ( l is equal to 4 in the figure!, and of the matrix
elements of all relevant operators inside the block. We wo
like to increase the size of the block by one incorporating
central block (C) with one site, but in doing so the dimen
sion of the new enlarged block is doubled (2m). The aim of
the DMRG method is to truncate the dimension of the n
block retaining the ‘‘optimum’’m states and neglecting th
other m states. Subsequently the relevant operators are
truncated to this subspace of dimensionm. In this way we
increase the size of the block by one, while preserving
dimensionm. The procedure is continued from left to righ
until the size of the left block exhausts the complete syst
finishing a sweep. For finite systems we may have to perfo
several sweeps from left to right and from right to left un
we reach the desired precision.

Before going to a more detailed description of the meth
in the TLPM, we will show how to determine the ‘‘opti
mum’’ states in each step of the procedure. Suppose we
in an intermediate step in which the system is divided in
two blocks of Fig. 1. We have already incorporated the c
tral block (C) to theL block to compose the enlarged bloc
L8 shown in Fig. 1 by the dashed line. The other block~right
block R) of size M -l -1 plays the role of the environmen
We will assume that we have a knowledge of the grou
state wave function of the entire systemuC&. Let ua& be the
set of 2m states of theL8 block andub& the set of states o
the R block. Expanding the ground-state wave functionuC&
in the product spaceL83R, uC&5(abCabua&ub& we are
now able to define the reduced density matrix of theL8 block

raa85(
b

Cab* Ca8b , ~1!

which plays a central role in the DMRG method. We wou
like now to find a subset ofm states of theL8 block up&

FIG. 1. Block separation of the system in the first iteration w
l 54. L8 represents the enlarged left block after the first renorma
ization step.
R3005 ©1999 The American Physical Society
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5(a51,2mwa
pua&, such that the truncated wave functionuC̄&

5(p,bC̄p,bup&ub& optimally represents the ground-sta
wave functionuC&, or in a more clear mathematical stat
ment, ‘‘optimal’’ representation means maximization of t
overlap^CuC̄&. The solution to this problem~for details see
@7#! is given by a diagonalization of the reduced density m
trix ~1!

(
a8

raa8wa8
p

5vpwa
p . ~2!

The eigenvaluesvp represent the probability of the sys
tem being in the stateup& . Consequently, the ‘‘optimal’’m
states of theL8 block correspond to them highest eigenval-
uesv. Since the trace of the reduced density matrix is n
malized to 1 ((p51

2m vp51) we can define the quantityPm

5(p51
m vp such that 12Pm gives an idea of the importanc

of the states we are neglecting.
If we want to obtain several excited low lying states fro

the DMRG procedure, we will have to construct at each s
of the iteration a mixed state for the system built on seve
states of the superblockuCq&. Assuming that we want to
work out the DMRG procedure fors states (s21 excited
states plus the ground state! the reduced density matrix wil
be of the form

raa85 (
q51

s

Wq (
b

Cab
q* Ca8b

q . ~3!

Once the mixed reduced density matrix is defined in E
~3! the procedure follows in the same way as before, but
choosing equal mixing probabilitiesWq the lowests of them
preserved block states in each step will represent optim
thes targeted superblock states. Here obviouslym should be
greater thans.

Having presented the general ideas of the DMRG met
we will now proceed to apply it to the TLPM. The TLPM i
a model of two orbits with degeneracyV5 j 1 1

2 and a single
particle energy splitting«. The pairing Hamiltonian in this
model space is

H5
«

2 (
s

sNs2GV(
ss8

As
†As8 , ~4!

wheres takes the values 1 for the upper level and21 for
the lower level.Ns and As

† are the number and monopo
pair operator of the levels, respectively,

Ns5 (
m52 j

j

asm
† asm ,

As
†5

1

AV
(
ms0

~2 ! j 2masm
† as2m

† , ~5!

whereasm
† creates a particle in levels with z angular mo-

mentum projectionm.
-

-

p
l

.
y

ly

d

For a system at half filling, the total number of particlesN
equals half the total system degeneracy (N52V). The nor-
malized states in the Hilbert subspace of the monopole p
are

un&5
V

V
2

V!
A1

†nA21
†(V2n)u0&, 0<n<V. ~6!

Heren is the number of monopole pairs in the upper leve
The matrix Hamiltonian is a tridiagonal of dimensionV

11, with matrix elements

hn,n5^nuHun&5«~2n2V!2G~2Vn22n21V!,

hn21,n5^n21uHun&52Gn~V2n11!. ~7!

The Hamiltonian~4! has two different phases dependin
on the adimensional parameterx52GV/«. For x,1 the
system is characterized by pairing fluctuations on top o
Hartree-Fock reference state. The particle-particle s
consistent RPA~SCRPA! @8# describes very well this region
until its breakdown forx;1. For x.1 the system become
superfluid.

The DMRG method which we will apply here acts d
rectly on the Hamiltonian matrix~7!, dividing it into three
blocks. The left blockL of size l, the central blockC with
only one site, and the right blockR of size (V-l ) sites. This
procedure has some similarities with the one used by W
and Noack@9# to study the tight-binding model in one d
mension which was the precedent for the formal derivat
of the DMRG @7#. The total system wave functions can b
projected onto the subspaces of the three blocks as

Cp~ i !5H Lp~ i !

Cp~ i !

Rp~ i !

1< i< l

i 5 l 11

l 12< i<V11.

Assuming that we want to obtain as a result of the ren
malization procedure thes lowest states of the system@in-
cluding the ground state~g.s.!#, we will have to diagonalize
in each step a superblock Hamiltonian matrix of dimens
2s11,

HSB5S HL HLC 0

HCL hl 11,l 11 HCR

0 HRC HR

D ,

whereHL is ans3s matrix with the matrix elements of the
Hamiltonian between the statesLp(1<p<s), HCL is a vec-
tor of dimensions containing the interaction between sitel
11 and the blockL for each of thes states,HR is ans3s
matrix with the matrix elements of the Hamiltonian in th
block R, andHCR is a vector of dimensions containing the
interaction between sitel 11 and the blockR for each of the
s states.

From the 2s11 eigenvectors of the superblock matr
HSB we retain the lowests eigenvectorswp. Since in this
simple model the wave functions are unvalued we only n
to project thes superblock eigenvectors onto the spaceL8 of
the first two blocks (L andC for a sweep from left to right,
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see Fig. 1! of dimensions11 instead of following the more
general procedure outlined before for general many b
wave functions:

fa
p5

wa
p

A(
a51

m11

~wa
p !2

, a51,...,m11. ~8!

In order to continue the procedure we have to neglect
state. Note that in general we will have to disregard half
the states. Following White we construct a reduced den
matrix r in the (s11)-dimensional subspace mixing thes
wave function~8! with probability Wk ,

rpq5 (
k51

s

Wkfp
kfq

k . ~9!

To ensure that thes states are equally represented in t
mixed density matrix~9! we assume equal probabilitiesWk
51/s . We next diagonalize the density matrix

(
q

rpqxq
n5vnxp

n . ~10!

The eigenvaluesvn of the density matrix represent th
probability of finding the correspondingxn eigenvector in
the mixed state of the total system. Consequently we di
gard the eigenvector corresponding to the lowest eigenv
and then we proceed to renormalize the wave function
Hamiltonian matrix of the new blockL8 with l 11 sites,

Li
n~ l 11!5 (

p51

s

Li
p~ l !xp

n for i< l and n<s,

Ll 11
n ~ l !5xs11

n , ~11!

HL~ l 11!pq5 (
r ,s51

s

HL8~ l 11!rsx r
pxs

q , ~12!

where

HL8~L11!5S HL HLC

HCL hl 11,l 11
D .

The renormalization procedure begins with a warm up
which we construct the first guesses for the wave functionL
and the HamiltoniansHL . We first diagonalize a (2s11)-
dimensional superblock matrix constructed with the b
Hamiltonian in the first 2s11 sites. With thes lowest super-
block eigenvectors projected as in Eq.~8! we obtain the den-
sity matrix r ~9! of dimensions11. With the highests
eigenvectors we renormalize the wave functionL ~11! and
the Hamiltonian~12! for the augmented block of sizel 5s
11 and then proceed to the next site to the right alw
using s sites for the right blockR. The warm up finishes
when we arrive at the positionV-s having now a first rep-
resentation for the wave functionsL and the Hamiltonians
HL . In the next sweep we go from right to left constructin
the wave functionR and the Hamiltonian matricesHR using
y

e
f
ty

e-
ue
d

n

e

s

the already renormalized wave functionsL and the Hamil-
tonian matricesHL of the previous sweep as the enviro
ment. In each sweep we improve the representation of ei
left or right wave functions and Hamiltonian matrices. At th
end of each sweep we compare thes energies with those o
the previous sweep to check convergence. The proce
continues from right to left and from left to right until w
reach the desired precision.

In order to illustrate the power of the DMRG method w
have applied it to a TLPM withV51000, «52, andx55,
corresponding to a well established superconducting ph
We demand the DMRG method to provide the ground st
plus three excited states implying thats54. In the DMRG
procedure we will have to obtain iteratively the lowest fo
eigenstates of a 939 superblock matrix of Eq.~8! and then
completely diagonalize the density matrix~9! of dimension
535. Here the advantages of the DMRG are clearly se
we have to diagonalize iteratively matrices of dimensions
and 5 as compared to a large scale diagonalization of dim
sion 1001 in this simple case. After each sweepj is finished
we calculate the relative mean deviation energysE

j of the
four states compared with those of the previous sweep,

sE
j 5 (

p51

4 uEp
j 2Ep

j 21u

uEp
j 21u

. ~13!

The iteration is stopped ifsE
j <10210, which for the present

system requires five sweeps.
In Figure 2 we show the convergence of the g.s. energ

each iteration of the five sweeps, the horizontal axis co
sponds to the sites. Odd sweeps go from left to right impr
ing the description of the left blocks while even sweeps
from right to left improving the right blocks, as indicated b
the arrows. The energy in the fifth sweep is indistinguisha
from that of the fourth sweep. The figure is restricted to t
portion between site 350 and site 450 in which there is
appreciable variation of the energy after the first sweep. T

FIG. 2. Ground-state energy of the TLPM withV51000, «
52, andx55 for each sweep as a function of the renormalizat
step~site!.
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region in which the energy is modified along the sweep
directly correlated with the extension of the wave functio
The figure also shows the variational character of the DM
@10#, the energy is continuously improved until the conve
gence point. The convergence of the three excited state
cluded in the calculation follows the same pattern as
convergence of the g.s. displayed in the figure.

In Fig. 3 we show the g.s. wave function obtained in t
first, third, and fifth final sweep. The latter coincides with t
exactly diagonalized wave function with a precision of 1029.
At the end of the first sweep, due to the poor description

FIG. 3. Ground-state wave functions at the end of the left
right sweeps in the region 250, i ,450.
do

e

s
.

-
in-
e

f

the environment~right blockR) and the use of a mixed den
sity matrix, the approximated ground-state wave function
strongly mixed with the excited states. As seen in the figu
the situation is dramatically improved after the second sw
in which the warm up for the left and right blocks is finishe

We have restricted here to a relative small degener
V51000 in order to exemplify the convergence properties
the DMRG method. Larger systems can be treated within
same procedure at the cost of using more CPU time in e
sweep, but the memory requirements and the CPU time
creases linearly withV.

In summary, we have introduced the DMRG as a pot
tially useful truncation scheme to treat shell model proble
beyond the capabilities of large scale diagonalizations.
have applied the method to the TLPM to demonstrate h
the procedure works, improving at each step of the iterat
the wave functions, the Hamiltonian matrix, and any oth
operator matrix desired. Though the DMRG method is firm
established for spin and fermion systems in one dimens
and for small clusters in two dimensions, more work is s
needed to optimize the method for general nuclear s
model calculations. Once this is done we believe that
method would be able to accurately describe the low ly
states of medium and eventually heavy nuclei far beyond
actual limits of large scale diagonalizations.
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