Exploring XMM-ATLAS with the ARCHES tools

Francisco J. Carrera
(IFCA, CSIC-UC, Spain)

Ioannis Georgantopoulos (NOA, Greece)
Piero Ranalli (Lund Obs., Sweden)
Manolis Rovilos (Patent Office, UK)

Paris, France, 30-November-2015

Exploring the ARCHES cross-correlation tool with XMM-ATLAS

Francisco J. Carrera (IFCA, CSIC-UC, Spain)

Ioannis Georgantopoulos (NOA, Greece) Piero Ranalli (Lund Obs., Sweden) Manolis Rovilos (Patent Office, UK)

Paris, France, 30-November-2015

Outline

- Introduction
- XMM-ATLAS
- Other catalogues: SDSS, VIKING, WISE
- Astrometry
- The ARCHES cross-correlation tool
- SDSS in full area:
- Improvements
- Checks
- Conclusions

XMM-ATLAS

- Centered in Herschel-ATLAS SDP (Rigby+11)
- (09:04:30,+00:34:00)
- Ranalli+15: source catalogue
- 7.1deg ${ }^{2}$, 336ks total: mode $\sim 3.5 \mathrm{ks}$
- Wavelet+emldetect source search: 1816 sources
- in three bands: $0.5-2,2-8,0.5-2 \mathrm{keV}$

Other catalogues

- SDSS DR9 (Adelman-McCarthy+09): ugriz
- 161131 sources in overlapping area (111404 clean=1)
- VIKING DR1 (Edge \& Sutherland 2014): zYJHKs
- band-merged source catalogue
- 736187 sources in ~overlapping area (421850 pNoise<0.5 \&\& nBands ≥ 2)
- WISE (Cutri+2012): 3.4, 4.6, 12 \& $22 \mu \mathrm{~m}$
-68147 sources in overlapping area (all det. 5σ in ≥ 1 band)

Other catalogues

Other catalogues

Astrometry

- SDSS DR9: adding 0.1" in quadrature to the RA,Dec pos. errors - For XMM-ATLAS using SDSS DR12 QSO as reference
- Filtering QSOs on good z quality
- Filtering XMM-ATLAS pointlike ext058<0.001
- 71 pairs within $5^{\prime \prime}:<\mathrm{dRA}>=-0.02^{\prime \prime}<\mathrm{dDec}>=-0.2^{\prime \prime}$ sigma~1.5"
- Ranalli+15 rectified w.r.t. SDSS DR7 QSOs, residual difference?
- Adding $1.5^{\prime \prime}$ in quadrature to radec_err from emldetect
- For VIKING using SDSS DR9 point sources as reference
- Filtering on VIKING point sources
- 51014 pairs within $1^{\prime \prime}:<\mathrm{dRA}>\sim<\mathrm{dDec}>\sim 0.035^{\prime \prime}$ sigma~0.1"
- Setting errpos=0.1" (no positional error in catalogue)
- WISE used as in catalogue

The ARCHES cross-correlation tool

- archesxmatch: Full N-dimensional symmetric cross-correlation of catalogues (see F.-X. Pineau's talk)
- It uses:
- Source positions
- Source positional errors (1 σ)
- Catalogue area
- Sky densities of pairs, triplets...
- It provides:
- List of tuples within some user-chosen 3σ distance
- Probabilities of all combinations of catalogues for that tuple
- List of five highest probabilities (when defined): maxProbaVall...maxProbaVal5
- Marginalised 2D probabilities for tuples in ≥ 3 catalogues:
- e.g.: margProba_AB for $A, B, C: P_{\text {marg }}(A B)=P(A B C)+P\left(A B _C\right)$

ARCHES xcorr. tool: X and 3 other cats

- For simplicity, let's consider $N=4$ (XMM-ATLAS+3 cats.)
- $A=X M M, B=S D S S, C=V I K I N G, D=W I S E$
- "Left-join": each XMM-ATLAS source will be considered afresh with each new catalogue: X-ray-centric
Output tuples could have up to four dimensions:
- No source in any other catalogue within limit nPos=1
- A source in 1 other catalogue, $n P o s=2$: AB,A_B; AC,A_C; AD,A_D
- One source in each of 2 other catalogues, nPos $=3$:
- ABC,AB_C,AC_B,A_BC=(A)(BC),A_B_C=(A)(B)(C)
- ABD,AB_D,AD_B,A_BD,A_B_D
- ACD,AC_D,AD_C,A_CD,A_C_D
- $B C D, B C-D, B D=C, B _C D, B _C-D$ (remember, X-ray-centric)
- One source in each of 3 other catalogues, $n P o s=4$:
- ABCD
- ABC_D,ABD_C,ACD_B
- AB_CD,AB_C_D,AC_BD,AC_B_D,AD_BC,AD_B_C
- A_BCD,A_BC_D,A_BD_C,A_B_CD,A_B_C_D

ARCHES xcorr. tool: X and 3 other cats

- X-ray-centric: Considering only relationship with XMM source
- Using for classification (for the time being) only maximum probability $\max [P(*)]=P_{\max }=$ maxProbaVal1

		nPos			
		1	2	3	4
Only X	X	All	$\begin{aligned} & \text { A_B, } \\ & \text { A_C, } \\ & \text { A_D } \end{aligned}$	$\begin{aligned} & \text { A_BC,A_B_C, } \\ & \text { A_CD,A_C_D, } \\ & \text { A_BD,A_B_D } \end{aligned}$	$\underset{\text { A_BCD,A_BC_D,A_B_CD,A_B_C_D, }}{\text { A_C }}$
X +1 cat	XS	-	$A B$	$A B C$ C,AB_D	AB_CD,AB_C_D
	X_V_	-	AC	AC_B,AC_D	AC_BD,AC_B_D
	X__W	-	AD	AD_B,AD_C	AD_BC,AD_B_C
X+2cat	XSV_	-	-	ABC	ABC_D
	X_VW	-	-	ACD	ACD_B
	XS_W	-	-	ABD	ABD_C
X+3cat	XSVW	-	-	-	ABCD

ARCHES cor. tool: X and 3 other cats

nePos

1	2	3	4

SDSS in full area: "clean" sample

- Full sample 1816 XMM sources in 7.1deg²
- For each XMM sou. keeping only tuple with highest $P_{\max }$
- Using "clean" sample:
- SDSS: clean=1
- VIKING: pNoise<0.9 \& present in >1 band
- "Clean" xcorr better overall: more XMM with counterparts
- Because probabilities also depend on density of $X+1,2,3$ cat pairs

	Subsample	SDSS		SDSS clean	
Only X	X__	803	803	717	717
X+1cat	XS_-		26		11
	X_V_	77	40	119	92
	X_W		11		16
X+2cat	XSV_		324		310
	X_VW	360	34	419	108
	XS_W		2		1
X+3cat	XSVW	576	576	516	561

SDSS full clean: probability threshold

- Choosing threshold 85% : drop in $P_{\max } X+2,3$ cat

SDSS full clean: probability threshold

- Choosing threshold 85\%: drop in marginalised probabilities too

SDSS full clean: prob. $\geq 85 \%$

- $\sim 2 / 3$ of the $\mathrm{X}+2,3$ cat survive (by design)

	Subsample	SDSS clean prob. $\geq 85 \%$		SDSS clean	
Only X	X	1049	1049	717	717
X+1cat	XS	24	5	119	11
	X_V_		15		92
	X__W		4		16
X+2cat	XSV_	296	216	419	310
	X_VW		80		108
	XS_W		0		1
X +3 cat	XSVW	447	447	516	561

SDSS full clean: best tuple, 1st \& 2nd

- For the tuple with the highest $\mathrm{P}_{\max }$ comparing $\mathrm{P}_{\max }$ and second hightest prob. $\mathrm{P}_{2 \text { nd }}=$ maxProbaVal2
- What do we do about those with $P_{\max }+P_{2 n d} \geq 0.85$?

SDSS full clean: best tuple, 1st \& 2nd

- What do we do about those with $P_{\max }+P_{2 n d} \geq 0.85$?
- If compatible, could boost total probability above threshold: 0 cases
- If not compatible, could change $P_{\max }$ combination: always $\sim A B C, A _B C$

SDSS full clean: 1st \& 2nd best tuples

- For each XMM source, comparing tuples with 2 highest $\mathrm{P}_{\max }$: 801 unique XMM-ATLAS sources ($1015 \leq 1$ tuple)
- What do we do about those with $\mathrm{P}_{\max }\left(2^{\text {nd }}\right) \geq 0.85$?

SDSS full clean: 1st \& 2nd best

- Counting:
- Remember $\mathrm{P}_{\max } \geq \mathrm{P}_{\max }\left(2^{\text {nd }}\right)$
- Worry about $P_{\max }\left(2^{\text {nd }}\right) \geq 0.85$?

1st	2nd	N	$\mathrm{P}_{\max }\left(2^{\mathrm{nd}}\right) \geq 0.85$
Only X	Only X	230	-
X+cat	Only X	60	13
Only X	X+cat	192	97
X+cat	X+cat	319	192
Total		801	302

SDSS in full area: questions/issues

- Areas not quite matched for VIKING

- At the moment, for each tuple, using just max[P(*)], should we use marginalised probabilities instead? e.g.
- For probs. from 3 catalogues: margProba_A*
- For probs. from 4 catalogues: $P\left(X S V _\right)=P\left(A B C _D\right)+P(A B C D)$
- In how many these marginalised probs. would change combination?
- For XMM-ATLAS/SDSS/VIKING/WISE: 0
- At the moment, for each XMM source, using just the tuple with the highest max $\left[\mathrm{P}\left({ }^{*}\right)\right]$, should we worry about the other tuples?
- How many of those share SDSS/VIKING/WISE sources?
- Each source from each catalogue can only belong to one tuple!
- For XMM-ATLAS/SDSS/VIKING/WISE: most change VIKING, a few change also SDSS
- In how many the marginalised probs. above would change order?
- For XMM-ATLAS/SDSS/VIKING/WISE: 1 from X_VW to X__W, diff. VIKING

Conclusions

- Tool works well
- The input needs to be worked on:
- Matched astrometry
- Matched sky coverage
- The output needs to worked on:
- Understand the probabilities and their meaning
- Choose the one(s) that best suit what is needed
- Future for XMM-ATLAS cross-correlations:
- Match XMM astrometry?
- Match sky coverages (XMM-SDSS-VIKING-WISE, add KiDS)
- Repeat cross-correlations
- Marginalise 3,4 catalogue probabilities?
- Get SEDs (ARCHES tool too)
- Get photo-z (+ U. Napoli: machine learning)

4 catalogues: marginalised probs.

 - X-ray-centric: Considering only relationship with XMM source
Probabilities for nPos

1	2	3	4
	All	$P\left(A _B\right)$	$P\left(A _B C\right)+P\left(A _B _C\right)$
	$P\left(A _C\right)$	$P\left(A _C D\right)+P\left(A _C _D\right)$	P(A_BCD)+P(A_BC_D)
	$P\left(A _D\right)$	$P\left(A _B D\right)+P\left(A _B _D\right)$	$P\left(A _B D _C\right)$

X+1cat	XS_	-	margProba_AB		
	X_V_	-	margProba_AC		
	X__W	-	margProba_AD		
X+2cat	XSV_	-	-	$P(A B C)$	$P\left(A B C _D\right)+P(A B C D)$
	X_VW	-	-	$\mathrm{P}(\mathrm{ACD})$	$P\left(A C D _B\right)+P(A B C D)$
	XS_W	-	-	$P(A B D)$	$P\left(A B D _C\right)+P(A B C D)$
X+3cat	XSVW	-	-	-	$\mathrm{P}(\mathrm{ABCD})$

