Exploring XMM-ATLAS with the ARCHES tools

Francisco J. Carrera (IFCA, CSIC-UC, Spain)

Ioannis Georgantopoulos (NOA, Greece) Piero Ranalli (Lund Obs., Sweden) Manolis Rovilos (Patent Office, UK)

Paris, France, 30-November- 2015

Instituto de Física de Cantabria

Exploring the ARCHES cross-correlation tool with XMM-ATLAS

> Francisco J. Carrera (IFCA, CSIC-UC, Spain)

Ioannis Georgantopoulos (NOA, Greece) Piero Ranalli (Lund Obs., Sweden) Manolis Rovilos (Patent Office, UK)

Paris, France, 30-November- 2015

Instituto de Física de Cantabria

Outline

- Introduction
 - XMM-ATLAS
 - Other catalogues: SDSS, VIKING, WISE
 - Astrometry
 - The ARCHES cross-correlation tool
- SDSS in full area:
 - Improvements
 - Checks
- Conclusions

XMM-ATLAS

- Centered in Herschel-ATLAS SDP (Rigby+11)
 (09:04:30,+00:34:00)
- Ranalli+15: source catalogue
 - 7.1deg², 336ks total: mode ~3.5ks
 - Wavelet+emldetect source search: 1816 sources
 - in three bands: 0.5-2, 2-8, 0.5-2keV

Other catalogues

- SDSS DR9 (Adelman-McCarthy+09): ugriz
 - 161131 sources in overlapping area (111404 clean=1)
- VIKING DR1 (Edge & Sutherland 2014): zYJHKs
 - band-merged source catalogue
 - 736187 sources in ~overlapping area (421850 pNoise<0.5 && nBands≥2)
- WISE (Cutri+2012): 3.4, 4.6, 12 & 22 μm
 - 68147 sources in overlapping area (all det. 5 σ in \geq 1 band)

Other catalogues

Other catalogues

Astrometry

- SDSS DR9: adding 0.1" in quadrature to the RA,Dec pos. errors
- For XMM-ATLAS using SDSS DR12 QSO as reference
 - Filtering QSOs on good z quality
 - Filtering XMM-ATLAS pointlike ext058<0.001
 - 71 pairs within 5": <dRA>=-0.02" <dDec>=-0.2" sigma~1.5"
 - Ranalli+15 rectified w.r.t. SDSS DR7 QSOs, residual difference?
 - Adding 1.5" in quadrature to radec_err from emldetect
- For VIKING using SDSS DR9 point sources as reference
 - Filtering on VIKING point sources
 - 51014 pairs within 1": <dRA>~<dDec>~0.035" sigma~0.1"
 - Setting errpos=0.1" (no positional error in catalogue)
- WISE used as in catalogue

The ARCHES cross-correlation tool

- archesxmatch: Full N-dimensional symmetric cross-correlation of catalogues (see F.-X. Pineau's talk)
- It uses:
 - Source positions
 - Source positional errors (1 σ)
 - Catalogue area
 - Sky densities of pairs, triplets...
- It provides:
 - List of tuples within some user-chosen 3 $\sigma\,$ distance
 - Probabilities of all combinations of catalogues for that tuple
 - List of five highest probabilities (when defined): maxProbaVal1...maxProbaVal5
 - Marginalised 2D probabilities for tuples in \geq 3 catalogues:
 - e.g.: margProba_AB for A,B,C: P_{marg}(AB)=P(ABC)+P(AB_C)

ARCHES xcorr. tool: X and 3 other cats

- For simplicity, let's consider N=4 (XMM-ATLAS+3 cats.)
 A=XMM, B=SDSS, C=VIKING, D=WISE
- "Left-join": each XMM-ATLAS source will be considered afresh with each new catalogue: X-ray-centric
- Output tuples could have up to four dimensions:
 - No source in any other catalogue within limit nPos=1
 - A source in 1 other catalogue, nPos=2: AB,A_B; AC,A_C; AD,A_D
 - One source in each of 2 other catalogues, nPos=3:
 - ABC,AB_C,AC_B,A_BC \equiv (A)(BC),A_B_C \equiv (A)(B)(C)
 - ABD,AB_D,AD_B,A_BD,A_B_D
 - ACD,AC_D,AD_C,A_CD,A_C_D
 - BCD, BC_D, BD_C, B_CD, B_C_D (remember, X-ray-centric)
 - One source in each of 3 other catalogues , nPos=4:
 - ABCD
 - ABC_D,ABD_C,ACD_B
 - AB_CD,AB_C_D,AC_BD,AC_B_D,AD_BC,AD_B_C
 - A_BCD,A_BC_D,A_BD_C,A_B_CD,A_B_C_D

ARCHES xcorr. tool: X and 3 other cats

- X-ray-centric: Considering only relationship with XMM source
 - Using for classification (for the time being) only maximum probability $max[P(*)]=P_{max}\equiv maxProbaVall$

	nPos				
		1	2	3	4
Only X	X	All	A_B, A_C, A_D	A_BC,A_B_C, A_CD,A_C_D, A_BD,A_B_D	A_BCD,A_BC_D,A_B_CD,A_B_C_D, A_BD_C
X+1cat	XS	-	AB	AB_C,AB_D	AB_CD,AB_C_D
	X_V_	-	AC	AC_B,AC_D	AC_BD,AC_B_D
	XW	-	AD	AD_B,AD_C	AD_BC,AD_B_C
X+2cat	XSV_	-	-	ABC	ABC_D
	X_VW	-	-	ACD	ACD_B
	XS_W	-	-	ABD	ABD_C
X+3cat	XSVW	-	-	-	ABCD

ARCHES xcorr. tool: X and 3 other cats

	nPos								
		1	2		3			4	
Only X	X	-	A_B	A_C	A_D	A_BC, A_B_C	A_CD, A_C_D	A_BD, A_B_D	A_BCD, A_BC_D, A_B_CD, A_B_C_D, A_BD_C
X+1cat	XS	-	AB	-	-	AB_C	-	AB_D	AB_CD, AB_C_D
	X_V_	-	-	AC	-	AC_B	AC_D	-	AC_BD, AC_B_D
	XW	-	-	-	AD	-	AD_C	AD_B	AD_BC, AD_B_C
X+2cat	XSV_	-	-	-	-	ABC	-	-	ABC_D
	X_VW	-	-	-	-	-	ACD	-	ACD_B
	XS_W	-	-	-	-	-	-	ABD	ABD_C
X+3cat	XSVW	-	-	-	-	-	-	-	ABCD

SDSS in full area: "clean" sample

- Full sample 1816 XMM sources in 7.1deg²
- For each XMM sou. keeping only tuple with highest P_{max}
- Using "clean" sample:
 - SDSS: clean=1
 - VIKING: pNoise<0.9 & present in >1 band
- "Clean" xcorr better overall: more XMM with counterparts
 - Because probabilities also depend on density of X+1,2,3cat pairs

	Subsample	S	DSS	SDSS	S clean
Only X	X	803	803	717	717
X+1cat	XS		26	119	11
	X_V_	77	40		92
	XW		11		16
X+2cat	XSV_		324	419	310
	X_VW	360	34		108
	XS_W		2		1
X+3cat	XSVW	576	576	516	561

SDSS full clean: probability threshold

Choosing threshold 85%: drop in P_{max} X+2,3cat

SDSS full clean: probability threshold

• Choosing threshold 85%: drop in marginalised probabilities too

SDSS full clean: prob.≥85%

• ~2/3 of the X+2,3cat survive (by design)

	Subsample	SDS prob	SDSS clean prob.≥85%		SDSS clean	
Only X	X	1049	1049	717	717	
X+1cat	XS		5	119	11	
	X_V_	24	15		92	
	XW		4		16	
X+2cat	XSV_		216	419	310	
	X_VW	296	80		108	
	XS_W		0		1	
X+3cat	XSVW	447	447	516	561	

SDSS full clean: best tuple, 1st & 2nd

- For the tuple with the highest P_{max}, comparing P_{max} and second hightest prob. P_{2nd}=maxProbaVal2
- What do we do about those with $P_{max} + P_{2nd} \ge 0.85$?

SDSS full clean: best tuple, 1st & 2nd

- What do we do about those with $P_{max}+P_{2nd} \ge 0.85$?
 - If compatible, could boost total probability above threshold: 0 cases
 - If not compatible, could change P_{max} combination: always ~ABC, A_BC

SDSS full clean: 1st & 2nd best tuples

- For each XMM source, comparing tuples with 2 highest P_{max}: 801 unique XMM-ATLAS sources (1015 ≤1 tuple)
- What do we do about those with $P_{max}(2^{nd}) \ge 0.85$?

SDSS full clean: 1st & 2nd best

- Counting:
 - Remember $P_{max} \ge P_{max}(2^{nd})$
 - − Worry about $P_{max}(2^{nd}) \ge 0.85$?

1st	2nd	Ν	P _{max} (2 nd)≥0.85
Only X	Only X	230	-
X+cat	Only X	60	13
Only X	X+cat	192	97
X+cat	X+cat	319	192
Total		801	302

SDSS in full area: questions/issues

- Areas not quite matched for VIKING
- At the moment, for each tuple, using just max[P(*)], should we use marginalised probabilities instead? e.g.
 - For probs. from 3 catalogues: margProba_A*
 - For probs. from 4 catalogues: P(XSV_)=P(ABC_D)+P(ABCD)
 - In how many these marginalised probs. would change combination?
 For XMM-ATLAS/SDSS/VIKING/WISE: 0
- At the moment, for each XMM source, using just the tuple with the highest max[P(*)], should we worry about the other tuples?
 - How many of those share SDSS/VIKING/WISE sources?
 - Each source from each catalogue can only belong to one tuple!
 - For XMM-ATLAS/SDSS/VIKING/WISE: most change VIKING, a few change also SDSS
 - In how many the marginalised probs. above would change order?
 - For XMM-ATLAS/SDSS/VIKING/WISE: 1 from X_VW to X__W, diff. VIKING

Conclusions

- Tool works well
- The input needs to be worked on:
 - Matched astrometry
 - Matched sky coverage
- The output needs to worked on:
 - Understand the probabilities and their meaning
 - Choose the one(s) that best suit what is needed
- Future for XMM-ATLAS cross-correlations:
 - Match XMM astrometry?
 - Match sky coverages (XMM-SDSS-VIKING-WISE, add KiDS)
 - Repeat cross-correlations
 - Marginalise 3,4 catalogue probabilities?
 - Get SEDs (ARCHES tool too)
 - Get photo-z (+ U. Napoli: machine learning)

4 catalogues: marginalised probs.

• X-ray-centric: Considering only relationship with XMM source

		Probabilities for nPos								
		1	2	3	4					
Only X	X	All	P(A_B) P(A_C) P(A_D)	P(A_BC)+P(A_B_C) P(A_CD)+P(A_C_D) P(A_BD)+P(A_B_D)	P(A_BCD)+P(A_BC_D) +P(A_B_CD)+P(A_B_C_D)+ P(A_BD_C)					
X+1cat	XS	-		margProba_AB						
	X_V_	-	margProba_AC							
	XW	-	margProba_AD							
X+2cat	XSV_	-	-	P(ABC)	P(ABC_D)+P(ABCD)					
	X_VW	-	-	P(ACD)	P(ACD_B)+P(ABCD)					
	XS_W	-	-	P(ABD)	P(ABD_C)+P(ABCD)					
X+3cat	XSVW	-	-	-	P(ABCD)					