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Abstract 

Bio-indicators are often proposed to set conservation priorities in forest habitat owing to 

the difficulties of determining forest intrinsic ecological value. Here, we tested the 

efficacy of a number of potential bird indicator groups in monitoring beech Fagus 

sylvatica forest status by analyzing their associations with the spatial and structural 

variables of forest vegetation that indicate key ecological patterns and processes. The 

density of cavity nesting birds, indicating the presence of limited forest resources 

(“resource-limited indicators”), was influenced by tree species diversity, vertical species 

mingling and diameter, parameters reflecting maturity, gap-dynamic processes, as well 

as resource and shelter availability. Heterogeneity in shrub species composition, another 

parameter depending on forest dynamics, was positively associated with the occurrence 

of Capercaillie, a “flagship” species for forest conservation. The presence of 

woodpeckers, a “keystone” group that provides shelter and foraging substrate to other 

organisms, was positively affected by the basal area of standing dead trees that is 

indirectly associated with natural nutrient availability. These findings suggest that single 

indicators fail to provide a complete assessment of forest status, and their use in 

monitoring or managing forest ecosystem need to be contextualized to specific 

ecological patterns. The combined use of several indicators, representing various taxa, 

functions and life histories, appears to be preferable, and is logistically feasible if these 

can be surveyed together. Several indicators would likely display a wider range of 

sensitivities to the modification of natural processes and permit more comprehensive 

tracking of forest dynamics than single flagship, keystone or resource-limited 

indicators. 
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Introduction 

 

Biological indicators, or bioindicators, are organisms or groups of organisms whose 

characteristics, such as presence, density or reproductive performance, are used to 

monitor environmental changes when the complexity of a habitat prevents the appraisal 

of all its ecological attributes (Landres et al. 1988). Bioindicators have multiple 

applications in conservation biology and environmental policy. Some, the so called 

“keystone species”, serve to track community-wide processes, for instance when they 

create the conditions for the presence of other species, others are associated with aspects 

of habitat quality and diversity (biodiversity indicators, or “umbrella species”). Species 

that do not meet these criteria, but have a “charismatic appeal”, may contribute to 

attracting public interest and funds for conservation, or serve in educational programs 

(“flagship species”; Caro 2010), although their efficacy has been questioned in both 

instances (Andelman and Fagan, 2000; Genovart et al. 2013). 

Among terrestrial habitats, forests have an exceptional intrinsic ecological value, as a 

reservoir of biodiversity, for playing a key role in nutrient cycling and gas emission 

reduction, and for protecting soil and water (Vitousek 1984; Waring and Schlesinger 

1985). Forests are also one of the most endangered and complex habitat on the earth 

(Bowles et al. 1998) and, unsurprisingly, the creation and restoration of natural 

woodland has become a major objective of sustainable forestry throughout the world 

and especially Europe, where the declining trend is reverting (Schröter  al. 2005). A 

wealth of indicators has been proposed to measure forest specific ecological conditions 

and has been used in management for decades. The conservation and ecological value of 

these indicators is however still debated (Noss 1999), owing to the complexity of the 

processes underlying the actual conservation status of forests, which is hardly 
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characterized by single bio-indicators (Carignan and Villard 2002). Moreover, although 

several studies have tested for the congruence and associations of different indicators 

across taxa (e.g. by comparing bird, insect or mammal indicators), few have analyzed 

the association of different indicators with aspects of ecosystem status (Lawton et al. 

1998; Tremblay et al. 2007; Carrascal et al. 2012).  

Among the most popular habitat quality indicators are forest birds (Bani et al. 2006; 

Moning and Muller 2008). Birds, apart from exhibiting diverse ecological functions, are 

sensitive to some structural and spatial characteristics of forests that indicate pivotal 

ecological process, such as canopy-gap dynamics, plant–animal interactions, and forest 

carbon storage (Laurance et al. 2006; Sekercioglu 2006). For instance, the abundance of 

specific guilds, such as those of frugivorous, nectarivorous or hole-nesting birds is 

determined by the spatial and temporal availability of critical resources and by the 

structure of forest food webs (Levey 1988). The overall diversity of forest birds may 

depend on micro-climatic stability, tree replacement and demography (Attiwill 1994; 

Brawn et al. 2001; Pretzsch 2009). The density of certain forest specialists, such as 

woodpeckers and scavengers, is strictly tied to biomass decomposition dynamics and 

responds to changes in the relative density of live and dead tree biomass (Petty and 

Avery 1990; Virkkala et al. 1994; Nair 2007). Eventually, forest specialists may 

sometimes serve as flagship species, facilitating conservation publicity (Veríssimo et al. 

2009).   

Despite this evidence however, at the local scale birds are the preferred target for forest 

monitoring and environmental assessment because they are widespread and easy to 

survey with standard methodology, rather than solely because of ecological aspects 

(Pearson 1995). In this study, we aimed to compare the efficacy of several bird indicator 

groups in monitoring forest status and conservation by analyzing their associations with 
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the spatial and structural variables of forest vegetation, which indicate forest integrity, 

ecological patterns and processes. For instance, tree size and distribution, which 

indirectly indicate forest maturity, are important features determining the resistance of 

forest ecosystems to physical perturbations (Castedo-Dorado et al. 2009), resilience to 

pest outbreaks (Jactel et al. 2005), disease (Pautasso et al. 2005), fire (Wirth 2005), or 

extreme weather events (Dhôte 2005). As a further example, tree species composition is 

a key driver of forest biodiversity and ecosystem processes, such as nutrient cycling, 

and may reflect forest gap-dynamics (Oxbrough et al. 2012). Eventually, the amount of 

fallen or standing dead wood is associated with nutrient reservoir and recycling within 

forest ecosystems (Ranius and Fahrig 2006). 

To serve as forest bird indicators, we centered this study on (1) cavity nesting birds, in 

their role of resource-limited species, i.e. species requiring specific resources that are in 

critically short supply (Noss 1999), (2) woodpeckers, specialized cavity-excavating 

birds that are known to disproportionately impact the community given their abundance 

(keystone species) (Mikusiński et al. 2001; Drever et al. 2008; Drever and Marin 2010; 

Remm and Lohmus 2011), and (3) Capercaillie Tetrao urogallus, a flagship species that 

promotes public support for conservation efforts (Obeso and Bañuelos 2003) and which, 

in specific spatial contexts, becomes an umbrella species associated with high diversity 

values (Suter et al. 2002; Pakkala et al. 2003; Laiolo et al. 2011) (Table 1). We studied 

the habitat requirements of the three different indicators, expecting that they will 

respond differently to different forest structural predictors, given their diverse ecology.  

Woodpeckers and cavity nesting birds may be more common in plots with high tree 

biomass and abundant snags, while the capercaillie may favor heterogeneous forests 

(Swenson and Angelstam 1993; Martin et al. 2004; Sánchez et al. 2007; Laiolo et al. 

2011). We test whether some indicator (resource-limited, flagship or keystone) is better 
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than others in capturing variation in forest characteristics and can, ultimately, serve to 

predict ecological changes in forest ecosystems.  

 

Materials and methods 

The montane forests of Cantabrian Mountains in Asturias (NW Spain) have a broadleaf 

canopy dominated by the beech Fagus sylvatica, with the white birch Betula alba and 

oaks Quercus spp. covering the upper and lower fringes, respectively. The scarce 

underwood of these forests is composed by the hazelnut Corylus avellana, the holly Ilex 

aquifolium, the rowan Sorbus aucuparia, and medium - to small size shrubs of the 

genus Vaccinium, Erica, Rubus, Cytisus (more details in Vegetation Structure section). 

These forests have been heavily logged in the past centuries, but since the 1960-70s 

wood extraction declined and they are now included in a wide network of regional and 

national protected areas (García et al. 2005; Robles et al. 2007). 

This study was conducted across the entire latitudinal and altitudinal range (434 to 1558 

m a.s.l.) of mature beech forests (i.e. unlogged for at least 50 years and composed of > 

80% beech trees) (Appendix 1). These forests present strong structural gradients and 

host threatened and diverse fauna, thus are well suited to analyzing the relationships 

between bioindicators and forest structure and composition.  

 

Indicator survey: woodpeckers and cavity nesting birds 

 

In April-June 2010-2011 we surveyed the entire bird community in 185 circular plots of 

100 m radius, separated by > 200 m from each other. These plots were arranged along 

34 daily transects, 1.5 – 2.5 km long, each including from 5 to 8 plots. Plots were 

surveyed from sunrise until 12 noon, the period of maximum bird activity, in good 
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weather conditions (Bibby et al. 2000). We followed a standard point count method, 

well suited to survey small passerines and forest birds in general (Blondel et al. 1970; 

Järvinen and Lokki 1978; Caprio et al. 2008), in which we recorded all birds seen or 

heard in 10 min periods in the circular bands of 50 and 100 m (a laser telemeter was 

used, Nikon 550 AS and Leica Rangemaster 1200). Each plot was visited only once 

during early spring (Shiu and Lee 2003). Geographical coordinates and elevation of the 

centre of each plot were established by means of a GPS. 

From the whole bird data-set, we extracted density values of cavity nesting birds (8 

species, listed in Table 1) in the circular band of 50 m radius only, since these species 

can be accurately surveyed in 0.78 ha areas (Laiolo et al. 2011). The presence/absence 

of woodpeckers, represented by three species in the study area (Table 1), was estimated 

in the widest survey band (100 m, surveyed area = 3.14 ha), in order to take into 

account the largest home range size of these species. Since woodpeckers can move large 

distances during breeding (Rolstad et al. 1995), we were careful not to record the same 

individual in successive plots along the same transect. 

 

 Indicator survey: Capercaillie 

 

Because of its special protection in Asturias, spatial requirements and daily routine, the 

Capercaillie cannot be surveyed by point counts as other bird indicators can. We 

therefore considered the surveys performed by the Asturian Environmental Agency to 

obtain data on the presence/absence of this grouse in the study plots in the period 2005 

and 2007, plus updated information obtained in 2010 (Laiolo et al. 2011). Local 

environmental wardens surveyed 47 sexual display areas (here called leks for 

simplicity), that were known to be occupied since the 1980s, when the species surveys 
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were first performed. Each Capercaillie lek was surveyed at least twice by 2-3 wardens 

between April and May, period when both cocks and hens center their activities 

(foraging, displaying and breeding) in the lek area (Martínez 1993). Each lek area was 

reached during the night to record Capercaillie dawn activities without altering bird 

behavior, and it was left well after the end of displaying. When no activity was recorded 

the observers searched for Capercaillie signs (feathers, fresh droppings, footprints in 

snow, etc.) in an area of up to 1 km2 to confirm lek abandonment (Quevedo et al. 2006a 

and b). The same procedure was used by Laiolo et al. (2011) to record Capercaillie 

occurrence and to study its association with bird diversity at increasing distance from 

the lek center. The entire survey procedure of wardens in the Cantabrian range is 

described in Quevedo et al. (2006a) and Blanco-Fontao et al. (2011 and 2012).  

 

Vegetation structure 

 

We assessed vegetation parameters in woodlots that ranged in size from 400 to 3600 m2, 

depending on stand density, in order to achieve a minimum of 35 trees to measure 

structural variables; vegetation diversity was instead estimated in the smallest surface 

(20 × 20 m) (see below, Castaño-Santamaría et al. 2013). We first measured dasometric 

variables including diameter, total height, and base canopy height of 35 trees, which 

were used to estimate the number of trees per hectare, and the basal area (i. e. the area 

of a given section of land covered by the cross-section of tree trunks and stems at their 

base; measured in m2 of wood divided by the plot surface). By focusing on the four 

trees with the largest diameter, we measured their height and diameter and averaged 

them. These field measurements were used to calculate a series of indexes that describe 

the spatial and structural patterns of vegetation in woodlands, in keeping with Motz et 
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al. (2010). Briefly, forest spatial structure can be characterized by three aspects: 

aggregation, “species mingling” and size differentiation (Gadow et al. 2011). 

Aggregation is expressed by an index of regularity of tree positions (Clark and Evans 

Index, R – regularity); “species mingling” reflects the degree of spatial segregation of 

the tree species in a forest and is measured by two indexes of segregation, in the vertical 

(Simpson vertical Index, Dv – vertical species mingling) and horizontal layers (Simpson 

stratified Index, Dst – horizontal species mingling) (Appendix 2). The above indexes 

were always estimated taking into account the edge-correction proposed by 

Pommerening and Stoyan (2006). Size differentiation was measured by two different 

indexes: the coefficient of variation of tree diameter (CVdbh) and the coefficient of 

variation of tree height (CVh) (Pommerening 2002). Within woodlots we also measured 

the total basal area of standing dead trees (or snags; BAd) (Ranius and Fahrig 2006) 

(Appendix 2). Eventually, in the 20 × 20 m lots we measured tree species diversity 

(Simpson Diversity Index, D) to account for the occurrence of tree species other than 

beech (Quercus petraea, Betula pubescens, Sorbus aria, S. aucuparia, Ilex aquifolium, 

Taxus baccata and Acer pseudoplatanus) and shrub species richness (S), to account for 

forest strata other than the canopy (Vaccinium myrtillus, Erica arborea, E. vagans, E. 

australis, Ilex aquifolium and Crataegus monogyna). Orientation and slope were 

measured in the field, using a hypsometer to determine slope and an optic compass to 

determine orientation.  

Due to large number of vegetation parameters estimated per each lot in the field 

(see below), we placed 1-2 woodlot within each bird transect (so that the distance of lot 

center from point-count plots in that transect was 0 - 490 m), and one in each 

Capercaillie lek area (i.e. at < 900 m from Capercaillie lek centers), for a total of 57 lots. 

Home ranges of the Capercaillie are large enough (several hundred hectares) to include 
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the lots inside, while in the case of cavity nesting birds (the species with the smallest 

territories) some lots indeed bordered the survey areas without falling within. Lots were 

however located where vegetation structure was representative of the forest patch 

(transect or lek area): dissimilarity in vegetation structural parameters changed with 

distance only when considering distances > 1 km from the lot, and even at longer 

distances did not display a clear decreasing or increasing pattern (Mantel test, -0.134 < 

R < 0.121, all P < 0.011 for the three indicator data sets). On the basis of this evidence, 

we consider that our estimates of forest structure adequately represent the habitat 

characteristics of the bird survey areas (transects or leks).  

 

Statistical analysis 

 

To test for the relationships between bird indicators and between indicators and the 

vegetation structure variables, we performed Generalized Linear Models (GLMs) and 

Generalized Linear Mixed Models (GLMMs) respectively. Type III models were run, 

testing each main effect after controlling for the other determinants. In GLMMs, apart 

from vegetation variables as fixed effects, we entered the identity of the woodlot as a 

random effect (more than one point-count could be associated with a woodlot within a 

transect), and bird plot geographic coordinates and elevation as covariates, to take into 

account (and control for) the potential non independence of data from areas close by.  

The time of day and day number (month) were originally accounted for in the analysis 

as covariates, in order to control for changes in bird detectability; however none of these 

temporal variables did affect our dependent variables, worsening model performances. 

A Poisson distribution of errors was used in the case of density data (cavity nesting 

birds) and a Binomial distribution of errors was used in the case of occurrence data 
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(woodpeckers, Capercaillie). We tested those models that included the variables that 

were biologically and ecologically relevant on the basis of literature on deciduous forest 

avifauna (Laiolo et al. 2004; Laiolo et al. 2011) (20 models per indicator group, listed in 

Appendix 3). The Akaike’s Information Criterion (AIC) was used to identify the best 

parsimonious models to explain woodpecker occurrence, cavity nesting bird density and 

Capercaillie occurrence; we considered similar strength evidence those models 

separated by ΔAIC < 2 (Anderson 2008).  

All statistical analyses were performed with the software R 1.21, with the package lme4 

(R DevelopmentCore Team 2006).  

 

Results 

 

Relationships between indicators 

 

In the 47 Capercaillie survey plots, no significant association was found between the 

occurrence of this grouse and the abundance of cavity nesting birds or the occurrence of 

woodpeckers as estimated by point-counts (GLMMs, all Z < 0.037, P > 0.93). On the 

contrary, the occurrence of woodpeckers and the density of cavity-nesting birds were 

positively associated (GLM: Z = 3.879, P < 0.001, N = 185 plots). 

 

Relationship between indicators and habitat characteristics  

 

Cavity nesting birds occurred in almost all plots (148), with abundances of between 1 

and 12 individuals. The highest elevation, northernmost and westernmost plots hosted 

the lowest density of cavity nesting species (GLM: elevation: Z = -4.89, P < 0.001, N = 
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185, latitude: Z = 3.79, P < 0.001, N = 185, and longitude: Z = -2.390, P < 0.005, N = 

185). When all vegetation variables were entered however, geographic variables did not 

affect abundances further and models entering them had the highest AIC values (see 

Appendix 3). In the two best models we found a negative relationship between bird 

abundances and tree height variation, which suggests that cavity nesting species were 

more abundant in woodlots with scarce vertical heterogeneity. A positive relationship 

was found with tree species diversity, vertical species mingling and tree diameter 

variation, (Table 2, Figure 1A). 

Woodpeckers were present in 27 plots and occurred at low abundances (one or two 

individuals per plot). We found a positive relationship between this indicator group and 

the basal area of snags, suggesting that woodpeckers were more abundant in plots with 

abundant dead wood (Table 2, Figure 1B). 

The Capercaillie was found to occur in only 14 of the 47 lek areas surveyed. This 

grouse was positively associated with shrub species richness and occurred in the highest 

elevation plots of the study forests (Table 2, Figure 1C; Appendix 3).  

In summary, the three indicators exhibited clear differences in their habitat preferences 

(Table 3). 

 

Discussion 

 

We found that each indicator was associated with different forest characteristics, with 

snag biomass being important for woodpeckers, heterogeneity in the canopy layer for 

cavity nesting birds and heterogeneity in the understory for the Capercaillie. Presence 

and abundance of indicators were likely controlled by distinct patterns and processes 

within forest stands and, as a consequence, these species were not always spatially 
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associated between themselves, making all of them necessary to determine the 

complexity of processes occurring in forest habitats. Indeed, the density of cavity 

nesting birds was positively associated with the occurrence of woodpeckers, suggesting 

that common structural elements attract both groups of indicators. Large mature trees 

with decaying portions present both crevices that shelter a diverse insect fauna and large 

canopy surfaces, thus benefitting both insectivorous birds that feed on foliage and those 

that feed on stems (Fan et al. 2003; Laiolo et al. 2004). Heterogeneity in forest structure 

or composition favored both the Capercaillie and cavity nesting birds, although, due to 

their trophic requirements and habits, the former occurred in stands in which the 

diversity of the shrub layer peaked and the latter where the diversity of the canopy layer 

(tree species diversity, vertical species mingling and diameter variability) was the 

highest (Laiolo 2002; Laiolo et al. 2004; Bañuelos et al. 2008).  

 

Habitat associations of cavity nesting birds 

 

The density of cavity nesting birds was influenced by canopy height structure and tree 

species diversity, peaking in stands with the highest tree species composition and 

vertical species mingling. These parameters, which reflect gap-dynamic processes in 

mature undisturbed forests (Kohyama 1993), are positively associated with resource 

availability for birds (Sabo and Holmes 1983), and are good indicators of the diversity 

and stability of interactions in a forest ecosystem (Levey 1988; Laiolo and Rolando 

2005). The density of cavity nesting species also increased in plots with large trees, 

which were heterogeneous in size, a characteristic that allows the coexistence of a more 

diverse and abundant assemblage of foliage, twig, and stem bird feeders (Laiolo 2004). 

This diversity turns out to be important for the maintenance of the forest itself, since 
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these birds improve forest resilience in the face of severe disturbance events and they 

also control insect outbreaks (Martin and Eadie 1999; Mols and Visser 2002), thus they 

help retain the integrity of trophic processes and indirectly defend canopy trees from 

insect damage (Van Bael et al. 2003).  

 

Habitat associations of woodpeckers  

 

The association between woodpeckers and the basal area of snags can be explained by 

selection for nesting and as rich foraging habitats, since the abundance of crevices and 

large xilophagous insects increases in old-growth stands with dead trees, especially 

when these trees are large (Tyrrell and Crow 1994; Hagan et al. 1997). In our study 

area, the basal area of snags was more important than their number (woodpeckers 

occurred when snag basal area > 0.2 m2 ha-1), and a similar relationship has been 

observed in woodpeckers from other montane forests of Europe (Bütler et al. 2004). 

This critical dead wood threshold could become a practical management target, to 

preserve the various ecological functions provided by this group of species. 

Woodpeckers, by removing the bark of dead or partially dead wood when foraging, 

expose the underlying substrate, and its hidden arthropod communities, to other 

insectivorous animals that benefit from this behavior (Bull and Jackson 1995). 

Moreover, they accelerate the process of wood decomposition and nutrient 

redistribution by exposing trees to the action of wood-decomposing organisms, as well 

as contributing to the dispersal of fungi that participate in the process of decay (Farris et 

al. 2004). This ecosystem service contributes/adds to the other important role of 

woodpeckers, that of providing nesting habitats for cavity nesting species (birds, 

mammals, amphibians, reptiles and insects; Thomas et al. 1979; Welsh 1990), which is 
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often constrained by hole availability more than by food (Newton 1994; Martin and 

Eadie 1999; Sánchez et al. 2007). Dryocopus martius digs large cavities suitable for 

nocturnal raptors (Sonerud 1985; Johnsson et al. 1993), while Dendrocopos major 

provides small-medium size cavities for passerines (Martin et al. 2004), thus both 

species may exert a strong control on the density of secondary cavity nesting species 

(Martin and Eadie 1999; Camprodon et al. 2008), as also highlighted by the positive 

association between these indicators found in this study.  

 

Habitat associations of the Capercaillie 

 

The wide home ranges and large scale habitat requirements, together with the 

pronounced decline in recent decades, likely override the importance of local vegetation 

structure in determining the actual distribution of the Capercaillie in the Cantabrian 

Mountains (Obeso and Bañuelos 2003; Quevedo et al. 2006a; Laiolo et al. 2011). In this 

study, the only vegetation variable that was associated with Capercaillie occurrence was 

the diversity of the shrub belt. The growth of a complex understory is facilitated by 

irregularities in the canopy that permit light to reach the lower belt, which is often 

shaded by a dense canopy in young or managed beech woods but may be exposed in 

undisturbed, old beech stands (Laiolo et al. 2004). Shrubs in lek areas likely provide 

shelter or foraging habitat for the Capercaillie, which feeds on bilberry leaves and fruits 

(Storch 1995; Blanco-Fontao et al. 2012). The preference of this grouse for upland 

forests may be related either to the overall higher availability of less-disturbed forest at 

higher elevations (García et al. 2005), or to an increase in bilberry quality, an important 

food source, with elevation (Obeso and Fernández-Calvo 2002). 
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Although a flagship species needs to be popular, not necessarily ecologically significant 

(Caro and O’Doherti 1999), it must be acknowledged that large areas of the study 

montane forests have been protected in the last decades thanks to the threatened 

Cantabrian Capercaillie (García et al. 2005). The occurrence of this grouse has therefore 

served to conserve the habitat of less charismatic taxa and reasonably preserve forest 

structure from major anthropogenic disturbance, all factors that in the long run may 

promote the maintenance (or natural evolution) of forest ecological functions.  

 

Conclusions 

 

We found close relationships between bird indicators and the characteristics of the 

forest stands where they live, but each indicator was associated with different patterns 

and processes within forest stands. Although single bird indicators fail to provide a 

complete assessment of forest status, we believe that they may still provide insight into 

whether specific ecological processes are increasing or decreasing in extent. For 

instance, gap-dynamics may be tracked by monitoring cavity nesting birds and the 

Capercaillie, since they likely create suitable habitats for both indicators, although 

through different mechanisms (via an effect on tree composition and structure in the 

former, and on shrub species richness in the latter). The state and level of natural wood 

decay processes may determine woodpecker presence (via the amount of dead wood) 

and, indirectly, that of cavity nesting birds (via the influence of woodpeckers in 

providing new foraging or nesting substrates in decaying wood).  

Therefore, although monitoring forest dynamics and modification may require a wide 

range of taxa to be studied (Carignan and Villard 2002), this study shows that the bird 

taxon includes assemblages that can be surveyed within the same survey framework 



17 
 

with relatively limited effort (Laiolo et al. 2011), and which possess life histories 

divergent enough to display a wide range of sensitivities to the modification of natural 

processes within forest habitats. 
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Tables 

Table 1. List of the bird indicators considered in this study, the species comprising them 

and their relevance in forest conservation and ecology.  

Indicators Species Significance 
Sitta europea 

Certhia barchydactyla 
Certhia familiaris 

Cyanistes caeruleus 
Parus major 

Poecile palustris 
Lophophanes cristatus 

Cavity nesting birds 

 

Periparus ater 

Resource-limited species (Noss, 1999) 
Diversity indicator (Laiolo, 2002; Moning 
and Muller, 2008; Virkkala et al., 1994) 

 
Dendrocopos major 

Picus viridis 
Dryocopus martius 

 
Woodpeckers 

 

 
 

 

Keystone species providing holes for cavity 
nesting species (Drever et al., 2008, 2010; 
Jonsson, 1993; Mikusiński et al., 2001) 

 
Capercaillie 

 
 
 

Tetrao urogallus 
Flagship species (Obeso and Bañuelos, 2003) 
Umbrella species (Laiolo et al., 2011; 
Pakkala et al., 2003; Suter et al., 2002) 
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Table 2. Results of generalized linear mixed models explaining variation in cavity 

nesting bird density, woodpecker occurrence and Capercaillie occurrence. The best 

models (i.e. those with the lowest AIC, Akaike Information Criterion) are shown. See 

Appendix 3 for the full list of models tested. D = Tree species diversity; S = Shrub 

species richness; Dv = Vertical species mingling; CVdbh = Tree diameter variation; CVh 

= Tree height variation, BAd = Standing dead wood; R = Regularity. 

 

Model 1 AIC = 169 
Predictors Estimate  SE  

D 1.242  0.350  
Dv 2.550  0.926  

CVdbh 1.517  0.487  
CVh -1.766  0.447  

Model 2 AIC = 170.7 
Predictors Estimate  SE  

D 1.207  0.353  
Dv 2.497  0.926  

CVdbh 1.506  0.487  
CVh -1.705  0.457  

Cavity nesting birds 

 

R 0.102  0.172  
Model 1 AIC = 152.4 

Predictors Estimate  SE  
BAd 1.003  0.544  

Model 2 AIC = 153.3 
Predictors Estimate  SE  

BAd 1.026  0.532  
R 0.959  0.91  

Model 3 AIC = 153.4 
Predictors Estimate  SE  

BAd 1.113  0.561  
Dv 3.963  4.060  

Model 4 AIC = 153.9 
Predictors Estimate  SE  

Woodpeckers 
 

 

CVh -2.367  1.876  
Model 1 AIC = 48.02 Capercaillie 

 Predictors Estimate  SE  
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S 0.530  0.240  
Elevation 0.013  0.004  
Model 2 AIC = 49.46 

Predictors Estimate  SE  
S 0.535  0.251  

 

Dv -6.905  9.467  
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Table 3. Summary of forest structural and spatial variables affecting each indicator. + 

positive association; - negative association; D = Tree species diversity; S = Shrub 

species richness; Dv = Vertical species mingling; CVdbh = Tree diameter variation; CVh 

= Tree height variation, BAd = Standing dead wood. 

 

Cavity nesting birds  Woodpeckers Capercaillie 

D (+)   BAd (+)  Elevation               (+)      

Dv (+)     S                            (+)      

CVdbh  (+)         
CVh (-)         
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Figure captions 

Figure 1. Cavity nesting birds were more abundant in plots with high vertical species 

mingling (a), woodpeckers were more common in plots with large amounts of standing 

dead trees (b), and Capercaillie preferred plots with a complex shrub layer (c). Mean 

values and standard errors are shown for woodpeckers and Capercaillie data.  
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Appendices 

Appendix 1. Distribution of beech forests in the Cantabrian Mountains in Asturias 

(green areas) and location of the bird study plots (red). 
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Appendix 2. List of the structural and spatial vegetation indexes used in this study, in 
keeping with Motz, Sterba and Pommerening (2010), Pretzsch (1996) (for Dv) and 
Weber (2000) (for Dst).  

 

 
Index Variable definition  

Aggregation index (R) 
Regularity 

  

R =
r observed

E (r)
 

r observed  

 

N
ArE 5.0)( =  

Arithmetic mean of distances between a 
reference tree in the woodlot and its four nearest 
neighbors. 

 

N: number of trees in the woodlot; A: woodlot 
area 

Simpson vertical index (Dv) 
Vertical species mingling 

  

Dv = 1− pij
2

j=1

z

∑
i=1

s

∑  pij 

Relative frequency of species i in height stratum 
j referring to the overall stem number in the 
woodlot [three strata were considered: 0-50%, 
50-80% and 80-100% canopy height (Pretzsch, 
1996)] 

Simpson stratified index (Dst) 
Horizontal species mingling 

  

Dst = 1−
h ⋅ pi

n ⋅ hi

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

i=1

n

∑
2

 

pi 

 

 

h
n ⋅ hi

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

Relative frequency of stratum i referring to the 
overall stem number in the woodlot.  

hi = height of tree i ; h = maximum height of the 
woodlot.  A weighting factor was used to correct 
for differences between the intervals used. 

Simpson species richness (D)   

∑
=

−=
s

i
ipD

1

21  pi 
Relative frequency of species i in the forest 
referring to stem number in the woodlot. 

Coefficient of variation of 
tree diameters at breast height 
(1.3 m above the ground); 
(Vdbh) 
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CVdbh =
SDD
Dm

 

SDD 

 

 

Dm 

Standard deviation of four tree diameters 
measured at breast height 

 

Mean diameters of 32-81 trees measured at 
breast height. 

Coefficient of variation of 
tree height (CVh) 

  

CVh =
SDH
H m

 

SDH 

 

Hm 

Standard deviation of four tree heights. 

 

Mean height of 32-81 trees. 

Standing dead wood (BAd)   

BAd =
π
4

di
2

i=1

n

∑  di Diameter at breast height of standing dead tree i. 

Cited References  

Motz, K., Sterba, H. and Pommerening, A. 2010. Sampling measures of tree diversity.  For Ecol Manage 
260: 1985-1996. 

Pretzsch, H. 1996. Strukturvielfalt als Ergebnis waldbaulichen Handelns. Allg. Forst. -u. J. –Ztg., 167: 
213-221. 

Weber, 2000. Geostatistiche Analyse der Structur von Waldbestonden am Beispiel augerwahlter 
Banwalder in Baden-Wurttemberg. Berichte Freiburger Forstliche Forschung Heft 20. FVA Baden- 
Wurttemberg. Freiburg.133 
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Appendix 3. List of the 20 models tested per indicator group and their AIC (Akaike 

Information Criterion) values. The best models (separated by less than 2 AIC points) are 

highlighted in bold.  R = Regularity; D = Tree species diversity; S = Shrub species 

richness; Dv = Vertical species mingling; Dst = Horizontal species mingling; CVdbh = 

Tree diameter variation; CVh = Tree height variation, BAd = Standing dead wood. 

Cavity nesting birds AIC 
D + Dv + CVh+ CVdbh 169 
R + D + Dv + CVh+ CVdbh 170.7 
R + D + Dv + CVh + CVdbh + BAd 172.4 
R + D + Dv+ Dst + CVh+ CVdbh 172.6 
R + D + Dv + CVh+ CVdbh + S+ BAd 174 
R + D+ Dv + Dst + CVh+ CVdbh + S + BAd 176 
CVh 182.3 
Elevation + Slope + Orientation 180.5 
Dst 181.9 
BAd 184.7 
R 186.7 
D 187.6 
Dv 187.8 
S 189.5 
CVdbh 189.7 
CVh + Elevation + Longitude 232.5 
CVh + Elevation + Longitude + Latitude 232.4 
CVh + CVdbh + Elevation + Longitude + Latitude 232.1 
Dv + CVdbh + CVh + Elevation + Longitude + Latitude 231.7 
D + Dv + CVdbh + CVh + Elevation + Longitude + Latitude 229.6 
D + Dv + CVdbh + CVh + S + Elevation + Longitude + Latitude 229.5 
D + Dv + Dst + CVdbh + CVh + S + Elevation + Longitude + Latitude 231.5 
D + Dv + Dst + CVdbh + CVh + S + BAd + Elevation + Longitude + Latitude 232.4 
R + D + Dv + Dst + CVdbh + CVh + S + BAd + Elevation + Longitude + Latitude 234.3 
R + D + Dv + Dst + CVdbh + CVh + S + BAd + Elevation + slope + Orientation + Longitude + 
Latitude 238.5 

Elevation + Slope + Orientation + Longitude + Latitude 240.3 
Longitude + Latitude 246.6 
  
Woodpeckers AIC 
BAd 152.4 
R +  BAd 153.3 
Dv+  BAd 153.4 
CVh 153.9 
R +  CVdbh+  BAd 154.5 
R 154.6 
Dst 154.8 
R + Dst+ CVdbh + BAd 156.1 
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R + D + Dst + CVdbh + BAd 157.2 
Dv 155 
CVdbh 155.3 
D 155.3 
S 155.5 
Longitude + Latitude 157.4 
Elevation + Slope + Orientation 158.7 
R + D+ Dst + CVdbh+ S + BAd 158.9 
R + D + Dst + CVdbh + S + BAd 158.9 
R + D+ Dv+ Dst+ CVdbh + S + BAd 160.5 
R + D + Dst + CVdbh + S + BAd + Elevation 160.8 
R + D+ Dv + Dst + CVh+ CVdbh+ S + BAd 162.2 
Elevation + Slope + Orientation + Longitude + Latitude 162.4 
R + D + Dv + Dst + CVdbh + S + BAd + Elevation 162.5 
R + D + Dv + Dst + CVdbh + S + BAd + Elevation + Longitude 164.5 
R + D + Dv + Dst + CVdbh + S + BAd + Elevation + Longitude + Latitude 166.1 
R+ D + Dv + Dst + CVdbh + CVh + S + BAd + Elevation + Longitude + Latitude 168 
R + D + Dv + Dst + CVdbh + CVh + S + BAd + Elevation + Slope + Orientation + Longitude + 
Latitude 171.9 

  
Capercaillie AIC 
S + Elevation 48 
Dv + S + Elevation 49.4 
D + Dv + Dst + S + Elevation 50.3 
Dv + Dst + S + Elevation 51.3 
D + Dv + Dst + S + BAd + Elevation 51.8 
Elevation 52.1 
D + Dv + Dst + CVh + S + BAd + Elevation 52.1 
D + Dv + Dst + CVdbh+ CVh + S + BAd + Elevation 52.2 
R + D + Dv + Dst + CVdbh + CVh + S + BAd + Elevation 52.5 
Elevation + Slope + Orientation 54.1 
R + D +Dv + Dst + CVdbh + CVh + S + BAd + Elevation + Longitude 54.9 
R + D + Dv + Dst + CVdbh+ CVh + S + BAd+ Elevation + Longitude + Latitude 56.3 
R + D + Dv + Dst + CVdbh+ CVh + S + BAd + Elevation + Longitude + Latitude + Slope + 
Orientation 58.3 

S 59.7 
R + D + Dv + Dst + CVdbh + CVh + S + BAd 59.7 
Dv 60.4 
Dst 60.9 
CVh 61.4 
Longitude + Latitude 61.5 
BAd 62.2 
CVdbh 62.4 
R 62.4 
D 62.4 
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Appendix 4. Relationships between the diversity of cavity nesting birds and tree species 
diversity (D), tree height variation (CVh) and tree diameter variation (CVdbh) in woodlots.    
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