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Abstract Climate is a strong selection agent at high elevations, but experimental 

examinations of how animals exclusive of highlands cope with its variation are scarce. 

We analysed temperature-induced variation of early ontogenetic traits in the alpine 

grasshopper Chorthippus cazurroi, and compared populations from the elevational 

extremes of the species distribution under laboratory conditions spanning natural 

temperature ranges. Neither elevation of origin, nor different growing temperatures, 

had a direct effect on nymph body size, but both factors contributed to size at hatching 

indirectly, via their effect on the duration of embryo development. Large emerging 

nymphs had a consistently greater survival, although small and fast-developing 

nymphs from highlands also performed well at low temperatures. Viability selection 

favoured fast-developing phenotypes in conditions in which plasticity delayed 

development, in a typical countergradient pattern. Growth in the successive stage did 

not compensate for slow development at hatching, thus responses at this early stage 

have potential long-lasting consequences. Although phenotypic selection during early 

development certifies the strength of selection imposed by cold temperatures in the 

laboratory, elevation clines of body size did not emerge in either nymphs or the wild 

parental generation. Differentiation in the wild may be levelled out by fecundity 

selection for large sizes, drift and gene flow resulting from the fragmentation and 

proximity of populations, or by micro-climatic differences that reduce the likelihood 

of directional selection. There is therefore potential for local adaptation to temperature, 

but a series of conditions typical of alpine environments and ectotherms may impair, 

confound or constrain full differentiation along the gradient.  

Keywords Alpine fauna, body size, countergradient selection, development, 

phenotypic selection, selection gradients
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Introduction 

 

Climate is one of the major agents of natural selection and organisms have developed 

a wide-array of adaptations to cope with it, especially in physiological, morphological 

or phenological characteristics associated with growth and development (Johnston and 

Bennett 1996; Angiletta et al. 2004). These characteristics also display high levels of 

phenotypic plasticity, although most often in combination with genotypic variation, 

since plastic genotypes tend to be poorly efficient in coping with extreme conditions 

and developing as extreme phenotypes compared to locally adapted genotypes 

(DeWitt et al. 1998; Santamaria et al. 2003) (Fig. 1b). Local adaptations mainly result 

from non-additive gene-environment interactions: genotypes differ in their sensitivity 

to the environment (which we refer to as climate) and the performance of a given 

genotype depends on specific climatic conditions (Kawecki and Ebert 2004; Törang et 

al. 2015) (Fig. 1c). In nature, gene-environment interactions often underlie clinal 

phenotypic variation, such as ecotypic differentiation in body size and shape (Barton 

1999; Santos et al. 2004). 

Phenotypic variation may be further enhanced, or drastically reduced, by gene-

environment covariation associated with the non-random distribution of genotypes 

across climate regions.  If we consider growth patterns, slow-growing genotypes may 

be favoured at high latitudes or elevations, where the environment promotes slow 

growth because low temperatures decelerate metabolic and physiological activities 

(Arendt 1997). This alignment of genetic and environmental influences on phenotypic 

expression produces positive covariation, or cogradient variation, which tends to 

accentuate phenotypic variation across the gradient (Levinton 1983) (Fig. 1d).  

Cogradient clines have been described most often in plants (Aarssen and Clauss 1992; 
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Lusk et al. 2008), especially in mountains, where genotypes for small plant size are 

found primarily on uplands where also the environment hampers somatic growth 

(Körner 2003). Alternatively, strong time constraints may challenge organisms and 

select for genetically rapid growth and development with increasing latitude and 

elevation to compensate for environmental conditions that slow down these processes 

(Berven and Gill 1983; Conover and Schultz 1995). This produces counter-gradient 

variation and negative genotype-environment covariation: opposing genetic and 

environmental influences reduce the magnitude of diversification along the gradient 

(Conover et al. 2009) (Fig. 1e). Many of the known cases of coutergradient variation 

involve traits associated with vital rates in poikilotherms (metabolism, growth, 

development) and temperature-dependent sex determination mechanisms (Conover 

and Heins 1987; Atkinson 1995; Arendt 1997).  

Local adaptations also result from gene-environment covariation (Kawecki and 

Ebert 2004). Countergradient selection on traits counteracts plasticity, which is often a 

maladaptive by-product of thermal influences on physiology, and local adaptations are 

manifested as reductions in phenotypic variation among populations across the climate 

gradient (Conover and Schultz 1995). Plasticity in this case is unable to produce the 

favoured phenotype or to follow the course favoured by directional selection. On the 

contrary, cogradient variation yields adaptive-plasticity because the reaction norm is 

pushed by the environment in the same direction of adaptive genetic change 

(Ghalambor et al. 2007). Phenotypic selection on traits, and the nature of plastic 

response, become especially relevant in adjacent populations at latitudinal or 

altitudinal range limits, or in facing natural or anthropogenic fluctuating climatic 

conditions, since novel conditions are close enough (in space or in time) to trigger 
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evolutionary responses and shape the dynamics of populations (e.g. extinction-

colonization processes) (Byers et al. 2004).  

In this study, we analyse temperature-induced variation in early ontogenetic 

traits in the alpine grasshopper Chorthippus cazurroi (Orthoptera: Acrididae 

Gomphicerinae), and test whether responses during early life are linked to survival 

components of fitness. We compared four close local populations (< 20 km) from the 

elevational extremes of the species distribution under common laboratory conditions 

spanning natural temperature ranges. We focused on a series of early ontogenetic traits 

regarding development and body size of embryos and early instars. These life-history 

stages depend more on temperature alone than older stages in which nutritional 

conditions, thermoregulation behaviour and sexual differences also matter (Samietz et 

al. 2005; Berner and Blanckenhorn 2006; Parsons and Joern 2014; Rotvit and 

Jacobsen 2014). Body size is one of the phenotypic traits that most often changes 

along climatic gradients, often plastically but also displaying gene-environment 

interactions, or covariation (Angiletta et al. 2004; Byers et al. 2004). Theory and most 

empirical studies assume a positive relationship between size at hatching and survival, 

fecundity and growth at later life stages (Roff 2002; Taylor et al. 1998). In many 

ectotherms with annual life cycles, however, body size trades off with development 

time, and countergradient variation permits individuals of colder climate to mature and 

breed in a short season, although at smaller sizes (Telfer and Hassall 1999; Berner et 

al. 2004; Byers et al. 2004; Parsons and Joern 2014). In spite of the above knowledge, 

it remains largely and empirically unresolved whether negative selection on 

development time is sufficient to oppose positive direct selection on body size in 

animal populations (Kingsolver and Huey 2008). We analyse (1) the variation of early 

nymph body size and development with respect to elevation at three temperature 
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treatments, and (2) the selection gradients imposed by temperature on body size and 

development time at these early stages of life.  If countergradient selection occurs, we 

expect temperature to accelerate growth, but fast-growing phenotypes occurring in 

colder climates to counteract environmental (plastic) responses (Parsons and Joern 

2014). Moreover, the characteristics at hatching that become important for nymph 

survival should differ among thermal conditions (Altwegg and Reyer 2003), and local 

adaptations in the form of (countergradient) fast phenotypes should be favoured at low 

temperatures, and slow ones at warm temperatures. The opposite is expected if 

cogradient variation occurs (Arendt 1997).  

 

Methods 

 

Study species and populations  

 

Chorthippus cazurroi is an annual grasshopper endemic to Cantabrian Mountains, 

north-western Spain. Its geographical range is restricted to an area of approximately 

380 km2 and almost exclusively confined to the alpine belt (Laiolo et al. 2013; 2015). 

The study was performed in two massifs hosting the widest elevation range of this 

grasshopper, the Western and Eastern Massifs of Picos de Europa, the maximum 

height of which reaches 2596 and 2444 m a.s.l., respectively. We centred on two small 

low-elevation populations, Vegarredonda at 1465 m a.s.l. and Casetón de Ándara 

(hereafter Ándara) at 1650 m, and two more abundant ones in highlands, Traviesos at 

2350 m and Rasa de la Inagotable (hereafter Rasa) at 2180 m (Table S1). The distance 

between low and high elevation sites within the same massif is 3.8 km (Vegarredonda 

–Traviesos in the Western Massif) and 1.7 km (Ándara – Rasa in the Eastern Massif), 



7 

 

while that between the two massifs is approximately 20 km. In the first days of 

September 2012, we collected adults from the four sites, obtaining 10-13 females and 

5-9 males from lowland populations, and 25-26 females and 12-13 males from 

highland populations. These individuals provided eggs for the first generation 

offspring for the experiment.  

 

Grasshopper rearing  

 

The wild-caught individuals from each collection site were kept under natural 

photoperiod and temperature (25-30 ºC day /19-22 ºC night) conditions, and 

maintained in a group in 12 x 25 x 40 cm plastic jars with a perforated cap and a 3 cm 

layer of moist sand. Each day we provided field cut grasses and sedges 

(Brachypodium, Poa, Festuca and Carex spp.) and replaced the sand while checking 

for egg pods. Individuals reproduced during 10-15 days and at death their hind femur 

was measured as an indicator of body size using a stereo LEICA M125 fitted with an 

ocular micrometer (accuracy 0.1 mm) (Laiolo et al. 2013). It was not possible to 

assign the egg pod to a single female since adults were kept in a group, but we assume 

that most females laid eggs in roughly equal numbers due to the long clutch-laying 

lags (3-7 days; personal observations). Overall we obtained ≥ 30 egg pods from each 

local population with the exception of the Vegarredonda population, in which only 16 

were laid. Egg pods were maintained at room temperature (conditions as above) in 

moist filter paper for 30 days, and when necessary (2 cases) they were treated with a 

mixture of fungicide (0.1% sulphanilamide) and bacteriocide (0.1% methyl-p-

hydroxybenzoate) following vanWingerden et al. (1991). The inclusion or exclusion of 

these pods produce similar results, thus we present results obtained with the complete 
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data set.  Subsequently, egg pods were placed in 1.5 ml plastic tubes and transferred to 

a refrigerator at 5ºC for 4-4.5 months to break diapause.   

Eggs were incubated and grasshoppers reared in incubator chambers with a 

transparent front door (size: 42 x 34 x 48 cm; Lucky Reptile Herp Nursery II). In order 

to reduce temperature gradients inside the device and maintain oscillations within 1ºC 

from the set temperatures (see below), temperature was controlled by digital 

thermostats (Lucky Reptile Thermo Control PRO II) and only the central shelter was 

used to place rearing containers. The day/night temperature and photoperiod were set 

at cycles of 13/11 hours. A 50-W electric lamp was located in front of each chamber 

and interior lighting was also turned on to provide artificial lightening in both visible 

and UV spectra during the light time. Egg pods were incubated individually in 

polystyrene jars (4 cm diameter x 6.5 cm height) topped with a thin sieve mesh and 

filled with 0.5 cm of moist sand (10% water). Jars were checked every day for hatched 

nymphs, and after eight days had passed since the last egg hatched in a chamber, pods 

were removed from chambers.  

Hatched nymphs were grown in individual jars as those used for eggs, which 

were filled with a thin layer of moist sand that was replaced every third day. Nymphs 

were fed daily with the same mixture provided to adults plus wheat leaves grown in 

greenhouses to increment protein input. During the day we maintained the sand and 

the grass moist, moistening most often at high temperatures. In incubator chambers 

humidity averaged 68.26% ± 0.45 SE and its fluctuations were recorded over a period 

of five days by means of HOBO sensors installed in chambers at different 

temperatures (see below). We did not highlight significant differences among 

temperature treatments but only slight, non-significant shifts between the day and 
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night (generalized mixed models with day and chamber identity as random factors: F 

= 15.8, p = 0.064, n = 319 records).  

Jars were checked 2-3 times a day to note developmental times and collect shed 

skins (exuviae) and dead individuals. The left hind femur of exuviae or dead nymphs 

was measured using the same stereomicroscope fitted with an ocular micrometer with 

0.06 mm accuracy. Individuals from all populations and temperature treatments passed 

through four instars before moulting to adults, and sexual size dimorphism appeared at 

the third instar (sexual differences in hind femur length during the first and second 

instar: F1,37 < 0.87; p > 0.35; third instar: F1,37 = 5.09; p = 0.030; fourth instar: F1,28 = 

4.72; p = 0.038; adult: F1,23 = 22.1; p < 0.001).  

 

Experimental design and data analyses 

 

We used a split-plot design with three factors: temperature, population and incubator 

chamber. Temperature and population were crossed, while chamber was nested in 

temperature (Fig. S1). The temperature factor had three levels: (1) 20º/10ºC day/night 

temperatures, (2) 25º/15ºC and (3) 30º/20ºC. Hereafter, we define these treatments as 

20º, 25º and 30ºC for brevity. Within each temperature treatment, we assigned two 

incubators and four levels of the factor population (Vegarredonda, Ándara, Rasa and 

Traviesos). Five egg pods per population were allocated to each of two incubators 

within each temperature treatment, with the exception of the Vegarredonda population, 

in which we placed 2-3 egg pods per incubator due to a lower sample size (Fig. S1).  

As response variables, we considered four early ontogenetic traits of the species, 

before sexual size dimorphism emerged. We took into account two morphological 

traits: Hind femur length at the first and second instar stage (hereafter HF1 and HF2). 
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HF1 can be considered a proxy for egg size, since the size at birth depends mostly on 

genetic influence or maternal investment, while in older instars size may also depend 

on environmental conditions (Berner and Blanckenhorn 2006). In order to avoid 

pseudoreplication and to perform analyses at the clutch level, HF1 and HF2 averages 

per clutch were estimated. Then, we considered two traits associated with 

physiological rates: growth rate between the first and second instar, and duration of 

embryo development. Growth rate was calculated as [Log10(HF2)- Log10(HF1)]/ΔT 

where ΔT is the time from hatching to the first moult.  As for hind femur lengths, 

individual values were calculated and then averaged to obtain means per clutch. The 

duration of embryo development after diapause, or timing of hatching, was calculated 

in days from the start of incubation to hatching. As hatching lasted up to 4 days per 

clutch, the average value per clutch was estimated.  

We first performed factorial ANOVAs with a hierarchic design to ascertain the 

effect of temperature on the above traits, entering into the models temperature, 

chamber nested in temperature, population and two interactions (population × 

temperature, population × chamber nested in temperature) (Table S2). Since there was 

no chamber effect on traits (see Table S3), we proceeded with a similar design to test 

for the effect of elevation (low vs. high elevation), entering into the models elevation, 

population nested in elevation, temperature and two interactions (temperature × 

elevation, temperature × population nested in elevation) (Table S3). We ran two 

models per trait in order to assign the correct error mean square for the F test of 

differences among temperatures (i.e., the term chamber nested in temperature) and 

between elevations (the term population nested in elevation). Both the chamber in the 

first ANOVA, and the population in the second ANOVA, were random terms since 

they were nested, and they were not expected to differ a priori within each temperature 
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or elevation (Bennington and Thayne 1994). Pair-wise differences among the levels of 

each factor were analyzed by means of Fisher’s LSD tests. We considered the positive 

covariation of genotypic (elevation or population) and environmental (temperature) 

effects as an evidence of cogradient variation, while a negative covariation was 

interpreted as countergradient variation (Conover and Schultz 1995). Covariation 

implied a significant effect of the factor temperature and of the factor elevation, with 

the elevation effect in the same (cogradient) or in opposite (countergradient) direction 

of the temperature effect. In order to analyse whether early development was subject 

to significant environment-genotypic interactions, we performed nested ANCOVAs in 

which body size at hatching and at the second instar were modelled on temperature, 

elevation, and time, with population nested in elevation. Time was quantified as the 

duration of embryo development for size at hatching, and the time to the first moult for 

size at the second instar. The size at the first instar was entered in the model for the 

second instar, to focus on development between the first and the second stage 

irrespective of the starting conditions. In the above analyses, the unit of the analysis 

was always the clutch, and analyses were performed on data standardized to zero mean 

and unit standard deviation. 

We then quantified survival selection on duration of embryo development and 

body size at hatching by means of standardized selection gradients, in which data were 

analysed at the individual rather than at the clutch level as we centred on individual 

fitness. We considered each treatment separately since we aimed to measure 

phenotypic selection induced by low, medium and high temperatures. For this purpose, 

we standardized trait values to zero mean and unit standard deviation within each 

temperature treatment, and quantified relative fitness as nymph lifespan divided by the 

average lifespan of nymphs grown at the same temperature, with the maximum 
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lifespan value being the entire duration of the nymphal stage. We considered lifespan 

as a surrogate of viability, which is a major component of fitness (Benton and Grant 

1999). By means of multiple regression of relative survival on individual trait values, 

we tested for the significance of linear (β coefficient) and quadratic (γ coefficient) 

selection gradients, which express the partial change in trait value (in units of standard 

deviation of the trait) due to the direct selection on them (Lande and Arnold 1983; 

Laiolo and Obeso 2012). When multiple traits are considered, the coefficients β and γ 

indicate selection directly on the trait of interest, controlling statistically for indirect 

selection due to correlated traits, which is especially important here because of the size 

- duration relationship (see below).  As evidence for local adaptions, we investigated 

whether a significant gene-environment interaction conditioned fitness (Kawecki and 

Ebert 2004), and thus whether temperature differently affected high and low elevation 

nymphs. For this purpose, we ran mixed-effect ANOVAs and modelled relative fitness 

on the full cross between elevation and body size or duration of embryo development, 

with the population nested in elevation as a random term; the degrees of freedom were 

estimated by using the Satterthwaite method.  

All statistical analyses were performed with R (R Development Core Team 

2015). 

 

Results 

 

The dissection of egg pods after hatching revealed that approximately the same 

number of eggs was assigned to each treatment (20º and 30ºC: 248 eggs each, 25ºC: 

246), and that clutches contained from 2 to 15 eggs with no significant differences 

among populations (average 7.0 ± 0.20 SE, F 3,102 = 1.33, p = 0.26). We found a clear 
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differentiation among ontogenetic traits in their response to temperature and 

population, but non-significant effects of elevation (Table S2, S3). High temperatures 

accelerated growth rates (F2,3 = 23.4, p = 0.011) and shortened the duration of embryo 

development (F2,3 = 274.3, p < 0.001). In particular, growth rates were faster at 30ºC 

than at 25º and 20ºC (Fisher’s LSD: all p < 0.001) while the duration of embryo 

development differed between all treatments (Fisher’s LSD: all p < 0.001) (Fig. 2).  

Body sizes at hatching and at the second instar were not affected by either temperature 

(all F2,3  < 3.44, p > 0.167) or elevation (all F1,2 <1.70, p > 0.32) but did vary among 

populations (HF1: F3,8 = 9.11, p = 0.011; HF2: F3,7 = 5.23, p = 0.033). In particular, 

nymphs of the lowland Vegarredonda population were larger than those of the other 

populations at the first (Fisher’s LSD: all p < 0.004) and at the second stage (all p < 

0.012) (Fig. 2). These differences mirrored size-variation in reared adults, in which 

Vegarredonda females and males were the largest-bodied individuals of our sample 

(Fisher’s LSD: all P < 0.001) (Fig.3). There was a significant correlation of offspring 

size not only with parent female size, but also with parent male size (male hind femur 

vs. HF1: r = 0.9973, F1,2 = 372.3, p = 0.0026; male hind femur vs. HF2: r = 0.9972, 

F1,2 = 356.2, p = 0.0027), 

Duration of embryo development also varied among populations (F3,8  = 5.49, p 

= 0.024) but not with respect to elevation (F1,2 = 7.20, p = 0.11). Significant pair-wise 

differences were found among the lowest elevation population, Vegarredonda, and the 

other populations at the warmest treatment (longer developmental times at 30º: 

Fisher’s LSD: all p < 0.029) and also between Vegarredonda and the highest elevation 

population, Traviesos, at the intermediate temperature treatment (p = 0.038) (Fig. 2).  

Therefore, eggs from the warmest site had the slowest development at warm 

temperatures but temperature shortened hatching times, indicating opposing 
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population and temperature sources of variation.  As an indicator of a slight influence 

of elevation on development, we found a significant interaction between the duration 

of embryo development, temperature and elevation in determining body size at 

hatching (ANCOVA: F2,3= 17.11, P = 0.023). There seems to be a tendency for the 

largest sizes to be associated with long development times at low and medium 

temperatures, and in low elevation clutches, but the relationship is not marked (Fig. 4). 

The influence of this triple interaction, with moult time in place of hatching time, was 

not significant for body size at the second instar (ANCOVA: F2,3 = 0.18, p = 0.84), 

which depended solely on body size at hatching (F1,15 = 9.96; p < 0.01). 

Selection favoured a larger size at hatching at all temperatures, although the 

relationship of relative survival with size was quadratic at 20ºC (30ºC: β = 0.20 ± 0.10 

SE, t 49 = 2.03; p = 0.0479; 25ºC: β = 0.26 ± 0.09, t 86 = 2.93; p = 0.004; 20ºC: β = 

0.09 ± 0.07, t 62 = 1.21; p = 0.23; γ = 0.19 ± 0.06, t 62 = 3.11; p = 0.003) (Fig. 5). At 

25oC, the slowest individuals at hatching also achieved high relative fitness, although 

when entering both duration and size in models the former effect was no more 

significant, as an indication that body size trades off with time at this temperature 

(duration vs. size: rP = 0.33; t 86 = 3.32; p = 0.013). At 20ºC, the significant quadratic 

effect of body size shows that small individuals also achieve a certain survival benefit, 

in combination with fast development that is also favoured at cold temperatures (β = - 

0.17 ± 0.08, t 62 = 2.20; p = 0.03) (Fig. 5). The product of duration and size had no 

significant effect in any treatment, indicating no evidence of correlational selection on 

the two traits. Large-sized nymphs were favoured at all elevations since there was no 

significant interaction between elevation and body size in determining relative fitness. 

However, fast hatching resulted in increased fitness in highland individuals (mixed-

effect ANOVA: elevation × duration: F1,57.4 = 4.82, p = 0.032), although this effect is 
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due to one highland population (Rasa) being significantly faster than the others 

(population × duration: t51 = 1.58; p= 0.041). Finally, the partial regression 

coefficients of body size, growth rate and time to moult at the second instar were not 

significant at any temperature (all t < 1.58; p > 0.12), suggesting that selection on size 

and time only involved the previous stage.  

 

Discussion 

Growth opportunities change markedly across climate gradients, and the ability to 

schedule development in a way that optimizes fitness is a characteristic of ectotherms 

with complex life cycles (Altwegg and Reyer 2003; Skelly 2004; Alvarez et al. 2006). 

In the alpine Chorthippus cazurroi, the spatial proximity between populations at the 

lower and upper range boundaries likely hampered the differentiation of body size 

along elevation, which did no occur in either nymphs or the wild parental generation. 

However, we found selection for fast-developing embryos at cold temperatures, a 

strategy that was especially favourable to highland nymphs. In the following stage 

there was no evidence of compensation, body size depended exclusively on size at 

hatching, and growth rate on temperature. The intense post-hatching selection on 

growth and body size also disappears at this second stage.   

Contrary to other Gomphocerinae from temperate zones (vanWingerden et al. 

1991; Telfer and Hassall 1999; Berner et al. 2004), we found no direct effect of 

growing temperatures, or of the elevation of origin, on the size of nymphs, in spite of 

the fact that this varied among populations (Fig. 2). Gene flow may have prevented the 

full ecotypic differentiation along elevations in this species, since only the farthest 

populations significantly differed in size (Vegaredonda and Traviesos, separated by 

900 m elevation and 3.8 km linear distance), but not the other extreme pair (Ándara 
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and Rasa, only 530 m elevation and 1.7 km distance). Indeed, most evidence on 

climate-induced variation in growth and development morphology in grasshoppers and 

other ectotherms has been obtained in well-isolated populations over broad latitudinal 

scales, where the opportunity for local genetic differentiation is great (Li et al. 1998; 

Hatle et al. 2002; Laugen et al. 2003; Parsons and Joern 2014). Moreover, local 

adaptations may be confounded by genetic drift when populations are small (Kawecki 

and Ebert 2004), which is the case of marginal lowland populations of Chorthippus 

cazurroi.  In spite of this, the significant effect of population and non-significant effect 

of temperature on offspring size support the idea of a partial genetic differentiation 

among populations, or of strong maternal effects since this is a one-generation 

experiment. The idea of a genetic source of variation is partially supported by the 

significant correlation between nymph and adult male body size, but this has to be 

definitively tested over a larger number of generations.  

 In spite of the apparent lack of significant thermal and elevation influences on 

body size at hatching and at the successive stage, elevation and temperature did 

influence embryo development, and concurred in determining the future performance 

of nymphs. Being larger was better for survival in all populations and in all treatments 

(Fig. 5), a finding that is in line with results obtained by several studies on ectotherms, 

which also found selection on size to be strongly and significantly shifted to positive 

values of β (Kingsolver et al. 2001). In Chorthippus cazurroi, the strength of 

directional selection (β = 0.20 and 0.26) was within the range of values obtained in 

unmanipulated field populations, as reviewed by Kingsolver and Huey (2008) 

(literature median β = 0.15). The same occurred for selection on embryo development 

time (−0.17 against the median literature value of −0.145). Unlike to most field 

studies, we were able to include time together with size in models and thus investigate 
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a fitness correlation that has often been assumed, but that largely lacks empirical 

validation (Kingsolver and Huey 2008). We found that, at low temperatures, negative 

selection on development time opposed a positive direct selection on body size, 

curving the fitness relationship of body size (γ significantly differed from zero) (Fig. 

5). However, β for body size was not significantly negative, as for disruptive selection 

favouring extreme sizes (Lande and Arnold 1983), thus there might be no direct fitness 

advantages of being small per se.  Small sizes seem to be rather a by-product of 

selection for fast development, which is made possible by pleiotropy or linkage 

between genes codifying for ontogenetic traits, which bound hatching to the 

achievement of a critical threshold size (Roff 2002; Bernardo 1993; D’Amico et al. 

2001; Berner and Blanckenhorn 2007). This fast strategy, widespread in ectotherms 

from cool climates, is the common outcome of countergradient selection stemming 

from time constraints, and permits small individuals to attain reproduction over a 

shorter growing and breeding season (Berven and Gill 1983; Dingle et al. 1990; 

Berner and Blanckenhorn, 2006). In our experiment, however, costs and benefits have 

to be estimated during the life stages observed here, thus individuals should be seen as 

maximizing their growth rate during these early stages. Results obtained at 20ºC, in 

which the fastest phenotypes were slow as compared to the warmest treatments, and 

the slowest ones represented the outmost fringes of trait value (Fig. 4), indeed suggest 

an optimization of development in this species. 

In conclusion, our results do not support the idea of fully plastic phenotypes or 

cogradient variation, but indicate weak countergradient patterns of development, and 

size-time trade-offs underlying fitness during the early stages of life. Post-hatching 

selection was strong on embryo development and size at hatching, but disappeared in 

the successive stage, overall confirming that the onset phase of life is critical for the 
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future performance of individuals, as in many other animal groups studied in the wild 

(Verbeek et al. 2008; Kluen et al. 2011). Directional phenotypic selection on 

development times in embryos certifies the strength of selection imposed by cold 

temperatures in the laboratory, and highlights responses early in nymph life that are 

likely candidates for becoming local adaptations. In spite of this, elevation clines of 

body size did not occur in either nymphs or the wild parental generation, and no full 

countergradient covatiation between elevation and temperature was found in nymph 

development. Therefore, although divergent or directional natural selection stemming 

from climate may become a powerful evolutionary force, its action may be levelled 

out by fecundity selection (for large sizes; Honek 1993), by drift or gene flow, or by 

micro-climatic differences within sites that reduce the likelihood of directional 

selective pressures (Sømme 1989), features associated with alpine environments or 

ectotherm life styles.   
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Figure legends 

Fig. 1 Graphic representation of possible scenarios of phenotypic variation in response 

to a new environment (transplant or common garden, either low L or high H 

environments in the x-axis), modified after Conover and Schultz (1995), and 

Ghalambor et al. (2007). Phenotypic values in the native site are represented by filled 

circles, here defined as two ecotypes. Arrows represent the phenotype that a genotype 

would express when introduced into the novel environment. Panel a – Two ecotypes 

display no phenotypic plasticity.  Panel b – Phenotypic differences between sites are 

exclusively due to plasticity. Panel c – Two ecotypes have different degrees of 

plasticity (i.e., different slope of the reaction norm). Panel d – Two ecotypes have the 

same degree of plasticity (similar slope of the reaction norm), but have divergent 

phenotypes when each is measured in their native habitat. When measured in a 

common environment, they are still different, but the plastic response reduces the 

difference between them. Panel e –Two ecotypes have the same degree of plasticity, 

and when measured in their native habitat, they have a similar phenotype. However, 

when measured in a common garden, the plastic response increases divergence.  

 

Fig.2 Variation in body size (hind femur length) at the first and second instar, in 

growth rate and duration of embryo development among four populations of 

Chorthippus cazzuroi in response to temperature variation. Raw mean values ± SE are 

shown.  

 

Fig. 3 Body sizes of adult females and males of the parental generation. Mean values ± 

SE of hind femur length are shown.  
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Fig. 4 Relationship between body size at hatching and duration of embryo 

development at different temperature treatments and elevations. Data were 

standardized to zero mean and unit standard deviation.  

 

Fig. 5   Regression of nymph relative fitness, quantified by relative lifespan, on the 

duration of embryo development or body size at hatching at the three temperature 

treatments. Each point represents an individual within the treatment, and the slope of 

the fitted line (with grey-shaded CI) is the selection gradient. Since we estimated 

selection gradients on two traits, size and duration, lines show partial effects, 

removing the effect of the other trait when significant. Trait values were standardized 

within each treatment; only significant trends are shown.  
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Supplementary material 

 

Table S1 Topographic and climatic characteristics of the study populations. 

 

Fig. S1 Graphical representation of the experimental design, including three factors: 

Temperature (three levels), Population (four levels) and Chamber (two levels within 

temperature treatments). Temperature and Population were crossed and Chamber was 

nested within Temperature.  

 

Table S2 Results of factorial ANOVAs aimed at testing the influence of temperature 

on hind femur length at the first instar, hind femur length at the second instar, growth 

rate, duration of embryo development.  

 

Table S3 Results of factorial ANOVAs aimed at testing the influence of elevation on 

hind femur length at the first instar, hind femur length at the second instar, growth 

rate, duration of embryo development. 
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Fig. 2 
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Fig. 3.  
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Fig. 4.  
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Fig.5.  
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