Comparative phylogeography of two symbiotic dorvilleid polychaetes with contrasting host and bathymetric patterns

Patricia Lattig, Isabel Muñoz, Daniel Martin, Pere Abelló, Annie Machordom

Institut de Ciències del Mar

MINISTERIO DE ECONOMÍA Y COMPETITIVI

Instituto Español de Oceanografia centro oceanográfico de santander

Lisbon 12-18 July 2015

Iphitime cuenoti Fauvel, 1914

Lisbon 12-18 July 2015

Iphitime cuenoti Fauvel, 1914

Ophryotrocha mediterranea Martin, Abelló & Cartes, 1991

Family Dorvilleidae

Lisbon 12-18 July 2015

Iphitime cuenoti Fauvel, 1914

Ophryotrocha mediterranea Martin, Abelló & Cartes, 1991

Family Dorvilleidae

Symbionts of brachyuran crabs

Lisbon 12-18 July 2015

Iphitime cuenoti Fauvel, 1914

Ophryotrocha mediterranea Martin, Abelló & Cartes, 1991

Family Dorvilleidae Symbionts of brachyuran crabs Inhabit the branchial chambers

Lisbon 12-18 July 2015

Lisbon 12-18 July 2015

Iphitime: 7 species (all crab symbionts)

Iphitime: 7 species (all crab symbionts) NE Atlantic and Mediterranean

Iphitime: 7 species (all crab symbionts)
 NE Atlantic and Mediterranean
 Sexual dimorphism

Iphitime: 7 species (all crab symbionts)
 NE Atlantic and Mediterranean
 Sexual dimorphism

Iphitime cuenoti Fauvel, 1914

Lisbon 12-18 July 2015

HOSTS

Iphitime cuenoti Fauvel, 1914

Lisbon 12-18 July 2015

Lisbon 12-18 July 2015

HOSTS

Liocarcinus depurator
 Macropipus tuberculatus
 Goneplax rhomboides
 Bathynectes maravigna

(70 - 400 m) (100 - 500 m) (350 - 600 m) (550 - 650 m)

Iphitime cuenoti Fauvel, 1914

Lisbon 12-18 July 2015

HOSTS

Liocarcinus depurator
 Macropipus tuberculatus
 Goneplax rhomboides
 Bathynectes maravigna

(70 - 400 m) (100 - 500 m) (350 - 600 m) (550 - 650 m)

Lisbon 12-18 July 2015

PREVALENCE

Lisbon 12-18 July 2015

PREVALENCE

Iphitime cuenoti Fauvel, 1914

✓ 1023 specimens of *L. depurator*, 6.5% infested

Lisbon 12-18 July 2015

PREVALENCE

Iphitime cuenoti Fauvel, 1914

✓ 1023 specimens of *L. depurator*, 6.5% infested

✓ 9.8% in females, 3.4% in males

PREVALENCE

Iphitime cuenoti Fauvel, 1914

1023 specimens of *L. depurator*, 6.5% infested 9.8% in females, 3.4% in males

✓ 819 specimens of *M. tuberculatus*, 11.5% infested

PREVALENCE

Iphitime cuenoti Fauvel, 1914

1023 specimens of *L. depurator*, 6.5% infested 9.8% in females, 3.4% in males 819 specimens of *M. tuberculatus*, 11.5% infested 10.9% in females, 11.9% in males.

PREVALENCE

Iphitime cuenoti Fauvel, 1914

1023 specimens of *L. depurator*, 6.5% infested
9.8% in females, 3.4% in males
819 specimens of *M. tuberculatus*, 11.5% infested
10.9% in females, 11.9% in males.
Low numbers in *G. rhomboides* and *B. maravigna* prevented to estimate prevalence.

Lisbon 12-18 July 2015

Lisbon 12-18 July 2015

✓ Ophryotrocha: ≈ 60 species (3 symbionts)

Lisbon 12-18 July 2015

✓ Ophryotrocha: ≈ 60 species (3 symbionts)

1 - holothurians, 2 - crabs

Lisbon 12-18 July 2015

- ✓ Ophryotrocha: ≈ 60 species (3 symbionts)
- 1 holothurians, 2 crabs
- W Mediterranean

Lisbon 12-18 July 2015

- ✓ Ophryotrocha: ≈ 60 species (3 symbionts)
- 1 holothurians, 2 crabs
- W Mediterranean
- No sexual dimorphism

Lisbon 12-18 July 2015

- ✓ Ophryotrocha: ≈ 60 species (3 symbionts)
- 1 holothurians, 2 crabs
- W Mediterranean
- No sexual dimorphism
- ✓ Found only in *Gerion longipes* (550-660 m)

Ophryotrocha mediterranea Martin, Abelló & Cartes, 1991

Lisbon 12-18 July 2015

- ✓ Ophryotrocha: ≈ 60 species (3 symbionts)
- 1 holothurians, 2 crabs
- W Mediterranean
- No sexual dimorphism
- Found only in Gerion longipes (550-660 m)
- ✓ 156 specimens, prevalence 25%

Ophryotrocha mediterranea Martin, Abelló & Cartes, 1991

Lisbon 12-18 July 2015

- ✓ Ophryotrocha: ≈ 60 species (3 symbionts)
- 1 holothurians, 2 crabs
- W Mediterranean
- ✓ No sexual dimorphism
- Found only in Gerion longipes (550-660 m)
- ✓ 156 specimens, prevalence 25%
 - ✓ 30% in males, 0% in females

Ophryotrocha mediterranea Martin, Abelló & Cartes, 1991

Lisbon 12-18 July 2015

- ✓ Ophryotrocha: ≈ 60 species (3 symbionts)
- 1 holothurians, 2 crabs
- W Mediterranean
- ✓ No sexual dimorphism
- Found only in Gerion longipes (550-660 m)
- ✓ 156 specimens, prevalence 25%
 - ✓ 30% in males, 0% in females (too small)

Ophryotrocha mediterranea Martin, Abelló & Cartes, 1991

Lisbon 12-18 July 2015

SAMPLING

Lisbon 12-18 July 2015

SAMPLING

 MEDITS (Mediterranean 2012) & ARSA (Gulf of Cádiz, 2013)

SAMPLING

- MEDITS (Mediterranean 2012) & ARSA (Gulf of Cádiz, 2013)
- Bottom trawling on board of the B.O. Cornide Saavedra

Lisbon 12-18 July 2015

OBJECTIVE

Lisbon 12-18 July 2015

To analyse the phylogeographic patterns

Current genetic diversity (mtDNA COI)

- Current genetic diversity (mtDNA COI)
- Past historical events

OBJECTIVE

- Current genetic diversity (mtDNA COI)
- Past historical events
- Contrasting host pattern and bathymetry

OBJECTIVE

- Current genetic diversity (mtDNA COI)
- Past historical events
- Contrasting host pattern and bathymetry
- Present gene flow barriers

To analyse the phylogeographic patterns

- Current genetic diversity (mtDNA COI)
- Past historical events
- Contrasting host pattern and bathymetry
- Present gene flow barriers

OCEANOGRAFIC FRONTS

- Gibraltar Strait
- Almería-Oran Front
- ✓ Ibiza Channel

Lisbon 12-18 July 2015

- Gibraltar Strait
- Almería-Oran Front
- ✓ Ibiza Channel

REGIONS

- Gibraltar Strait
- Almería-Oran Front
- ✓ Ibiza Channel

REGIONS

- Gibraltar Strait
- Almería-Oran Front
- ✓ Ibiza Channel

REGIONS

CádizAlboran

- Gibraltar Strait
- Almería-Oran Front
- ✓ Ibiza Channel

REGIONS

Cádiz
Alboran
Alacant

Alboran Alacant

- Gibraltar Strait
- Almería-Oran Front
- ✓ Ibiza Channel

REGIONS

 Cádiz
 Alboran
 Alacant
 Valencia & Catalunya

 Alboran
 Alacant
 Valencia & Catalunya

Lisbon 12-18 July 2015

Lisbon 12-18 July 2015

Iphitime cuenoti

Iphitime cuenoti

	CÁDIZ	ALBORAN	ALACANT
ALBORAN			
ALACANT		_	
VALENCIA & CATALUNYA			

Iphitime cuenoti

	CÁDIZ	ALBORAN	ALACANT
ALBORAN	0.009, N.S.		
ALACANT		_	
VALENCIA & CATALUNYA			0.012, N.S.

Iphitime cuenoti

	CÁDIZ	ALBORAN	ALACANT
ALBORAN	0.009, N.S.		
ALACANT	0.158, p<0.05	_	
VALENCIA & CATALUNYA	0.127, p<0.05		0.012, N.S.

Iphitime cuenoti

	CÁDIZ	ALBORAN	ALACANT
ALBORAN	0.009, N.S.		
ALACANT	0.158, p<0.05	0.082, p<0.05	
VALENCIA & CATALUNYA	0.127, p<0.05	0.042, p<0.05	0.012, N.S.

Iphitime cuenoti

Pairwise Fst estimates based on mtDNA COI

	CÁDIZ	ALBORAN	ALACANT
ALBORAN	0.009, N.S.		
ALACANT	0.158, p<0.05	0.082, p<0.05	
VALENCIA & CATALUNYA	0.127, p<0.05	0.042, p<0.05	0.012, N.S.

Significant but weak barrier effect for the Almería-Oran Front

Lisbon 12-18 July 2015

Iphitime cuenoti

HAPLOTYPE NETWORK

Lisbon 12-18 July 2015

Lisbon 12-18 July 2015

Lisbon 12-18 July 2015

Lisbon 12-18 July 2015

Iphitime cuenoti

HAPLOTYPE NETWORK

Star-like haplotype network

Weak population structure

Lisbon 12-18 July 2015

Lisbon 12-18 July 2015

Lisbon 12-18 July 2015

Lisbon 12-18 July 2015

Lisbon 12-18 July 2015

Lisbon 12-18 July 2015

Iphitime cuenoti MISMATCH DISTRIBUTIONS

Unimodal haplotype distribution

Lisbon 12-18 July 2015

Iphitime cuenoti MISMATCH DISTRIBUTIONS

 Unimodal haplotype distribution
 Most recent expansion 90 thousand years ago

Lisbon 12-18 July 2015

Iphitime cuenoti MISMATCH DISTRIBUTIONS

 Unimodal haplotype distribution
 Most recent expansion 90 thousand years ago
 After the Pleistocene glaciations

Lisbon 12-18 July 2015

- Unimodal haplotype distribution
 Most recent expansion 90 thousand years ago
 - After the Pleistocene glaciations
 - Günz Mindel Interglacial Period

Ophryotrocha mediterranea

 Alboran
 Alacant
 Valencia & Catalunya

Lisbon 12-18 July 2015

Ophryotrocha mediterranea

	ALBORAN	ALACANT
ALACANT		
VALENCIA & CATALUNYA		

	ALBORAN	ALACANT
ALACANT		
VALENCIA & CATALUNYA		0.002, N.S.

	ALBORAN	ALACANT
ALACANT	0.083, N.S.	
VALENCIA & CATALUNYA		0.002, N.S.

	ALBORAN	ALACANT
ALACANT	0.083, N.S.	
VALENCIA & CATALUNYA	0.118, p<0.05	0.002, N.S.

Pairwise Fst estimates based on mtDNA COI

	ALBORAN	ALACANT
ALACANT	0.083, N.S.	
VALENCIA & CATALUNYA	0.118, p<0.05	0.002, N.S.

Eastern Alborán differs significantly (0.272)

Lisbon 12-18 July 2015

Ophryotrocha mediterranea

Lisbon 12-18 July 2015

Ophryotrocha mediterranea

HAPLOTYPE NETWORK

Geographical distribution

✓ Dumble-like haplotype network

Alboran Alacant Valencia & Catalunya

Ophryotrocha mediterranea

HAPLOTYPE NETWORK

Geographical distribution

- ✓ Dumble-like haplotype network
- Two distinctive lineages
- ✓ Not related to current gene flow barriers

Lineage 1

Lineage 2

Alboran Alacant Valencia & Catalunya

Lineage 1

Ophryotrocha mediterranea

HAPLOTYPE NETWORK

Geographical distribution

- ✓ Dumble-like haplotype network
- Two distinctive lineages
- ✓ Not related to current gene flow barriers
- ✓ No morphological differences

Lineage 2

Alboran Alacant Valencia & Catalunya

Lisbon 12-18 July 2015

Ophryotrocha mediterranea

Lisbon 12-18 July 2015

Lisbon 12-18 July 2015

Ophryotrocha mediterranea

MISMATCH DISTRIBUTION

Lisbon 12-18 July 2015

Ophryotrocha mediterranea

MISMATCH DISTRIBUTION

Bimodal haplotype distribution

Ophryotrocha mediterranea MISMATCH DISTRIBUTION

 Bimodal haplotype distribution
 Most recent expansion 250 thousand years ago

- Bimodal haplotype distribution
 Most recent expansion 250 thousand years ago
- ✓ Unique metapopulation

- Bimodal haplotype distribution
 Most recent expansion 250 thousand years ago
- Unique metapopulationTwo distinct lineages

- Øimodal haplotype distribution
 Most recent expansion 250 thousand years ago
- Unique metapopulation
- Two distinct lineages
- Secondary contact as a result of expanding after being isolated

Lisbon 12-18 July 2015

Ophryotrocha mediterranea

MISMATCH DISTRIBUTION

Ophryotrocha mediterranea

MISMATCH DISTRIBUTION

Lineage 1 secondary expansion

- 73 thousand years ago
- Pleistocene Günz Mindel Interglacial Period

Ophryotrocha mediterranea

MISMATCH DISTRIBUTION

Lineage 1 secondary expansion

- 73 thousand years ago
- Pleistocene Günz Mindel
 Interglacial Period

Lineage 2 secondary expansion

- 89 thousand years ago
- Pleistocene Günz Mindel
 Interglacial Period

Lisbon 12-18 July 2015

Ophryotrocha mediterranea

Lisbon 12-18 July 2015

Ophryotrocha mediterranea

GENETIC DIVERGENCE

Lisbon 12-18 July 2015

Ophryotrocha mediterranea

GENETIC DIVERGENCE

✓ Lineage 1 vs. Lineage 2 vs. *Ophryotrocha geryonicola* \approx 1%,

Lineage 1 vs. Lineage 2 vs. *Ophryotrocha geryonicola* \approx 1%, \checkmark

GENETIC DIVERGENCE

Vs. non-symbiotic species (*O. adherens* and *O. puerilis*) > 20% \checkmark

Lisbon 12-18 July 2015

Ophryotrocha mediterranea GENETIC DIVERGENCE

- ✓ Lineage 1 vs. Lineage 2 vs. *Ophryotrocha geryonicola* \approx 1%,
- ✓ Vs. non-symbiotic species (*O. adherens* and *O. puerilis*) > 20%

Wiklund et al. (2012)

Subespecies rised to valid species = 18%

Lineage 1 vs. Lineage 2 vs. *Ophryotrocha geryonicola* \approx 1%, \checkmark

GENETIC DIVERGENCE

Vs. non-symbiotic species (*O. adherens* and *O. puerilis*) > 20% \checkmark

Wiklund et al. (2012)

- ✓ Subespecies rised to valid species = 18%
- Morphologically similar species as valid, independent taxa = 6%

Ophryotrocha mediterranea GENETIC DIVERGENCE

- ✓ Lineage 1 vs. Lineage 2 vs. *Ophryotrocha geryonicola* \approx 1%,
- ✓ Vs. non-symbiotic species (*O. adherens* and *O. puerilis*) > 20%

Wiklund et al. (2012)

- Subespecies rised to valid species = 18%
- Morphologically similar species as valid, independent taxa = 6%

O. mediterranea could be a junior synonymy O. geryonicola

Lisbon 12-18 July 2015

SUMMARY

Lisbon 12-18 July 2015

SUMMARY

Iphitime cuenoti

Population with weak structure

- Population with weak structure
- Recent expansion after the Pleistocene glaciations

- Population with weak structure
- Recent expansion after the Pleistocene glaciations
- Highly homogeneous gene flow

- Population with weak structure
- Recent expansion after the Pleistocene glaciations
- Highly homogeneous gene flow
- Weak barrier effect at the Almería-Oran Front

- Population with weak structure
- Recent expansion after the Pleistocene glaciations
- Highly homogeneous gene flow
- Weak barrier effect at the Almería-Oran Front
- Infests several hosts (no specificity)

Iphitime cuenoti

- Population with weak structure
- Recent expansion after the Pleistocene glaciations
- Highly homogeneous gene flow
- Weak barrier effect at the Almería-Oran Front
- Infests several hosts (no specificity)
- Wide bathymetric range

Iphitime cuenoti

- Population with weak structure
- Recent expansion after the Pleistocene glaciations
- Highly homogeneous gene flow
- Weak barrier effect at the Almería-Oran Front
- Infests several hosts (no specificity)
- Wide bathymetric range
- Hosts vertical swimming capacity

Ophryotrocha mediterranea

Initial expansion 250 thousand years ago

- Initial expansion 250 thousand years ago
- Two isolated lineages

- Initial expansion 250 thousand years ago
- Two isolated lineages
- Later contact as a result of expansion after the Pleistocene glaciations

- Initial expansion 250 thousand years ago
- Two isolated lineages
- Later contact as a result of expansion after the Pleistocene glaciations
- At present: unique metapopulation

- Initial expansion 250 thousand years ago
- Two isolated lineages
- Later contact as a result of expansion after the Pleistocene glaciations
- At present: unique metapopulation
- Homogenized gene flow

- Initial expansion 250 thousand years ago
- Two isolated lineages
- Later contact as a result of expansion after the Pleistocene glaciations
- At present: unique metapopulation
- Homogenized gene flow
- Single /slightly) differing population in Eastern Alborán

- Initial expansion 250 thousand years ago
- Two isolated lineages
- Later contact as a result of expansion after the Pleistocene glaciations
- At present: unique metapopulation
- Homogenized gene flow
- Single /slightly) differing population in Eastern Alborán
- Local oceanographic constraints (deep-sea current regime)

- Initial expansion 250 thousand years ago
- Two isolated lineages
- Later contact as a result of expansion after the Pleistocene glaciations
- At present: unique metapopulation
- Homogenized gene flow
- Single /slightly) differing population in Eastern Alborán
- Local oceanographic constraints (deep-sea current regime)
- ✓ Low molecular divergence (Lineage 1 vs. Lineage 2 vs. *O. geryonicola*)

- Initial expansion 250 thousand years ago
- Two isolated lineages
- Later contact as a result of expansion after the Pleistocene glaciations
- At present: unique metapopulation
- Homogenized gene flow
- Single /slightly) differing population in Eastern Alborán
- Local oceanographic constraints (deep-sea current regime)
- ✓ Low molecular divergence (Lineage 1 vs. Lineage 2 vs. O. geryonicola)
- O. mediterranea could be a junior synonymy of O. geryonicola

- Initial expansion 250 thousand years ago
- Two isolated lineages
- Later contact as a result of expansion after the Pleistocene glaciations
- At present: unique metapopulation
- Homogenized gene flow
- Single /slightly) differing population in Eastern Alborán
- Local oceanographic constraints (deep-sea current regime)
- ✓ Low molecular divergence (Lineage 1 vs. Lineage 2 vs. O. geryonicola)
- O. mediterranea could be a junior synonymy of O. geryonicola
- Relevant morphological differences

- Initial expansion 250 thousand years ago
- Two isolated lineages
- Later contact as a result of expansion after the Pleistocene glaciations
- At present: unique metapopulation
- Homogenized gene flow
- Single /slightly) differing population in Eastern Alborán
- Local oceanographic constraints (deep-sea current regime)
- ✓ Low molecular divergence (Lineage 1 vs. Lineage 2 vs. O. geryonicola)
- O. mediterranea could be a junior synonymy of O. geryonicola
- Relevant morphological differences
- Further studies of the Atlantic species

- Initial expansion 250 thousand years ago
- Two isolated lineages
- Later contact as a result of expansion after the Pleistocene glaciations
- At present: unique metapopulation
- Homogenized gene flow
- Single /slightly) differing population in Eastern Alborán
- Local oceanographic constraints (deep-sea current regime)
- ✓ Low molecular divergence (Lineage 1 vs. Lineage 2 vs. O. geryonicola)
- O. mediterranea could be a junior synonymy of O. geryonicola
- Relevant morphological differences
- Further studies of the Atlantic species
- Separated by an acive barrier vs. extremes of a cline

FUNDING

JAE-DOC program of the Consejo Superior de Investigaciones Científicas

Plan Estatal de Investigación Científica y Técnica y de Innovación:

- CTM2010-22218: Deep-water submarine canyons and slopes in the Mediterranean and Cantabrian seas: from synchrony of external forcings to living resources
- CGL2011-23306: Evolutionary approach to the taxonomy nd phylogeny of the Orden Scleractinia (Cnidaria: Anthozoa: Hexacorallia)
- CTM2013-43287-P: Evolutionary implications, ecological roles and vulnerability to oceanic changes in marine symbiosis.

 Programme of Consolidated Research Groups of the Generalitat de Catalunya.

✓ 2014SGR120: CRG on Marine Benthic Ecology.

Patricia Lattig, Isabel Muñoz, Annie Machordom

Institut de Ciències del Mar

MINISTERIO DE ECONOMÍA Y COMPETITIVIE

PESQUERIAS | ACUICULTURA | NEDIO MARINO | ECOLOSÍA MARINA Instituto Español de Oceanografia CENTRO OCEANOGRÁFICO DE SANTANDER

Patricia Lattig, Isabel Muñoz, Annie Machordom

Institut de Ciències del Mar

MINISTERIO DE ECONOMÍA Y COMPETITIVIO

Instituto Español de Oceanografía centro oceanográfico de santander