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Phase diagram of carbon nanotube ropes
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The zero-temperature phase diagram of carbon nanotube ropes is studied using a computational framework
that incorporates the renormalization of intratube interactions and the effect of intertube Coulomb screening.
This allows us to undertake a systematic analysis as a function of the number of metallic nanotubes in the rope
and the effective strength of the phonon-mediated interaction. We find that there is in general a weak-coupling
regime of the interactions, corresponding to Luttinger-liquid behavior in thin ropes and to superconducting
behavior in sufficiently thick ropes. Furthermore, we show the existence of exotic phases in the strong-coupling
regime, characterized by the appearance of charge instabilities that depend on the helicity and the doping level
of the nanotubes in the rope. Our approach allows for the simultaneous analysis of the scaling of the Cooper-
pair tunneling amplitude between metallic nanotubes, making it possible to discern the crossover from purely
one-dimensional physics to the setting of three-dimensional Cooper-pair coherence. We provide then good
estimates of the superconducting transition temperature and discuss the connection of our results with recent
experiments.
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I. INTRODUCTION nanotubes. More recently, strong SC correlations have been

Carbon nanotubes offer a great potential for technologica‘?'so reported in individual nanotubes of very short radius,

applications. The fact that they can show metallic or Semi_lnserted in a zeolite matrié In that kind of experiment, the

conducting behavior depending on the helicity of the tubule &ffécts studied have 1D character, but clear superconductiv-
makes them very suitable for the construction of devices irfly features have been obtained from the tendency to expel

molecular electronics. Carbon nanotubes offer also an idedf'® magnetic flux and the divergent behavior of the conduc-
ground to study the effects of electronic correlatirss, ta”_l‘_:ﬁ' 5 o of SC lations implies the exi
which are enhanced in systems with reduced dimensionality,, | "€ 0bservation o correlations implies the existence

Given that the conduction takes place in a one—dimensiona(?]c an attractive component of the interaction in the caybon
nanotubes. The analyses of the electron correlations in the

(1D) structure, ‘it has been proposed that the nanotube bules have shown that it is not plausible the opening of an

Eh(t)twd bel_lde_zgll syﬁtems f?:r the ok:setrvatlgdr: cl)f thf so-calle ttractive channel arising from the purely repulsive Coulomb
uttinger-iquid: behavior. -or contacts with 10w ranspar-; araction, at least without going down to extremely low

ency, genuine signatures of Luttinger-liquid behavior haveynergied4 Then, it is most likely that the attractive interac-
been observed in the power-law dependence of the condugpn comes from the coupling to the elastic modes of the
tance around room temperatréThese experiments seem nanotube latticé® How the large Coulomb repulsion present
therefore to probe a regime in which the repulsive Coulomhp the nanotubes may be overcome by the attraction due to
interaction turns out to be dominant in the nanotubes. the phonon exchange remains the question. By means of a
There have been also experiments revealing the existenggmple estimate, it can be seen that the strength of the latter
of superconductingSCO) correlations in the nanotub88The  is much smaller than the nominal strength of the Coulomb
observations reported in Ref. 8 were made in nanotube ropésteraction, for nanotubes with the typical radii found in the
suspended between SC electrodes, the most remarkable sigpes. It has been shown, however, that the electrostatic cou-
nal being the appearance of supercurrents for temperatur@iing between a large number of metallic nanotubes leads to
below the critical value of the contacts. What has been meaa substantial reduction of the repulsive interaction within
sured in that experiment is the proximity effect, by which each nanotub&:'°>The origin of this effect is similar to that
Cooper pairs are formed in the nanotubes near the SC cowf screening in a three-dimensiongdD) conductor. In a
tacts. A consistent explanation of the behavior of the superrope, however, the single-electron tunneling amplitude be-
currents measured experimentally has been proposed in Réfveen neighboring metallic nanotubes is highly suppressed
10, stressing the interpretation of the supercurrents as an dft general, due to the misalignment of the respective carbon
fect of 1D transport along the carbon nanotubes. lattices®1” The absence of a significant intertube electron
Moreover, SC transitions have been observed in ropekopping is what keeps the Coulomb interaction long ranged
suspended between metallic, nonsuperconductingn the nanotubes, despite the large reduction of its strength in
electrodes! In certain samples, a drop of several orders ofthe thick ropes.
magnitude in the resistance has been measured, showing the A microscopic model has been already proposed to ac-
onset of a SC transition in the system with a finite number oftount for the observation of superconductivity intrinsic to the
channels. The measurements reported in Refs. 11 and I8pes of nanotubed.It has been argued that, as long as the
point at the existence of a SC phase intrinsic to the carboooper pairs are formed at zero total momentum, they do not
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find the obstacle that single electrons have to tunnel betweegives rise to a retarded interaction, which can be represented
neighboring nanotubes due to the misalignment of the latby the effective potential obtained after integrating out the
tices. The existence of a SC transition is possible in the ropgshonons in the many-body theory. These are bound to propa-
as the coherence in the transverse directions is establishgate then between electron-phonon vertices, which have cou-
through the tunneling of Cooper pairs between theplings g(k,k’) depending on the momenta of the incoming
nanotubed? In this approach, the balance between the Couand outgoing electrons. The effective potential bears this de-
lomb repulsion and the effective attraction coming from pho-pendence on the momenta as well as on the frequancy
non exchange has been studied in forward-scattering chaidrning out to be
nels, where the electrostatic coupling between the metallic
nanotubes plays the most significant role. Oy
In this paper we refine substantially the theoretical con- V(w) =-9g(kk)g(a,q")— >, 1)

. . L. -0t w,_,
struction proposed to explain the superconductivity of the k-k
nanotube ropes. This is accomplished by incorporating the
backscattering and Umklapp processes that arise fro
phonon-mediated interactioh3.These provide in general

larger contributions than those from the Coulomb interactio . ) 2
to that kind of processes. For this reason, there is first th ecomes attractive at frequencies below the characteristic

question of reexamining at which scale the interactions in thé)_honon_ energy. In_ th'? respect, the acoustic phonons with
backscattering and Umklapp channels are able to destabilizcgs‘pfe.rs'On depending linearly on momentum do not lead to a
the Luttinger-liquid picture of the carbon nanotubes, and th Ignificant energy range'of gttracUon. This comes from the
kind of phases that may appear under those perturbations. act that the sound velocity, in the nanotubes is more than

We undertake a most accurate description of the nanotub%0 times smaller than the Fermi velocity. The exchange of

ropes by implementing a computational framework that dealgcoustic ﬁ)(honﬁns at Iowtm?r?r?ntulm 'iransfer prIO(tj.uces pnlt)r/] a
altogether with the electrostatic coupling between the metalyS'Y Weak enhancement ol the electron correfations, in the

lic nanotubes and the renormalization of the intratube interlcorm of contributions to the critical exponents that deviate

actions, which are enhanced at low enerdfeBhis makes it frfom ';he r;onmtﬁractm_g Iger;ai/gor_r?]y (j,ofrlrectlons ]f):hthe order
possible to discern between the electronic properties of th@ (vs/ve)?, as shown in Ref. 19. The influence of the acous-

ropes at weak coupling and at strong coupling, as the instdlc pho_nons is therefore negligible at low momentum transfelr
bilities of the electron system are different in each case. Afegarding the SC effects in carbon nanotubes. It can be easily

weak coupling, we will see that the picture already elaboS€en that a straightforward extension of the argument leads

rated using bosonization methods is in essence correct, af2 the same conclusion for other low-energy modes at the
counting for a regime of Luttinger-liquid behavior in thin bottom of the Pho,r!on spectrum.

ropes and for a SC phase in sufficiently thick ropes. Further- 1€ most significant role in the development of the SC

more, we will find new exotic phases at strong Coupling,CO”falatIons has to be played by hlgh-energy phonons and, in
characterized by the appearance of charge instabilities th&@rticular, by the modes of the optical branches of the spec-

depend on the helicity and the doping level of the nanotubelUM- These are found up to energies of the order of
in Fhe rope. y Ping 0.2 eV2%-22which are comparable to those of the low-energy

We will rely on the analysis of the scaling of the different electron modes rele_vant for the 1D transport in the carbon
interactions at low energies in our aim of getting insight intonar:jogqbels. The Opt'C?I hphonon mk?d?s porres#_ond tl(() local-
the electronic instabilities of the nanotube ropes. ThidZz€d displacements of the nanotube lattice. This makes ap-

method has the advantage of allowing the simultaneouBroPriateé the use of a tight-binding approximation for the
analysis of the scaling of the Cooper pair tunneling ampli-calculation of the electron-phonon couplings in E&). In =~
tude between metallic nanotubes. This is one of the key inthe carbon nanotubes, the couplings also bear an explicit

gredients of our computational procedure, since it discrimi-d&Pendence on the subbargiandp’ (to be described latgr

nates the regimes where a 3D phase-coherent state may fauwhich the incoming and outgoing electron modes belong,

formed through the rope. Our results will make it possible to@1d they can be represented by a sum over nearest neighbors

establish a fair comparison with the transition temperatureS' the atoms in the unit cell of the nanotdbe
measured experimentally and to locate the position of the

here w,_ stands for the energy of the exchanged phonon
with momentumk-k’ =g’ -q.18
It is seen from Eq(1) that the retarded interaction usually

corresponding samples in our phase diagram. Oy o (K K) = _ > u(p)*(k)u“,”)(k’)[es(k— k')
p.p (ka_k,)llz ' S s
(ss")
Il. PHONON-MEDIATED INTERACTIONS IN CARBON -ey(k-k')]- VI(ss), (2)
NANOTUBES

. . . . where u is the mass per unit lengtla,(k—k’) is the phonon
We consider first the effective electron-electron interac- K P Gtiey( ) P

tions that are generated by the exchange of phonons betwe®Rlarization vector at sits, and ug k), uP(K) are the re-
electronic currents. As we are going to see, this demands gpective amplitudes of the incoming and outgoing electrons.
careful analysis, since the repulsive or attractive character o¥(s,s’) is the matrix element of the atomic potential between
the interaction in each particular channel depends on the g@&earest-neighbor orbitals at siteands’, so that the gradient
ometry of the nanotube. In general, the exchange of phonoria Eqg. (2) accounts for the variation of the matrix element
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¥ _ W, E ¥, W the eigenvectors depending on the particular linear branch is
represented in Fig. 1 for those two particular geometries. The
(i) (_1‘) (_1]) (}) linear branches can be ascribed in general to any of two
N N k different subbandp=1, 2, which correspond to the different
i 2 form of the eigenvectors in E¢4).

The form of the relative electron amplitudes in the two
atoms of the lattice basis affects directly the evaluation of the
electron-phonon couplings, since these are given by a sum

(@ over nearest-neighbor sites of the carbon lattice. The fact that
the only difference between the two eigenvectors shown in
E E Eq. (4) is a relative—sign translates, for instance, into a pre-
cise relation between the electron-phonon couplings involv-
(1‘_) ing the linear branches with different symmetry. Recalling
k our notation for the subband labet 1,2, wehave

- 91,1(kK) = =g ok K'), (5

01.2k,K') ==0p.1(k,K'). (6)

(b) These relations just follow from the properties of the sum in
_ 'Eg. (2) under the exchange of modes with different symme-
FIG. 1. Scheme of the low-energy linear branches of armchaigry, in such a way that they hold irrespective of the particular
nanotubegupper figurg¢ and metallic zigzag nanotubéewer fig- form of the phonons involved.
ure) crossing at opposite momerka and . The spinors corre- There is moreover an important set of selection rules that
spond to the relative electron amplitudes in the two sublattices o an be derived from the expressie®), and which depend on
graphene rolled up to form the nanotube. The labels 1 and 2 at eaghe, o icylar kinematics of the scattered electron modes and
linear branch are used to identify the corresponding subband a%h the geometry of the nanotubln the case of armchair
cording to the symmetry of the spinors. nanotubes, for instance, we see from Et).that the modes
in the bonding subband have the same amplitude in the two
spect to the equilibrium positio#t. atoms of the lattice basis, while those in the antibonding

The influence of the nanotube geometry enters througfuPPand have opposite amplitudes. Then, if the incoming and
the specific symmetry of the electron modégg)(k) in the outgoing electrons have opposite momenta, it follows from
gapless subbands, which depends on the helicity of the tuexpressmr(Z) that the terms in the sum related by the ex-

. ! . X “hange of the sitesands’ just differ by a— sign, when the
bule. We are going to deal in particular with the cases Oficn and out electron modes belong to different subbands. We

armchair and zigzag nanotubes, since any other geometry f%%nclude that
a chiral nanotube can be thought as interpolating between

those two ideal instances. We recall that the low-energy spec- 012k,—k)=0 (7)
trum of any metallic nanotube is given by two pairs of linear. . . .
branches crossing at opposite points in momentum space, il[gthe case of the armchair nanotuB&#én explicit realiza-

shown in Fig. 1. The linear branches correspond actually t on of this property can be seen in the expression of the
the different eigenvalues of a one-particle Hamiltonian de_elect_ron-phonon coupling for transverse acoustic phonons
pending on the longitudinal componekbf the momentum obtained in Ref. 23.

and operating in the two-atom basis of the nanotube I&ttice . In the case of the zigzag nanotupes, the two eigenvectors
in Eq. (4) are mutually complex conjugate. Then, under the

1= 0 ak 3) exchange of the sites and s’ in the expression2), the
"Rk o) different terms in the sum remain unaltered, when the in and
_ ) ) ) out electron modes belong to different subbands. This im-
whereu is the Fermi velocity and is a complex parameter pjies that the rulg7) is not at work in that case. Instead, it
interpolating between 1 aridfor armchair and zigzag nano- can be easily shown that the terms in the sum change sign
tubes, respectively. _ “under the exchange of the nearest-neighbor sites when the

corresponding eigenvector that binds the relative electroBranches with the same eigenvector symmetry. Thus we have
amplitudes in the atoms of the lattice basis. The expressions

under small relative displacements of the orbitals with re

for the two linear branches at each Fermi point take in gen- 91,1k =K) =0z ok, =k) =0 (8)
eral the form in the case of the zigzag nanotuf3és.
1 1 The vanishing of the electron-phonon couplings in Egs.
do ) \_gs) (4) (7) and (8) reflects actually their odd behavior as a function

of the sum of the momenta for the incoming and outgoing
wheredg is an angle that vanishes for armchair nanotubes andlectrons. This property can be derived from the representa-
equalsw/2 for zigzag nanotubes. The different symmetry oftion (2), and it is also apparent in the particular expression of
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the coupling for acoustic phonons in the armchair nanotubes E

derived in Ref. 23. We may conclude that the electron- ®\/

phonon scattering amplitudes involving that kind of cou-

plings must average to zero when the in and out electron / \

modes are about opposite points in momentum space. This is

an usual situation when the nanotubes are at half filling,

since then the Fermi level is right at the crossing points of

the linear branches. E
The constraints given by Eqéb)—(8) have important con- W \Q/

sequences when they are translated into the effective ko ogo

electron-electron interactions built from Ed). We start this ’

analysis by classifying these into different channels with re-

spective coupling constangﬁ”.27 The lower index discerns ®

whether the interacting particles shift from one Fermi point

to the other(i=1), remain at different Fermi point$=2), or FIG. 2. Small momentum-transfer processes corresponding to

they interact near the same Fermi poiit4). The upper the couplingsgﬁf') andg(z“).

label follows the same rule to classify the different combina- ) . ) . ]

tions of left movers and right movers, including the possibil- Regarding the interactions mediated by phonons in the

@
&

ity of having Umklapp processé$=23). forward-sgattering cha_nnegé‘”, gf),_géz), andg(24>, they may
Using the general property be attractive or repulsive, depending on the geometry of the
nanotube and on whether it is doped or not. In the case of the
g;p,(k,k’) =gy p(K',K), (9) undoped zigzag nanotubes, the electron-phonon amplitudes

involved are odd functions of the sum of the longitudinal
it can be shown that all the interactions of backscatteringnomenta for the incoming and the outgoing electrons, ac-
type mediated by phonons have attractive character. Thisording to our discussion below E(). Since each interact-
comes from the fact that the product of the two electron4ng electron remains around a given Fermi point with longi-
phonon couplings in Eqil) is then a positive quantity, so tudinal momentumk=0 at half filling, this means that the
that the potential gets negative values for frequencies belowontributions by phonon exchange to the forward-scattering
the characteristic phonon energy. Therefore, the contribueouplingsg,”, g2, 9, andg,” must average to zero in the
tions from phonon exchange processémt we will denote  undoped zigzag nanotub€s.
with the label ex are negative in the case of the couplings Away from half filling, the kinematical constraints that
gi(l), that stand for interactions in which the incoming modeslead to the selection rulg8) are not at work in the zigzag
exchange their left- and right-moving character nanotubes. The forward-scattering couplings get nonvanish-
ing contributions from phonon exchange, although they are
reduced by a factor proportional to the square of the doping

In the processes contributing gf), the interacting elec- ate. The processes that take place within the same linear
trons retain their left- and right-moving character while, in Pranch give rise to eﬁ(e:):nve attraction in the channels corre-
those contributing tg'”, the electrons remain both left mov- sponding tog,” and g;", shown in Fig. 2. By using the
ing or right moving. The phonon-exchange processes avefomplex conjuge}te relation betwe(.an'modes in opposite linear
age to zero for both couplings in the case of undoped nand2@nches of a zigzag nanotube, it is easy to show that the
tubes, since they involve electron-phonon couplings with théroduct of electron-phonon COL(JP“”QS " Bd) is always
kinematics implying Eqs(7) and (8). The interaction is at- Positive for contributions to the,” andg;" couplings rep-
tractive in those channels away from half filling, althoughesented in Fig. 3, so that the effective interaction also be-
the respective couplings turn out to be proportional to thecOmes attractive in those channels.
square of the doping rafé. In the case of the undoped armchalr nanotubes, there_are

On the other hand, the Umklapp processes contributing t6© selection rult_es that may constrain the forward_—scattermg
the couplingsgi(s) are characterized by the fact that the inter-processes. The |_nteract|onf), medle(lztgad by phonons in the chan-
acting electrons shift from left to right moving, or vice versa, N€ls corresponding to thgt” and g couplings are always
When mediated by phonon exchange, these processes dfdractive, since they involve the scattering between e]egtrons
related to respective backscattering processes through the dR-the same subband of the armchair nanotube. This is the
change of the subbands 1 and 2 in one of the electrorPther way around for the processes contributing togffe
phonon couplings. This operation introduces a relative minug@nd gy’ couplings, since the scattering is then between an
sign between the respective scattering amplitudes, accordirgjectron in the bonding subband and another in the antibond-
to the relationg5) and (6). Therefore, the effective interac- ing subband. Consequently, the two electron-phonon cou-
tion becomes repulsive in the channels corresponding to thelings that appear in Eql) have to differ by a relative

Coup“ngsgg—g), g<23), and gf), which get contributions from minus sign. Thus, the contributions by phonon exchange to

g, < 0,05, < 0,9, < 0. (10)

2,ex

phonon exchange the gf) andg(z‘” couplings are positive for frequencies below
@ @ @ the characteristic phonon energy, so that the effective inter-
Ol ex™ 0.07.ex™> 0.94.ex> 0. (1) action becomes repulsive in the corresponding channels.
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E Expression(13) interpolates between the two well-known
W \v limits of the 1D Coulomb potentia¥/(k) —In(1/k) ask— 0
koogo andV(k) — 1/k if k>k..

The role of the Coulomb interaction in an isolated metal-
lic nanotube has been the subject of intense study, specially
@ in relation to the experimental observation of Luttinger-
liquid phenomenology. Actually, it has been shéwhthat
E the strength of the backscattering and Umklapp processes
W AN mediated by the Coulomb interaction is reduced by a relative

N g factor~0.1a/R, in terms of the ratio of the C-C distanago
\ the nanotube radiuR, with respect to the nominal strength
of the potential in Eq(13). Therefore, for typical nanotubes
with a diameter about 1.4 nm, the Coulomb contribution to
backscattering and Umklapp scattering can be safely ne-

FIG. 3. Small momentum-transfer processes corresponding tglected in favor of the contributions from phonon exchange,
the couplingsy? andg?. whenever the strengtlg| of the latter is above-0.05%. We
have explicitly checked this point by studying the sensitivity
é’_f our results to small changes in these couplings.

The competition between the long-range Coulomb inter-
action and the effective interaction from phonon exchange

tive of whether the electron system is doped or not.
In order to compare later with the repulsive Coulomb In_gakes place in the forward-scattering channels. These corre-
(2) (2)

teraction, we can make an estimate of the strength of th dtoth i o) 4a® Th ffici
effective interaction by phonon exchange. We will take?p?n toft ﬁCOUp |ng§21,392 » G, an gg' fecczjoe l|C|_ent
henceforth the limit in which the interaction mediated by Eq.In ront of the potential13) turns out to be of order 1 times

(1) becomes instantaneous. The order of magnitude of th@e Fermi velocitye, _after introd_ucing a"f""“e of the di_e_lec-
potential is then given by the variation of the matrix elementl'iC Constant appropriate for typical experimental conditins.
J with the C-C distance. 4J/da~4.5 eV AL and the char- Moreover, the Coulomb interaction is further enhanced at

(b)

These properties hold for the armchair nanotubes, irrespe

acteristic energy scale at the top of the phonon spectrun{

w,~0.2 eV. In this respect, the energy of phonons in pro_of the potential. Taking into account the above estimate for

cesses with momentum transfek-2becomes comparable to the strength of the phonon-exchange interaction in nanotubes

that of the optical phonons at low momentum transfer, so tha(t)f ty_p|cal thickness, it becomes clear that the Co_ulor_nb re-
we can take a common strenggtwith pulsion overcomes by far that source of attraction in the

forward-scattering channels, in the case of isolated single-
gl ~ (8310 @)% o (12  walled nanotubes.

An isolated metallic nanotube can be described then by a
1D model of interacting electrons in which tgg), g(24), gf),
and gﬁl“) couplings are much larger in absolute value than
those for backscattering and Umklapp interactions. As a first
approximation, we can focus on the model with just the four

in all the channels of the effective interaction. Taking the
linear mass density. appropriate for typical nanotubes with
diameter around 1.4 nm, we find thigt turns out to be of
the order of 0.&f, in terms of the Fermi velocityr=~8

X L . : .
10> ms forward-scattering couplings, which has the advantage of
leading to a completely integrable system. At this stage,
lll. COULOMB INTERACTIONS AND LUTTINGER switching on the interaction produces a profound reorganiza-

LIQUID REGIME tion of the single-particle spectrum. The free-electron de-

Now we turn our attention to the Coulomb interaction andscnpuon IS unstable against electron-electron

; . 3233 : -
the confrontation with the effective interaction mediated bylnteractlons°’. To remain metallic, th_e 1D system ha$ to

phonon exchange. In one spatial dimension there is no corrHPPress spectral weight at the Fermi level forming a liquid
ventional plasmon screening of the Coulomb interaction, tha//th @ Power-law-likew® spectral density. This characterizes

therefore remains long rang@¥® The Coulomb potential e Luttinger-liquid regime of the carbon nanotubes, in

Ve(k) can be parametrized with two system—dependenn/h'Ch the correlation fu_nctlons and dlfferent' observa_lbles
parameterd ave power-law behavior governed by suitable critical

exponents:*
ke +k The forward-scattering interactions can be written in
Ve(k) = Voln| = — . (13)  terms of the electron density operators
whereV, encodes the intensity of the interaction dqds a Prie(¥) =W ()W (%) (14

momentum cutoff determined by the system geometry. For

the carbon nanotubek, is of the order of the inverse of the which correspond to the different electron fiellg,, for the
nanotube radiug, as it is the memory that the electron sys- linear branches shown in Fig. 1. We adopt a notation in
tem keeps of the finite transversal size, after projection of thevhich the indexr=L,R is used to label the left- or right-
3D potential onto the longitudinal direction of the tubule. moving character of the linear branch, and the intex to
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label the Fermi point. The index stands for the two differ- Uy = VUNSD 32 (24)

ent spin projections. As the interaction by phonon exchange h o )

and the Coulomb interaction do not depend on the spin of thdhese parameters govern in turn the thermodynamic and
interacting electrons, we may carry out the discussion irffansport properties, encoded into the compressibilikgs

terms of the charge density operators the Drude weightsD, and the dependence of the specific
heatC, on the temperaturé:
1
(k) =—=[p;+(K) + pyi . 15 2
Pric(K) Vyz[.om( ) Pni( )] (15 Ky = , (25)
TTU N+

Moreover, it is convenient to define the symmetric and anti-
symmetric combinations of the corresponding density opera- D, =205, (26)
tors in the two Fermi points

C, =1 1

rsdk) = Tlg[pR+c(k> + o], (16) T §<u_+ * I) : 27

As already remarked, the description in terms of the

1 forward-scattering interactions provides a good approxima-
5RAC(k):?[pm.c(k)_pR_C(k)], (17 tion to the behavior of isolated nanotubes, for which the

V2 Coulomb interaction is not significantly screerédThe
Coulomb repulsion gives then the dominant contribution to
the couplingsg’, g2, ¢, andg{?’. This is consistent with
the experimental observations of Luttinger-liquid behavior in
the carbon nanotub&d. However, one has to bear in mind

1 that the liquid with just forward-scattering interactions is not
PLadk) = =[pL-c(k) = prLec(K)]. (190  stable under the perturbations introduced by the backscatter-

V2 ing and the Umklapp scattering. Thus, although the strength

With this change of variables, the Hamiltonian for the Of the latter may be nominally small compared to the Cou-

forward-scattering interactions can be written in the form 0mb repulsion, their effects are enhanced as the system is
probed at progressively low energies. The 1D electron sys-

Brodk) = Tla[pL_c(k> + o], (18)

1 ke 1 (% dk tem cannot support the transition to a phase with long-range
Hes= EUFI Ak, :prig(K)prig(= k)2 + Ef 5-2PrsdK) order, but there is a tendency of the Luttinger liquid to break
Yo Mo e down, which can be materialized when any of the parameters
X+ 0 Prsd =0+ Bad(G + Pusd k) (2D or (2D vanishes. N |
- . - tis then important to have an estimate of the energy scale
@) _ qys ) _ o
*Pradk)(9s” ~ 027 )Prad = K) + pradk)(9s” — 027) at which an individual nanotube may enter a new phase,
XPrad= k) + ZprsdK)(G5 + 9P PLsd— K) either by the vanishing
+ Zprad (95 = 9 PLad - K], (20) Ke=0 or K-=0 (28)
wherek, stands again for the momentum cutoff dictated by©r the divergence
the transverse size of the system. 1/K,=0 or 1K_=0 (29)

We see that the symmetric and the antisymmetric combi- .
nation of the charge density near the two Fermi points ar@f any of the charge stiffnesses. A powerful tool to keep track
completely decoupled in the Hamiltonia20). The quadratic  Of such dramatic changes is the renormalization gr3up.
expression in the density operators can be diagonalized sepatom the technical point of view, the instabilities of the elec-
rately in the two sectors. Thus, an individual metallic nano-tron system manifest in the logarithmic dependence on en-
tube can be characterized at this stage by four independeftdy of certain diagrams, that originates scaling relations be-

velocities featuring the Luttinger-liquid behavige? tween the couplings. These equations for individual
nanotubes were derived to the one-loop order in Ref. 27. Our

@4 q@ 424 4@

94 20 9 %0

_ aim is to use them now to find the instabilities triggered by
Une =UF ¥ T P (21) the effective backscattering and Umklapp interactions arising
from phonon exchange.

g(4) + g(“) g(z) + g(z) The growth of the effective interactions at low energies
e = (22)  can be understood from the fact that their couplings get
m 77 anomalous dimensions, some of them depending on the

In terms of these fundamental parameters, we can expreggrward-sc_:attering couplings. We hqve_, for instance, the s_cal-
several physical magnitudes of interest such as the renormdR9 €quations(up to terms quadratic in the backscattering

Vgx =Up+

ized velocitiesu, and the stiffnessek,: and Umklapp couplings
1 1
. 9 (2)/0-”:(1__) 2 4 = (g® g3 = gD gD . (30
K, = [Le (23) 91 K )9 7TUF(94 91 =9;°91), (30)
UN+
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TABLE I. Initial values of the couplings, as deduced in the text, 10
for the scaling equations corresponding to an individual metallic
nanotube. The quantity=(e?/2m«)In|k /K| is the average strength 8
of the Coulomb potential over long distances, witr- 103k, and
« being a suitable dielectric constant. The quargity O represents 6
the contribution from phonon-exchange processes. The fattor 1
stands for the reduction proportional to the square of the doping rate 4
in doped nanotubes.
2
armchair zigzag
parameter undoped doped undoped doped 1
oi g g g g
gf 0 2] 0 & FIG. 4. The thick soliddashedl line corresponds to the plot of
gf -g 0 -g 0 I=In(E./ wg), wherewyq is the energy scale at which the parameter
gzll 0 59 0 59 K_ diverges in doped armchaizigzag nanotubes, as a function of
1 the effective strengtiG=4|g|/mvg of the phonon-mediated inter-
gg 9 9 g action. The lower soliddashegl curve represents the behavior of
9 -9 0 -9 0 the K, parameter in doped armchairigzag nanotubes.
1
94 9 9 g g
9% -9 0 -9 0 strength of the Coulomb potential has been averaged over the
% vtg vtg v v+é&g length of the nanotube by taking=(€?/2m«)log|k./ko|, with
% v—=g v—g v v+89 ko~ 1073k, and a dielectric constam such that 2°/ mkuvg
oA v-g v—g v v+589 =1.0. We have considered in particular the case of doped
gs v+g v+g v v+8g nanotubes, which is most relevant to establish the compari-

son with the experimental observations.

The results show that there is always some low-energy
scalewq at which the charge stiffnes€_ diverges, as repre-
dgPlal = (1-K)gd + —( 2929 + 29" +9¥9?),  sented in Fig. 4. This marks the breakdown of the Luttinger-

TUF liquid picture, since that effect corresponds to the develop-
(3D ment of a branch cut in such a physical quantity. For a
sensible choice of the effective couplinggld mvr~0.2, the
1 Luttinger-liquid behavior extends anyhow for about 4 orders
agglal = (1 _K_)gz i — (g9t - 293793 + 9’9" of magnitude below the high-energy cutd#~0.1 eV, as
F . . . . Ly
D@ (B shown in Fig. 4. The breqkdowr! of the Luttinger-liquid is .
-9y - gPg"), (32)  beyond the range of energies which have been tested experi-
mentally before entering the Coulomb blockade regime of

1 the nanotub&’ However, the appearance of a new phase
3 - 3 = 1),3) _ 1) ~(3 3)~(2) . . iy ey
ag1al = (1-K,)gs + - (008 - 20395 + g of characterized by a divergent compressibility should be even-
. F tually measured in suitably long samples, or in thinner nano-
-g2gy), (33)  tubes with enhanced electron-phonon interactfidwe have

also checked that, in metallic nanotubes with the Fermi level
3 1 @D _ 2gIg. fine tuned to remain at half filling, the low-energy scalg
dglal={2-K, - Pl gy + - —(-gay” - 2059y can be significantly enlarged, shrinking the energy range for
F the existence of Luttinger-liquid behavidr.

+97gy" + g9 + o¥gi), (34)
wherel stapds fpr(minus) the logarithm of the energy scale IV. SCREENING EEFECTS IN CARBON NANOTUBE
measured in units of the high-energy cutBff~ vk, (of the ROPES

order of ~0.1 eV). These equations are similar to those ob-
tained in Ref. 27, except for the nonperturbative improve- The above framework has to be conveniently modified in
ment of writing the exact dependence of the anomalous dierder to account for the electronic properties of the nanotube
mensions on the forward-scattering couplingisrough K, ropes. These are systems that may consist of a large number
and K_). The rest of the equations correspond to the couof nanotubes, so that the coupling between those with metal-
plings which start having a flow quadratic in backscatteringlic character may have a large effect on the electronic prop-
and Umklapp couplings, and they have been already writteerties. The amplitude for the tunneling of single electrons
in Ref. 27. between neighboring metallic nanotubes is strongly sup-
To illustrate the above ideas, we have solved the full sepressed in ropes made of a random mixture of nanotubes
of scaling equations taking the initial values of the couplingswith different helicitiest®1” In these conditions, the coupling
appropriate for individual nanotubes, as listed in Table I. Thebetween metallic nanotubes has essentially electrostatic char-
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acter. Actually, given the long-range nature of the Coulomb (2)
interaction, the appropriate description of the rope is made
by assuming that the charge in a given nanotube interacts
with the charge present in the rest of the metallic nanotubes.

We have to discern between the previously defined cou- D;
pIingsgi(”, for the interactions within each metallic nanotube, la la
and new couplingsui(”(a,b) parametrizing the interactions
between different metallic nanotubes labeledagndb (we
will use the same convention for super and subindices in the
intratube and the intertube interactipn&s pointed out, the
main contributions to these couplings come from the repul-
sive Coulomb interaction in forward-scattering channels.
Then, as a first step in the description of the ropes, we can
concentrate on the analysis of the model including gﬁé
92, ¢, 62, u’(a,b), uP(a,b), u’(a,b), and uP(a,b)
couplings. This already gives rise to relevant effects, as it V?) (
allows us to capture the different regimes that arise when I I 1 L c Iy
shifting from small to large number of metallic nanotubes in
the rope. We are going to show that, in the latter case, there
are remarkable screening effects in the repulsion between
two electrons living in the same nanotube, from the interac-
tion with the charge in the other metallic nanotubes.

We can accomplish the solution of the model with
forward-scattering interactions in the rope, by an extension
O_f the d|agran;mat|c method used for the solution _Of the Lut"lnteractions between currertswithin the same nanotube. The cur-
tinger modef® By effect of the quantum corrections, the rents have well-defined chirality and spin. The last term takes into
bare couplinggi(“ are dressed to become interaction verticesaccount the polarization of the restrof 1 metallic nanotubes in the
Di(“, as well as the couplingsi(”(a,b) are dressed to turn rope. The prime stands for the exclusio# a in the summation(b)
into Vertices\/i(')(a,b). The dressed vertices obey the self- Diagrams contributing to the screening of Coulomb interactions be-
consistent equations represented diagrammatically in Fig. $ween currents, andl, belonging to different metallic nanotubes.

; ; (1) ; The prime stands for the exclusiar# a,b in the summation.
For the intratube verticeB,”, the equations take the form P

(b)

FIG. 5. (a) Diagrams contributing to the screening of Coulomb

DF = g2 + P10 + g1 D + g1, Y

D@ = ¢ + gILD? + g 211D + g11.DY
4 g4 g4 +~4 g4 4 92 +-2 (4) 2) 2 (4)

+gMDY + X [u(2,0TLVeY (c,a)

+g2T.DP + X [uf(a, 0LV (c,a) .

@ Z:a @ @) +uy?(a,0)l1_V2(c,a) + uP(a,0)11,Vy(c,a)
+UP(a, 0TIV (c,a) + U (2,0 TLVE(c,a) +u(a, oIV (c,a)], (38)
+u?(a,0)I_V2(c,a)], (39

wherell, andIl_ are the respective polarizations for right
and left branches with linear dispersion, given by

D =g’ + g 11,0 + g{ 11D + g3 '11,D}" ko) =5 k k)’ (39
T\ \w—0
+g"TI_DP + 3 [uP(a,0)IL, V4 (c,a) ]
c#a _ k
+uP(a,0)1_VP(c,a) + u?(a,c)IL, VS (c,a) I_(k,w) = Pap—. (40)
+ Ui (a,0)[I_VP(c,a)], (36)

The equations giving the intertube vertic‘e‘g)(a,b) are of
the same type as those written above and can be also ob-
tained in a straightforward way.

DSY = g5 + ¢S IL,DYY + gPTI_DP + gy P11, DY The resolution of the self-consistent equations produces in

general dressed vertic@#’) andV" that depend on the mo-

+g@T_.D? + > [u(a,0)ILV{(c,a) '

g, 11-D3 > (a,C)1L. V7 (C, mentum transfek and the frequencyw. For the sake of
c#a handling a simpler solution allowing to represent the vertices
+ U (a,0)[1_VP(c,a) + U’ (a,0) I,V (c,a) as dressed couplling constants, we Wi|| tgke in what follows

© © the static approximation in the polarizatio(®9) and (40).

+uy (a,0l1.V57(c,a)], 37 The precise form of the solution still depends on the values
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chosen for the bare couplingﬁ) and ui(j)(a,b). In this re-

PHYSICAL REVIEW BO, 045410(2004

(v) Inthe limitn—0, g— 0, we recover the bare vertices

spect and having in mind the long-range character of theised in precedent studies of superconductivity in isolated
Coulomb interaction, we will assume that the couplingsnanotubes®

ui(”(a,b) do not depend on the particular pair of metallic
nanotubes, so that we can simply write them as

ul=v (41)
with v=(e?/2mk)log|k./Ko|. For thegi(j) couplings, we will
stick to the values summarized in Table I.

In the case of a bundle aof armchair nanotubes, the so-
lution of the self-consistent equations is

DY = DY = () +gf(g), (42)
D(24) = D&Z) =vf(nv) - gf(g), (43)
Vi(j) = Uf(nl)), (44)

wheref(x)=1/(1+4x/ 7vg).
In the case of a rope with metallic zigzag nanotubes, we
have

DY = [vf(nu + 8g) + 84]f(50) (45)
for all of the four intratube vertices, and
VD =[vf(nv + 89)]f(59) (46)

for the intertube vertices.

There are a number of conclusions from this calculation

that have to be emphasized:
(i) As expected, the calculation produdeste renormal-

izations. The physical process that we are considering at this r99(23)/r9I =
level is the screening of the Coulomb interaction, described

by RPA-like diagrams well-defined in the infrared lingitith
no logarithmic divergences

(i) The effect of the Coulomb screening is well-captured
in the expression of the dressed vertices. The RPA-like diad 9513)/5| =
grams considered screen repulsive interactions and enhance
the phonon-mediated interactions, and the latter always pre-

vail for sufficiently large numben of metallic nanotubes
since

o]

lim|DY| = T+ g

n—oe

(47)

(i) For 4|g|/mve close to 1, we find the same kind of
divergence already observed in the bosonization piéttte,

In the ropes, the couplings that give the actual strength of
the interaction in the forward-scattering channels correspond
to the verticeD”, DY, DY, andD{. These are therefore
the couplings that have to be taken into account when look-
ing for the electronic instabilities in the bundle of nanotubes.
The intratube couplings have nontrivial scaling properties
that reflect the behavior of the electron system at low ener-
gies. Their scaling equations are similar to those derived in
Ref. 27 for individual nanotubes, except for the replacement
of the couplingsg!”, g7, gé“), andg? by the corresponding
dressed coupling@i“), DY, D(24), and Df), that incorporate
the integration of the intertube interactions in the rope. Thus,
we have

1 1
1621 =D - DR)GE + (g2 - o),
TTUE TTUE

(48)
@1 = L @4 @3, L @) 4 A3 (D)
397191 =——(Dy” + D7)y + — (= 20,701 + 05 01
TTUE TTUE
+9P9?), (49)

1 1
168191 = (D - D) + —(g'g - 200’
F

TTUE

+o0 - oo - gl (50

1 1
—— (D + DY)gy” + —— (00" - 294" g5
TUE TTUE
+979” - 9.795"), (51)

1 1
—207'gY + — (- g¥of" - 205" + 9’0}
TTUE TUE

+95'97 + 9”9y, (52)
wherel stands again fofminug the logarithm of the energy
scale in units of the high-energy cutdf.. The rest of the
equations are completely similar to those written in Ref. 27,
again with the replacement of the forward-scattering cou-
plings by the corresponding dressed couplings.

The discussion of the low-energy properties that derive
from the scaling equations leads to a very rich phase dia-

which corresponds to the Wentzel-Bardeen singularity. Begram, since the initial values of the couplirigg'), D(Zz), D(Z‘”,
yond that limit, to treat the electron-phonon interaction as andD'? depend on the number of metallic nanotubes in the
perturbation of the purely electronic problem makes no sensgpe through Eqg42), (43), and(45). In order to unveil the
and a careful treatment demands to deal with the electrordifferent phases, we have also to pay attention to the scaling

phonon “bound state{polaron as the starting point.
(iv) The intertube verticeS/i(” show also the effects of

of the amplitudes for intertube hopping, which will give a
measure of the development of 3D coherence in the rope.

screening of the repulsive interaction. They do not enter ex-
plicitly in the expression of any response function, and their

: . ST . - V. INTERTUBE PAIR HOPPING AND COHERENCE
influence is not significant anyhow in the massive ropes, as

they vanish in the limit or large humbearof metallic nano-
tubes.

Maarouf, Kane, and Melé have elaborated a microscopic
tight-binding theory of single-electron tunneling between
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two carbon nanotubes with arbitrary helicities. According to —0 3R<“>(w)
them, the tunneling amplitudé; between two nanotubes R (w):ﬁm—w (57)
with the same helicity and radilR is
satisfies the scaling equatisn
_ B0 _ _
r=le\ R (53) IR = ARV, (58)

wheretg is the amplitude for transverse hopping betweenThe interactions corresponding gf) and g(lz) are always

two graphite sheets argj is the length scale associated with attractive, pointing at the enhancement of the SC correlations
the hopping between carbon atoms. The mismatch of thaith sswave symmetry at low energies.

lattices of parallel nanotubes with different helicity makes In the compositionally disordered ropes, the coherence is
difficult the conservation of the longitudinal momentum in established by the tunneling of Cooper pairs between neigh-
the tunneling process, producing an exponential suppressidsoring metallic nanotubes. The amplituddor this process

of the tunneling amplitudé has a dependence on the energy scale characterized again by
5 the anomalous dimensiak. The scaling equation far is
tL = tTe—(1/4)R60¢5k , (54)
9Jl9l = AJ+ct (59

where &k is the momentum mismatch of the Fermi points in
the two nanotubes, arising from the different orientation ofwherec is a parameter depending on the charge stiffness in
the respective carbon lattices. This introduces a factor ofhe metallic nanotube¥.

suppression that sets the single-particle intertube hopping We have characterized the SC transition by looking for a
about three orders of magnitude below the estimateé-féf  Pole w. in the 3D two-particle propagatd® (w) of the Coo-

The authors of Ref. 16 applied these results to a composper pairs along the rope. This is related to the SC response
tionally disordered ropga mixture of nanotubes with ran- function R() in the individual nanotubes through the
dom helicities. In this kind of system, even if all the nano- Schwinger-Dyson equation
tubes are metallic, it has been shown that the localization

I
length in the transverse direction & ~1 nm. One may R(w)=Lw)~, (60)
conclude that the single-electron states are not extended 1-RO(w)d
throughout the compositionally disordered rope, but local- 5
ized in individual nanotube¥. where J is the (dimensionless pair hopping measured in

Such a small value of, acts as a cutoff in the scaling units of the high-energy cutoff. The critical frequency can be
equation for the single-electron tunneling amplitutle ~ estimated in the SC phase by solving the equation for the
given in terms of the charge stiffnesof the 1D electron pole in the 3D Cooper pair propagator
liquids by?® 5

R (we) = 113. (61)

K—l
atlal = (2 — )tr (55) Moreover, we have studied the competition between su-
perconductivity and other charge instabilities in the rope by

Then,t, can be considered as a constant in our low-energyebosonizing the system at each step in the integration of the
analysis, at scales beyond the localization length. On thecaling equations for the couplings, considering backscatter-
other hand, compositional disorder does not interfere withing and Umklapp scattering as small perturbations. ifldée
the tunneling of Cooper pairs in as much they are preformedidual nanotubes are characterized now by the independent
with zero total momentum. We still can have quantum cohervelocities
ent behavior in the transverse direction beyand if the
amplitude for pair hopping grows at low energies.

Dy + DY . D+ DY

The fact that a rope is made of nanotubes with different UNe ZURY T T ’ 62
helicities and diameters has another consequence regarding
its electronic properties. It prevents the formation of any DY+ DY D@ +DP
phase with spin-density-wave or charge-density-wave order Ve =Vp*t - - - (63)

at the rope level. On the other hand, the nanotubes may have
strong SC correlations. The transport of the Cooper pair§he corresponding Luttinger liquid parameters are
along each nanotube is governed by the anomalous dimen- T =
sion of the 1D two-particle propagator K= o TEY (D" £D3") = (D3 £ D)

* Ve + (DY £ DY) + (DY £ DY)

(64)

We have obtained complementary information about the
physical properties of the system by studying the regions
where the upper sign holds for singlet pairing and the loweiwhere theK, parameters either vanish or diverge. This hap-
sign for triplet pairing. The SC response function for a singlepens when one of the functions given by E8g) develops a
nanotubeR"(w) does not scale itself homogeneously at lowbranch cut at some energy scale, what has to be understood
energies, but its derivative as the onset of a phase transition in the system.

1
A=-—OP g+ g £ gP), (56)
TTUE
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20

15 FIG. 6. Scale dependence of

1 the coupling constants for
— 4|g|/mve=0.3 in a bundle witm

§ =200 undoped metallic zigzag
- nanotubes. For these parameters
the system is in the SC state with
a critical frequencyw, shown in
the figure. At that point, the scal-
ing stops due to the opening of the
SC single-particle gap. Here we
1 have continued the flow to show
— that the system ab is well inside

4 the weak-coupling regime. The
crossover to the strong-coupling
regime would take place at a
. | . lower frequencywy,,.

N -
n
=)}

3
In(E /o)

VI. RESULTS ence that we find between the weak and strong-coupling re-
agimes is the scale dependence of the Luttinger-liquid

: : ; arameters. While in the weak-coupling regitde and K_
g_rams O;’rz':ThCehigtﬁrnedo?I?hZ:?wgi‘?fégbe;hgihg?wg flilrlfg itn(ﬁardly renormalize, in the strong-coupling regime they can
ISCUSS Tl - . P vanish or diverge as we integrate out the high-energy degrees
this problem. Within our computatlonql approach we can for'of freedom. This behavior is very much like that of a 1D
mglly set to zero all the backscatterlng _and_UmkIapp COUinteracting electron liquid, with the Luttinger-liquid behavior
plings, keeping the system at a nontrivial fixed point de-

: . > : and its instabilities.
scribed in the bosonization pictutéIn that case, we cansay  The different phases which arise in this approach have

that the system is in the weak-coupling limit because none oheen represented in Figs. 8 and 9, where contour lines of
the couplings is large. However, that fixed point is in generagonstant, = In(E,/ ) have been also plotted. The critical
unstable against chirality-breaking perturbations such agequencyw, represents in either case the value at which the
backscattering and Umklapp processes, that we know argcC transition takes place or the point where any of the
important in this problem because there is significant_uttinger-liquid parameters develops a branch cut, as the
electron-phonon coupling in the individual nanotubes. Undegcaling equationfincluding Eqs(58) and(59)] are solved at
these perturbations, the system moves away from the origin@rogressively low energies. We have discerned between the
bosonization fixed point and approaches a strong-couplindifferent cases of zigzag and armchair nanotubes and
fixed point. However, the crossover behavior is very slowwhether they are doped or not, as the initial conditions for
being characterized by a relatively small crossover frequencihe scaling equations of the couplings are different in each
Wyo- case.

Moreover, in a large region of the phase diagram the scal- The common trend observed in the four phase diagrams is
ing as INE,/w)— is cutoff by the onset of the 3D coher- given by the boundary that separates the SC phase from the
ence in the transport of the Cooper pairs. This opens a gap iregion with singular behavior of any of the Luttinger-liquid
the single-particle spectrum befoig, has been reachddee  parameters at small and moderate valuegpfThis line is
Fig. 6). In these conditions, the SC phase remains in thectually very close to the boundary of the region in which the
region of influence of the weak-coupling fixed point, which pair-hopping amplitude does not grow large at low energies.
governs the main physical properties. df> w,,, the de-  When this happens, the nanotubes in the rope start to behave
scription of a SC transitioiftwo-particle propagators, gaps, as uncoupled 1D systems, what explains the disappearance
critical temperaturgsobtained using the exact solution at the of the SC transition. This provides a graphic representation
bosonization fixed point is essentially correct. of the distinction we have made between the regime of weak-

A different way to study the development of SC correla-coupling superconductivity and the strong-coupling regime
tions in individual nanotubes is to look for the divergence ingiven by the instabilities of the individual nanotubes.
the SC response functioR()(w).2"28 That effect is attached In the undoped ropes, we observe that the latter corre-
to the strong-coupling regime and has completely differenspond to the vanishing df, at small values ofg|. A closer
physical origin. This manifest itself in several features as, folook at the solution of the equations reveals that the velocity
instance, that the critical frequency increases with the nume;, given by Eq.(63) is the parameter being driven to zero.
ber n of metallic nanotubes in a rope in the weak-couplingThe physical effect corresponds then to the vanishing of the
SC phase(see Fig. 7 while stays almost constant or de- Drude pealD,, according to Eq(26). This new phase has to
creases in the strong-coupling one. Another important differbe interpreted as the extension of the Mott insulating phase

Before going to a detailed description of the phase di
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o /E | K n-undoped metallic zigzag nano-
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! increase ofw; with n marks the
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e - perimental samples, is characteris-
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W ™ ductivity (Ref. 14.
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found in the studies of carbon nanotubes with repulsive VII. CONCLUSIONS

interactionst® In our case, it is favored in the undoped sys-
tems, as the effective interaction from phonon exchange We have shown that a variety of zero-temperature phases
shows a repulsive component in some of the interactiorare possible in the carbon nanotube ropes, depending mainly
channels of the carbon nanotubes at half filling. on the doping level, the number of metallic nanotubes, and
In doped nanotube ropes, the phase that prevails in thihe strength of the electron-phonon interactjathich is spe-
absence of coherent pair hopping corresponds to the divecially sensitive to the diameter of the individual nanotybes
gence oK, at moderate and large valuesmfas observed in  Our results point at the existence of a SC phase extended
Figs. 8 and 9. This singular behavior stems now from theover a large region of the phase diagram, given in terms of
vanishing of the renormalizedy, velocity in Eq. (62). the effective coupling for the phonon-mediated interaction
Therefore, the onset of the new phase is characterized cand the number of metallic nanotubes in the rope. There are
physical grounds by the divergence of the compressibility two effects that cooperate to make possible the superconduc-
in the channel of the total charge. Again, these effects have tvity of the nanotube ropes. One of them is the reduction in
be understood in terms of the transition to a regime markethe strength of the long-range Coulomb repulsion, which be-
by the decoupling of the different metallic nanotubes in thecomes more suppressed for larger contents of metallic nano-
rope. tubes in a rope. This allows us to explain the appearance of
For low content of metallic nanotubes or values of thelarge SC correlations in the thick ropes at low temperatures.
effective couplingG=4|g|/mve close to 1, we see that the The other factor has to do with the fact that once the SC
natural tendency of the doped system is to fall into a phaseorrelations develop, the transport of the Cooper pairs is also
given by the divergence of thi€_ parameter. The onset of enhanced along the transverse directions of the rope. The
this phase is characterized then by the divergence of thmtertube hopping of Cooper pairs becomes actually the
compressibility in the channel of the mismatch of charge indominant tunneling amplitude at low energies, in typical
the two gapless subbands. For valuesGfclose to 1, it ropes made of a random mixture of nanotubes with different
becomes clear that the divergence has the same characterhdficities. We have made clear with our analysis that the
the Wentzel-Bardeen singularity, which corresponds in ousuperconductivity is a phenomenon that belongs to the weak-
description to the pole found in thi#g) component of the coupling regime in sufficiently thick ropes, as it springs from
dressed coupling&t2), (43), and(45). That kind of phase is a suitable reduction of the Coulomb repulsion that makes the
the natural counterpart of the SC instability since, for suffi-phonon-mediated effective interaction to prevail in the indi-
ciently strong attraction, the system finds more favorable ityidual nanotubes.
macroscopic segregation than the formation of Cooper The plausibility of the SC phase in the nanotube ropes is
pairs3* From a 1D point of view, the parametefs andK_  the most significant result of our study, given the implica-
give the strength of the uniform density-density correlationdions that it has from the phenomenological point of view.
in their respective channet333The divergence oK_ marks ~ The existence of SC transitions has been reported in Refs. 11
then the approach of a regime with increasingly large densitand 12, in experiments carried out in samples with an ap-
fluctuations. The singularity reflects the fact that the theoretproximate content of about 100 metallic nanotubes. The tran-
ical framework applied breaks down at certain point, beyondsition temperatures that have been measured are slightly be-
which the variables chosen do not allow the description ofow 0.5 K. When converted to energy units, that scale turns
the rope as a homogeneous system. out to be of the order of10°2 times our high-energy cutoff
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FIG. 8. Phase diagram of undopé and dopedb) armchair FIG. 9. Phase diagram of undopéd) and doped(b) zigzag

nanotubes as a function of the number of metallic nanotumbies  nanotubes as a function of the number of metallic nanotubies

the rope and the strength of the attractive interactiGn the rope and the strength of the attractive interactiGn
=4|g|/mvg. Thick lines represent the phase boundaries between a4|g|/mvg. Thick and thin lines have the same meaning as in Fig.
3D phase-coherent SC phase and the 1D phases characterized &yin the case of doped nanotubes, the fadtof reduction of the
the breaking of the parametéfs andK_. Thin lines are contours of  effective interactions in Table | has been set to 0.1. The narrow
constant critical frequency, starting from above with KE./ w.) phase to the left of diagraiib) corresponds to the divergence of the
=2,4,6,.... K_ parameter.

E.. Therefore, we can infer that the samples where the S@nd with a total of about 45 nanotubes. Looking for phenom-
transitions have been observed should correspond to poin&iological signatures in the opposite case of very thick
in the phase diagram with (B./ w.) =7. Taking the phase ropes, the phase diagrams in Figs. 8 and 9 suggest that higher
diagram of the doped zigzag nanotubes as a most appropridt@nsition temperatures could be obtained by dealing with
guide, we see that the points for the mentioned samples seesamples with larger number of metallic nanotubes. The
to be sitting near the boundary between the SC phase and tinewly devised techniques to separate metallic and semicon-
phase with the 1D charge instability. ducting nanotubes could be used eventually to produce ropes
The temperature of the transition to the SC phase may bwith higher content of metallic nanotubes. The phase dia-
also affected by factors that have to do with the internalgrams we have obtained imply that, in a rope assembled with
structure of the rope, in particular with the way the percola-a total of 300 metallic nanotubes, the transition temperature
tion of the Cooper pairs takes place in the transverse sectiotpuld be increased by a factor of 10 with respect to those
of the rope. In any event, a distinctive prediction of our the-observed in Ref. 12. Higher values can be also expected from
oretical construction is that the SC transition has to disappedhe enhancement of the Cooper pair tunneling amplitude be-
below a certain number of metallic nanotubes in the ropestween the different nanotubes.
This is consistent with the experimental observations re- To summarize, the nanotube ropes may show quite differ-
ported in Ref. 12, where it has been shown how the transitioent transport properties depending on their content of metal-
is not completed in a sample with relatively low resistancelic nanotubes. Only above a certain number of them it is
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likely the observation of SC properties. For lower content ofthe counterpart to the weak-coupling SC phase, in the case of
metallic nanotubes, there may exist exotic phases with largthin ropes dominated by the Coulomb interaction.
compressibilities, which belong to the strong-coupling re-

gime characterized by the decoupling of the nanotubes.
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