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The zero-temperature phase diagram of carbon nanotube ropes is studied using a computational framework
that incorporates the renormalization of intratube interactions and the effect of intertube Coulomb screening.
This allows us to undertake a systematic analysis as a function of the number of metallic nanotubes in the rope
and the effective strength of the phonon-mediated interaction. We find that there is in general a weak-coupling
regime of the interactions, corresponding to Luttinger-liquid behavior in thin ropes and to superconducting
behavior in sufficiently thick ropes. Furthermore, we show the existence of exotic phases in the strong-coupling
regime, characterized by the appearance of charge instabilities that depend on the helicity and the doping level
of the nanotubes in the rope. Our approach allows for the simultaneous analysis of the scaling of the Cooper-
pair tunneling amplitude between metallic nanotubes, making it possible to discern the crossover from purely
one-dimensional physics to the setting of three-dimensional Cooper-pair coherence. We provide then good
estimates of the superconducting transition temperature and discuss the connection of our results with recent
experiments.
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I. INTRODUCTION

Carbon nanotubes offer a great potential for technological
applications. The fact that they can show metallic or semi-
conducting behavior depending on the helicity of the tubule1

makes them very suitable for the construction of devices in
molecular electronics. Carbon nanotubes offer also an ideal
ground to study the effects of electronic correlations,2–5

which are enhanced in systems with reduced dimensionality.
Given that the conduction takes place in a one-dimensional
(1D) structure, it has been proposed that the nanotubes
should be ideal systems for the observation of the so-called
Luttinger-liquid behavior. For contacts with low transpar-
ency, genuine signatures of Luttinger-liquid behavior have
been observed in the power-law dependence of the conduc-
tance around room temperature.6,7 These experiments seem
therefore to probe a regime in which the repulsive Coulomb
interaction turns out to be dominant in the nanotubes.

There have been also experiments revealing the existence
of superconducting(SC) correlations in the nanotubes.8,9 The
observations reported in Ref. 8 were made in nanotube ropes
suspended between SC electrodes, the most remarkable sig-
nal being the appearance of supercurrents for temperatures
below the critical value of the contacts. What has been mea-
sured in that experiment is the proximity effect, by which
Cooper pairs are formed in the nanotubes near the SC con-
tacts. A consistent explanation of the behavior of the super-
currents measured experimentally has been proposed in Ref.
10, stressing the interpretation of the supercurrents as an ef-
fect of 1D transport along the carbon nanotubes.

Moreover, SC transitions have been observed in ropes
suspended between metallic, nonsuperconducting
electrodes.11 In certain samples, a drop of several orders of
magnitude in the resistance has been measured, showing the
onset of a SC transition in the system with a finite number of
channels. The measurements reported in Refs. 11 and 12
point at the existence of a SC phase intrinsic to the carbon

nanotubes. More recently, strong SC correlations have been
also reported in individual nanotubes of very short radius,
inserted in a zeolite matrix.13 In that kind of experiment, the
effects studied have 1D character, but clear superconductiv-
ity features have been obtained from the tendency to expel
the magnetic flux and the divergent behavior of the conduc-
tance.

The observation of SC correlations implies the existence
of an attractive component of the interaction in the carbon
nanotubes. The analyses of the electron correlations in the
tubules have shown that it is not plausible the opening of an
attractive channel arising from the purely repulsive Coulomb
interaction, at least without going down to extremely low
energies.3,4 Then, it is most likely that the attractive interac-
tion comes from the coupling to the elastic modes of the
nanotube lattice.10 How the large Coulomb repulsion present
in the nanotubes may be overcome by the attraction due to
the phonon exchange remains the question. By means of a
simple estimate, it can be seen that the strength of the latter
is much smaller than the nominal strength of the Coulomb
interaction, for nanotubes with the typical radii found in the
ropes. It has been shown, however, that the electrostatic cou-
pling between a large number of metallic nanotubes leads to
a substantial reduction of the repulsive interaction within
each nanotube.14,15The origin of this effect is similar to that
of screening in a three-dimensional(3D) conductor. In a
rope, however, the single-electron tunneling amplitude be-
tween neighboring metallic nanotubes is highly suppressed
in general, due to the misalignment of the respective carbon
lattices.16,17 The absence of a significant intertube electron
hopping is what keeps the Coulomb interaction long ranged
in the nanotubes, despite the large reduction of its strength in
the thick ropes.

A microscopic model has been already proposed to ac-
count for the observation of superconductivity intrinsic to the
ropes of nanotubes.14 It has been argued that, as long as the
Cooper pairs are formed at zero total momentum, they do not
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find the obstacle that single electrons have to tunnel between
neighboring nanotubes due to the misalignment of the lat-
tices. The existence of a SC transition is possible in the ropes
as the coherence in the transverse directions is established
through the tunneling of Cooper pairs between the
nanotubes.14 In this approach, the balance between the Cou-
lomb repulsion and the effective attraction coming from pho-
non exchange has been studied in forward-scattering chan-
nels, where the electrostatic coupling between the metallic
nanotubes plays the most significant role.

In this paper we refine substantially the theoretical con-
struction proposed to explain the superconductivity of the
nanotube ropes. This is accomplished by incorporating the
backscattering and Umklapp processes that arise from
phonon-mediated interactions.15 These provide in general
larger contributions than those from the Coulomb interaction
to that kind of processes. For this reason, there is first the
question of reexamining at which scale the interactions in the
backscattering and Umklapp channels are able to destabilize
the Luttinger-liquid picture of the carbon nanotubes, and the
kind of phases that may appear under those perturbations.

We undertake a most accurate description of the nanotube
ropes by implementing a computational framework that deals
altogether with the electrostatic coupling between the metal-
lic nanotubes and the renormalization of the intratube inter-
actions, which are enhanced at low energies.15 This makes it
possible to discern between the electronic properties of the
ropes at weak coupling and at strong coupling, as the insta-
bilities of the electron system are different in each case. At
weak coupling, we will see that the picture already elabo-
rated using bosonization methods is in essence correct, ac-
counting for a regime of Luttinger-liquid behavior in thin
ropes and for a SC phase in sufficiently thick ropes. Further-
more, we will find new exotic phases at strong coupling,
characterized by the appearance of charge instabilities that
depend on the helicity and the doping level of the nanotubes
in the rope.

We will rely on the analysis of the scaling of the different
interactions at low energies in our aim of getting insight into
the electronic instabilities of the nanotube ropes. This
method has the advantage of allowing the simultaneous
analysis of the scaling of the Cooper pair tunneling ampli-
tude between metallic nanotubes. This is one of the key in-
gredients of our computational procedure, since it discrimi-
nates the regimes where a 3D phase-coherent state may be
formed through the rope. Our results will make it possible to
establish a fair comparison with the transition temperatures
measured experimentally and to locate the position of the
corresponding samples in our phase diagram.

II. PHONON-MEDIATED INTERACTIONS IN CARBON
NANOTUBES

We consider first the effective electron-electron interac-
tions that are generated by the exchange of phonons between
electronic currents. As we are going to see, this demands a
careful analysis, since the repulsive or attractive character of
the interaction in each particular channel depends on the ge-
ometry of the nanotube. In general, the exchange of phonons

gives rise to a retarded interaction, which can be represented
by the effective potential obtained after integrating out the
phonons in the many-body theory. These are bound to propa-
gate then between electron-phonon vertices, which have cou-
plings gsk,k8d depending on the momenta of the incoming
and outgoing electrons. The effective potential bears this de-
pendence on the momenta as well as on the frequencyv,
turning out to be

Vsvd = − gsk,k8dgsq,q8d
vk−k8

− v2 + vk−k8
2 , s1d

wherevk−k8 stands for the energy of the exchanged phonon
with momentumk−k8=q8−q.18

It is seen from Eq.(1) that the retarded interaction usually
becomes attractive at frequencies below the characteristic
phonon energy. In this respect, the acoustic phonons with
dispersion depending linearly on momentum do not lead to a
significant energy range of attraction. This comes from the
fact that the sound velocityvs in the nanotubes is more than
40 times smaller than the Fermi velocityvF. The exchange of
acoustic phonons at low momentum transfer produces only a
very weak enhancement of the electron correlations, in the
form of contributions to the critical exponents that deviate
from the noninteracting behavior by corrections of the order
of svs/vFd2, as shown in Ref. 19. The influence of the acous-
tic phonons is therefore negligible at low momentum transfer
regarding the SC effects in carbon nanotubes. It can be easily
seen that a straightforward extension of the argument leads
to the same conclusion for other low-energy modes at the
bottom of the phonon spectrum.

The most significant role in the development of the SC
correlations has to be played by high-energy phonons and, in
particular, by the modes of the optical branches of the spec-
trum. These are found up to energies of the order of
0.2 eV,20–22which are comparable to those of the low-energy
electron modes relevant for the 1D transport in the carbon
nanotubes. The optical phonon modes correspond to local-
ized displacements of the nanotube lattice. This makes ap-
propriate the use of a tight-binding approximation for the
calculation of the electron-phonon couplings in Eq.(1). In
the carbon nanotubes, the couplings also bear an explicit
dependence on the subbandsp andp8 (to be described later)
to which the incoming and outgoing electron modes belong,
and they can be represented by a sum over nearest neighbors
of the atoms in the unit cell of the nanotube23

gp,p8sk,k8d =
1

smvk−k8d
1/2 o

ks,s8l

us
spd*skdus8

sp8dsk8dfessk − k8d

− es8sk − k8dg · ¹ Jss,s8d, s2d

wherem is the mass per unit length,essk−k8d is the phonon

polarization vector at sites, andu
s8
sp8dsk8d, us

spdskd are the re-
spective amplitudes of the incoming and outgoing electrons.
Jss,s8d is the matrix element of the atomic potential between
nearest-neighbor orbitals at sitess ands8, so that the gradient
in Eq. (2) accounts for the variation of the matrix element
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under small relative displacements of the orbitals with re-
spect to the equilibrium position.24

The influence of the nanotube geometry enters through
the specific symmetry of the electron modesus

spdskd in the
gapless subbands, which depends on the helicity of the tu-
bule. We are going to deal in particular with the cases of
armchair and zigzag nanotubes, since any other geometry for
a chiral nanotube can be thought as interpolating between
those two ideal instances. We recall that the low-energy spec-
trum of any metallic nanotube is given by two pairs of linear
branches crossing at opposite points in momentum space, as
shown in Fig. 1. The linear branches correspond actually to
the different eigenvalues of a one-particle Hamiltonian de-
pending on the longitudinal componentk of the momentum
and operating in the two-atom basis of the nanotube lattice25

H = vFS 0 ak

a*k 0
D , s3d

wherevF is the Fermi velocity anda is a complex parameter
interpolating between 1 andi for armchair and zigzag nano-
tubes, respectively.

Each linear branch in a metallic nanotube has therefore its
corresponding eigenvector that binds the relative electron
amplitudes in the atoms of the lattice basis. The expressions
for the two linear branches at each Fermi point take in gen-
eral the form

S 1

eif D, S 1

− eif D , s4d

wheref is an angle that vanishes for armchair nanotubes and
equalsp /2 for zigzag nanotubes. The different symmetry of

the eigenvectors depending on the particular linear branch is
represented in Fig. 1 for those two particular geometries. The
linear branches can be ascribed in general to any of two
different subbandsp=1,2,which correspond to the different
form of the eigenvectors in Eq.(4).

The form of the relative electron amplitudes in the two
atoms of the lattice basis affects directly the evaluation of the
electron-phonon couplings, since these are given by a sum
over nearest-neighbor sites of the carbon lattice. The fact that
the only difference between the two eigenvectors shown in
Eq. (4) is a relative—sign translates, for instance, into a pre-
cise relation between the electron-phonon couplings involv-
ing the linear branches with different symmetry. Recalling
our notation for the subband labelp=1,2, wehave

g1,1sk,k8d = − g2,2sk,k8d, s5d

g1,2sk,k8d = − g2,1sk,k8d. s6d

These relations just follow from the properties of the sum in
Eq. (2) under the exchange of modes with different symme-
try, in such a way that they hold irrespective of the particular
form of the phonons involved.

There is moreover an important set of selection rules that
can be derived from the expression(2), and which depend on
the particular kinematics of the scattered electron modes and
on the geometry of the nanotube.26 In the case of armchair
nanotubes, for instance, we see from Eq.(4) that the modes
in the bonding subband have the same amplitude in the two
atoms of the lattice basis, while those in the antibonding
subband have opposite amplitudes. Then, if the incoming and
outgoing electrons have opposite momenta, it follows from
expression(2) that the terms in the sum related by the ex-
change of the sitess ands8 just differ by a2 sign, when the
in and out electron modes belong to different subbands. We
conclude that

g1,2sk,− kd = 0 s7d

in the case of the armchair nanotubes.26 An explicit realiza-
tion of this property can be seen in the expression of the
electron-phonon coupling for transverse acoustic phonons
obtained in Ref. 23.

In the case of the zigzag nanotubes, the two eigenvectors
in Eq. (4) are mutually complex conjugate. Then, under the
exchange of the sitess and s8 in the expression(2), the
different terms in the sum remain unaltered, when the in and
out electron modes belong to different subbands. This im-
plies that the rule(7) is not at work in that case. Instead, it
can be easily shown that the terms in the sum change sign
under the exchange of the nearest-neighbor sites when the
electron modes belong to the same subband, i.e., to linear
branches with the same eigenvector symmetry. Thus we have

g1,1sk,− kd = g2,2sk,− kd = 0 s8d

in the case of the zigzag nanotubes.26

The vanishing of the electron-phonon couplings in Eqs.
(7) and (8) reflects actually their odd behavior as a function
of the sum of the momenta for the incoming and outgoing
electrons. This property can be derived from the representa-
tion (2), and it is also apparent in the particular expression of

FIG. 1. Scheme of the low-energy linear branches of armchair
nanotubes(upper figure) and metallic zigzag nanotubes(lower fig-
ure) crossing at opposite momentakF and −kF. The spinors corre-
spond to the relative electron amplitudes in the two sublattices of
graphene rolled up to form the nanotube. The labels 1 and 2 at each
linear branch are used to identify the corresponding subband ac-
cording to the symmetry of the spinors.
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the coupling for acoustic phonons in the armchair nanotubes
derived in Ref. 23. We may conclude that the electron-
phonon scattering amplitudes involving that kind of cou-
plings must average to zero when the in and out electron
modes are about opposite points in momentum space. This is
an usual situation when the nanotubes are at half filling,
since then the Fermi level is right at the crossing points of
the linear branches.

The constraints given by Eqs.(5)–(8) have important con-
sequences when they are translated into the effective
electron-electron interactions built from Eq.(1). We start this
analysis by classifying these into different channels with re-
spective coupling constantsgi

s jd.27 The lower index discerns
whether the interacting particles shift from one Fermi point
to the othersi =1d, remain at different Fermi pointssi =2d, or
they interact near the same Fermi pointsi =4d. The upper
label follows the same rule to classify the different combina-
tions of left movers and right movers, including the possibil-
ity of having Umklapp processess j =3d.

Using the general property

gp,p8
* sk,k8d = gp8,psk8,kd, s9d

it can be shown that all the interactions of backscattering
type mediated by phonons have attractive character. This
comes from the fact that the product of the two electron-
phonon couplings in Eq.(1) is then a positive quantity, so
that the potential gets negative values for frequencies below
the characteristic phonon energy. Therefore, the contribu-
tions from phonon exchange processes(that we will denote
with the label ex) are negative in the case of the couplings
gi

s1d, that stand for interactions in which the incoming modes
exchange their left- and right-moving character

g1,ex
s1d , 0,g2,ex

s1d , 0,g4,ex
s1d , 0. s10d

In the processes contributing tog1
s2d, the interacting elec-

trons retain their left- and right-moving character while, in
those contributing tog1

s4d, the electrons remain both left mov-
ing or right moving. The phonon-exchange processes aver-
age to zero for both couplings in the case of undoped nano-
tubes, since they involve electron-phonon couplings with the
kinematics implying Eqs.(7) and (8). The interaction is at-
tractive in those channels away from half filling, although
the respective couplings turn out to be proportional to the
square of the doping rate.28

On the other hand, the Umklapp processes contributing to
the couplingsgi

s3d are characterized by the fact that the inter-
acting electrons shift from left to right moving, or vice versa.
When mediated by phonon exchange, these processes are
related to respective backscattering processes through the ex-
change of the subbands 1 and 2 in one of the electron-
phonon couplings. This operation introduces a relative minus
sign between the respective scattering amplitudes, according
to the relations(5) and (6). Therefore, the effective interac-
tion becomes repulsive in the channels corresponding to the
couplingsg1

s3d, g2
s3d, and g4

s3d, which get contributions from
phonon exchange

g1,ex
s3d . 0,g2,ex

s3d . 0,g4,ex
s3d . 0. s11d

Regarding the interactions mediated by phonons in the
forward-scattering channelsg4

s4d, g4
s2d, g2

s2d, andg2
s4d, they may

be attractive or repulsive, depending on the geometry of the
nanotube and on whether it is doped or not. In the case of the
undoped zigzag nanotubes, the electron-phonon amplitudes
involved are odd functions of the sum of the longitudinal
momenta for the incoming and the outgoing electrons, ac-
cording to our discussion below Eq.(8). Since each interact-
ing electron remains around a given Fermi point with longi-
tudinal momentumk=0 at half filling, this means that the
contributions by phonon exchange to the forward-scattering
couplingsg4

s4d, g4
s2d, g2

s2d, andg2
s4d must average to zero in the

undoped zigzag nanotubes.26

Away from half filling, the kinematical constraints that
lead to the selection rules(8) are not at work in the zigzag
nanotubes. The forward-scattering couplings get nonvanish-
ing contributions from phonon exchange, although they are
reduced by a factor proportional to the square of the doping
rate. The processes that take place within the same linear
branch give rise to effective attraction in the channels corre-
sponding tog4

s4d and g2
s4d, shown in Fig. 2. By using the

complex conjugate relation between modes in opposite linear
branches of a zigzag nanotube, it is easy to show that the
product of electron-phonon couplings in Eq.(1) is always
positive for contributions to theg4

s2d and g2
s2d couplings rep-

resented in Fig. 3, so that the effective interaction also be-
comes attractive in those channels.

In the case of the undoped armchair nanotubes, there are
no selection rules that may constrain the forward-scattering
processes. The interactions mediated by phonons in the chan-
nels corresponding to theg4

s4d andg2
s2d couplings are always

attractive, since they involve the scattering between electrons
in the same subband of the armchair nanotube. This is the
other way around for the processes contributing to theg4

s2d

and g2
s4d couplings, since the scattering is then between an

electron in the bonding subband and another in the antibond-
ing subband. Consequently, the two electron-phonon cou-
plings that appear in Eq.(1) have to differ by a relative
minus sign. Thus, the contributions by phonon exchange to
theg4

s2d andg2
s4d couplings are positive for frequencies below

the characteristic phonon energy, so that the effective inter-
action becomes repulsive in the corresponding channels.

FIG. 2. Small momentum-transfer processes corresponding to
the couplingsg4

s4d andg2
s4d.
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These properties hold for the armchair nanotubes, irrespec-
tive of whether the electron system is doped or not.

In order to compare later with the repulsive Coulomb in-
teraction, we can make an estimate of the strength of the
effective interaction by phonon exchange. We will take
henceforth the limit in which the interaction mediated by Eq.
(1) becomes instantaneous. The order of magnitude of the
potential is then given by the variation of the matrix element
J with the C-C distancea, ]J/]a<4.5 eV Å−1, and the char-
acteristic energy scale at the top of the phonon spectrum,
vk<0.2 eV. In this respect, the energy of phonons in pro-
cesses with momentum transfer 2kF becomes comparable to
that of the optical phonons at low momentum transfer, so that
we can take a common strengthg with

ugu , s] J/] ad2/mvk
2 s12d

in all the channels of the effective interaction. Taking the
linear mass densitym appropriate for typical nanotubes with
diameter around 1.4 nm, we find thatugu turns out to be of
the order of 0.1vF, in terms of the Fermi velocityvF<8
3105 ms−1.

III. COULOMB INTERACTIONS AND LUTTINGER
LIQUID REGIME

Now we turn our attention to the Coulomb interaction and
the confrontation with the effective interaction mediated by
phonon exchange. In one spatial dimension there is no con-
ventional plasmon screening of the Coulomb interaction, that
therefore remains long ranged.29,30 The Coulomb potential
VCskd can be parametrized with two system-dependent
parameters31

VCskd = V0lnSkc + k

k
D , s13d

whereV0 encodes the intensity of the interaction andkc is a
momentum cutoff determined by the system geometry. For
the carbon nanotubes,kc is of the order of the inverse of the
nanotube radiusR, as it is the memory that the electron sys-
tem keeps of the finite transversal size, after projection of the
3D potential onto the longitudinal direction of the tubule.

Expression(13) interpolates between the two well-known
limits of the 1D Coulomb potentialVskd→ lns1/kd ask→0
andVskd→1/k if k@kc.

The role of the Coulomb interaction in an isolated metal-
lic nanotube has been the subject of intense study, specially
in relation to the experimental observation of Luttinger-
liquid phenomenology. Actually, it has been shown2–4 that
the strength of the backscattering and Umklapp processes
mediated by the Coulomb interaction is reduced by a relative
factor,0.1a/R, in terms of the ratio of the C-C distancea to
the nanotube radiusR, with respect to the nominal strength
of the potential in Eq.(13). Therefore, for typical nanotubes
with a diameter about 1.4 nm, the Coulomb contribution to
backscattering and Umklapp scattering can be safely ne-
glected in favor of the contributions from phonon exchange,
whenever the strengthugu of the latter is above,0.05vF. We
have explicitly checked this point by studying the sensitivity
of our results to small changes in these couplings.

The competition between the long-range Coulomb inter-
action and the effective interaction from phonon exchange
takes place in the forward-scattering channels. These corre-
spond to the couplingsg2

s2d, g2
s4d, g4

s2d, andg4
s4d. The coefficient

in front of the potential(13) turns out to be of order 1 times
the Fermi velocityvF, after introducing a value of the dielec-
tric constant appropriate for typical experimental conditions.3

Moreover, the Coulomb interaction is further enhanced at
low momentum transfer due to the logarithmic dependence
of the potential. Taking into account the above estimate for
the strength of the phonon-exchange interaction in nanotubes
of typical thickness, it becomes clear that the Coulomb re-
pulsion overcomes by far that source of attraction in the
forward-scattering channels, in the case of isolated single-
walled nanotubes.

An isolated metallic nanotube can be described then by a
1D model of interacting electrons in which theg2

s2d, g2
s4d, g4

s2d,
and g4

s4d couplings are much larger in absolute value than
those for backscattering and Umklapp interactions. As a first
approximation, we can focus on the model with just the four
forward-scattering couplings, which has the advantage of
leading to a completely integrable system. At this stage,
switching on the interaction produces a profound reorganiza-
tion of the single-particle spectrum. The free-electron de-
scription is unstable against electron-electron
interactions.32,33 To remain metallic, the 1D system has to
suppress spectral weight at the Fermi level forming a liquid
with a power-law-likeva spectral density. This characterizes
the Luttinger-liquid regime of the carbon nanotubes, in
which the correlation functions and different observables
have power-law behavior governed by suitable critical
exponents.3,4

The forward-scattering interactions can be written in
terms of the electron density operators

rrissxd = Cris
† sxdCrissxd s14d

which correspond to the different electron fieldsCris for the
linear branches shown in Fig. 1. We adopt a notation in
which the indexr =L ,R is used to label the left- or right-
moving character of the linear branch, and the indexi =± to

FIG. 3. Small momentum-transfer processes corresponding to
the couplingsg2

s2d andg4
s2d.
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label the Fermi point. The indexs stands for the two differ-
ent spin projections. As the interaction by phonon exchange
and the Coulomb interaction do not depend on the spin of the
interacting electrons, we may carry out the discussion in
terms of the charge density operators

rricskd =
1
Î2

frri↑skd + rri↓skdg. s15d

Moreover, it is convenient to define the symmetric and anti-
symmetric combinations of the corresponding density opera-
tors in the two Fermi points

r̃RScskd =
1
Î2

frR+cskd + rR−cskdg, s16d

r̃RAcskd =
1
Î2

frR+cskd − rR−cskdg, s17d

r̃LScskd =
1
Î2

frL−cskd + rL+cskdg, s18d

r̃LAcskd =
1
Î2

frL−cskd − rL+cskdg. s19d

With this change of variables, the Hamiltonian for the
forward-scattering interactions can be written in the form

HFS=
1

2
vFE

−kc

kc

dko
ris

:rrisskdrriss− kd: +
1

2
E

−kc

kc dk

2p
2fr̃RScskd

3sg4
s4d + g2

s4ddr̃RScs− kd + r̃LScskdsg4
s4d + g2

s4ddr̃LScs− kd

+ r̃RAcskdsg4
s4d − g2

s4ddr̃RAcs− kd + r̃LAcskdsg4
s4d − g2

s4dd

3r̃LAcs− kd + 2r̃RScskdsg2
s2d + g4

s2ddr̃LScs− kd

+ 2r̃RAcskdsg2
s2d − g4

s2ddr̃LAcs− kdg, s20d

wherekc stands again for the momentum cutoff dictated by
the transverse size of the system.

We see that the symmetric and the antisymmetric combi-
nation of the charge density near the two Fermi points are
completely decoupled in the Hamiltonian(20). The quadratic
expression in the density operators can be diagonalized sepa-
rately in the two sectors. Thus, an individual metallic nano-
tube can be characterized at this stage by four independent
velocities featuring the Luttinger-liquid behavior32,33

vN± = vF +
g4

s4d ± g2
s4d

p
+

g2
s2d ± g4

s2d

p
, s21d

vJ± = vF +
g4

s4d ± g2
s4d

p
−

g2
s2d ± g4

s2d

p
. s22d

In terms of these fundamental parameters, we can express
several physical magnitudes of interest such as the renormal-
ized velocitiesu± and the stiffnessesK±:

K± =Î vJ±

vN±
, s23d

u± = ÎvN±vJ±. s24d

These parameters govern in turn the thermodynamic and
transport properties, encoded into the compressibilitiesk±,
the Drude weightsD± and the dependence of the specific
heatCv on the temperatureT:

k± =
2

pvN±
, s25d

D± = 2vJ±, s26d

Cv

T
=

p

3
S 1

u+
+

1

u−
D . s27d

As already remarked, the description in terms of the
forward-scattering interactions provides a good approxima-
tion to the behavior of isolated nanotubes, for which the
Coulomb interaction is not significantly screened.3,4 The
Coulomb repulsion gives then the dominant contribution to
the couplingsg4

s4d, g2
s2d, g2

s4d, andg4
s2d. This is consistent with

the experimental observations of Luttinger-liquid behavior in
the carbon nanotubes.6,7 However, one has to bear in mind
that the liquid with just forward-scattering interactions is not
stable under the perturbations introduced by the backscatter-
ing and the Umklapp scattering. Thus, although the strength
of the latter may be nominally small compared to the Cou-
lomb repulsion, their effects are enhanced as the system is
probed at progressively low energies. The 1D electron sys-
tem cannot support the transition to a phase with long-range
order, but there is a tendency of the Luttinger liquid to break
down, which can be materialized when any of the parameters
(21) or (22) vanishes.

It is then important to have an estimate of the energy scale
at which an individual nanotube may enter a new phase,
either by the vanishing

K+ = 0 or K− = 0 s28d

or the divergence

1/K+ = 0 or 1/K− = 0 s29d

of any of the charge stiffnesses. A powerful tool to keep track
of such dramatic changes is the renormalization group.32,33

From the technical point of view, the instabilities of the elec-
tron system manifest in the logarithmic dependence on en-
ergy of certain diagrams, that originates scaling relations be-
tween the couplings. These equations for individual
nanotubes were derived to the one-loop order in Ref. 27. Our
aim is to use them now to find the instabilities triggered by
the effective backscattering and Umklapp interactions arising
from phonon exchange.

The growth of the effective interactions at low energies
can be understood from the fact that their couplings get
anomalous dimensions, some of them depending on the
forward-scattering couplings. We have, for instance, the scal-
ing equations(up to terms quadratic in the backscattering
and Umklapp couplings)

] g1
s2d/] l = S1 −

1

K−
Dg1

s2d +
1

pvF
sg4

s3dg1
s3d − g2

s1dg1
s1dd, s30d
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] g1
s3d/] l = s1 − K+dg1

s3d +
1

pvF
s− 2g1

s3dg1
s1d + g2

s3dg1
s1d + g4

s3dg1
s2dd,

s31d

] g2
s1d/] l = S1 −

1

K−
Dg2

s1d +
1

pvF
sg4

s1dg1
s2d − 2g4

s1dg2
s1d + g4

s3dg1
s3d

− g4
s3dg2

s3d − g1
s2dg1

s1dd, s32d

] g2
s3d/] l = s1 − K+dg2

s3d +
1

pvF
sg4

s1dg1
s3d − 2g4

s1dg2
s3d + g4

s3dg1
s2d

− g4
s3dg2

s1dd, s33d

] g4
s3d/] l = S2 − K+ −

1

K−
Dg4

s3d +
1

pvF
s− g4

s3dg4
s1d − 2g2

s3dg2
s1d

+ g1
s3dg2

s1d + g2
s3dg1

s2d + g1
s3dg1

s2dd, s34d

wherel stands for(minus) the logarithm of the energy scale
measured in units of the high-energy cutoffEc,vFkc (of the
order of,0.1 eV). These equations are similar to those ob-
tained in Ref. 27, except for the nonperturbative improve-
ment of writing the exact dependence of the anomalous di-
mensions on the forward-scattering couplings(through K+
and K−). The rest of the equations correspond to the cou-
plings which start having a flow quadratic in backscattering
and Umklapp couplings, and they have been already written
in Ref. 27.

To illustrate the above ideas, we have solved the full set
of scaling equations taking the initial values of the couplings
appropriate for individual nanotubes, as listed in Table I. The

strength of the Coulomb potential has been averaged over the
length of the nanotube by takingv=se2/2pkdlogukc/k0u, with
k0,10−3kc and a dielectric constantk such that 2e2/p2kvF
=1.0. We have considered in particular the case of doped
nanotubes, which is most relevant to establish the compari-
son with the experimental observations.

The results show that there is always some low-energy
scalev0 at which the charge stiffnessK− diverges, as repre-
sented in Fig. 4. This marks the breakdown of the Luttinger-
liquid picture, since that effect corresponds to the develop-
ment of a branch cut in such a physical quantity. For a
sensible choice of the effective coupling 4ugu /pvF<0.2, the
Luttinger-liquid behavior extends anyhow for about 4 orders
of magnitude below the high-energy cutoffEc,0.1 eV, as
shown in Fig. 4. The breakdown of the Luttinger-liquid is
beyond the range of energies which have been tested experi-
mentally before entering the Coulomb blockade regime of
the nanotube.6,7 However, the appearance of a new phase
characterized by a divergent compressibility should be even-
tually measured in suitably long samples, or in thinner nano-
tubes with enhanced electron-phonon interactions.34 We have
also checked that, in metallic nanotubes with the Fermi level
fine tuned to remain at half filling, the low-energy scalev0
can be significantly enlarged, shrinking the energy range for
the existence of Luttinger-liquid behavior.35

IV. SCREENING EFFECTS IN CARBON NANOTUBE
ROPES

The above framework has to be conveniently modified in
order to account for the electronic properties of the nanotube
ropes. These are systems that may consist of a large number
of nanotubes, so that the coupling between those with metal-
lic character may have a large effect on the electronic prop-
erties. The amplitude for the tunneling of single electrons
between neighboring metallic nanotubes is strongly sup-
pressed in ropes made of a random mixture of nanotubes
with different helicities.16,17 In these conditions, the coupling
between metallic nanotubes has essentially electrostatic char-

TABLE I. Initial values of the couplings, as deduced in the text,
for the scaling equations corresponding to an individual metallic
nanotube. The quantityv=se2/2pkdlnukc/k0u is the average strength
of the Coulomb potential over long distances, withk0,10−3kc and
k being a suitable dielectric constant. The quantityg,0 represents
the contribution from phonon-exchange processes. The factord
stands for the reduction proportional to the square of the doping rate
in doped nanotubes.

armchair zigzag

parameter undoped doped undoped doped

g1
1 g g g g

g1
2 0 dg 0 dg

g1
3 −g 0 −g 0

g1
4 0 dg 0 dg

g2
1 g g g g

g2
3 −g 0 −g 0

g4
1 g g g g

g4
3 −g 0 −g 0

g2
2 v+g v+g v v+dg

g2
4 v−g v−g v v+dg

g4
2 v−g v−g v v+dg

g4
4 v+g v+g v v+dg

FIG. 4. The thick solid(dashed) line corresponds to the plot of
l =lnsEc/v0d, wherev0 is the energy scale at which the parameter
K− diverges in doped armchair(zigzag) nanotubes, as a function of
the effective strengthG=4ugu /pvF of the phonon-mediated inter-
action. The lower solid(dashed) curve represents the behavior of
the K+ parameter in doped armchair(zigzag) nanotubes.
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acter. Actually, given the long-range nature of the Coulomb
interaction, the appropriate description of the rope is made
by assuming that the charge in a given nanotube interacts
with the charge present in the rest of the metallic nanotubes.

We have to discern between the previously defined cou-
plingsgi

s jd, for the interactions within each metallic nanotube,
and new couplingsui

s jdsa,bd parametrizing the interactions
between different metallic nanotubes labeled bya andb (we
will use the same convention for super and subindices in the
intratube and the intertube interactions). As pointed out, the
main contributions to these couplings come from the repul-
sive Coulomb interaction in forward-scattering channels.
Then, as a first step in the description of the ropes, we can
concentrate on the analysis of the model including theg4

s4d,
g2

s2d, g2
s4d, g4

s2d, u4
s4dsa,bd, u2

s2dsa,bd, u2
s4dsa,bd, and u4

s2dsa,bd
couplings. This already gives rise to relevant effects, as it
allows us to capture the different regimes that arise when
shifting from small to large number of metallic nanotubes in
the rope. We are going to show that, in the latter case, there
are remarkable screening effects in the repulsion between
two electrons living in the same nanotube, from the interac-
tion with the charge in the other metallic nanotubes.

We can accomplish the solution of the model with
forward-scattering interactions in the rope, by an extension
of the diagrammatic method used for the solution of the Lut-
tinger model.33 By effect of the quantum corrections, the
bare couplingsgi

s jd are dressed to become interaction vertices
Di

s jd, as well as the couplingsui
s jdsa,bd are dressed to turn

into verticesVi
s jdsa,bd. The dressed vertices obey the self-

consistent equations represented diagrammatically in Fig. 5.
For the intratube verticesDi

s jd, the equations take the form

D4
s4d = g4

s4d + g4
s4dP+D4

s4d + g4
s2dP−D4

s2d + g2
s4dP+D2

s4d

+ g2
s2dP−D2

s2d + o
cÞa

fu4
s4dsa,cdP+V4

s4dsc,ad

+ u4
s2dsa,cdP−V4

s2dsc,ad + u2
s4dsa,cdP+V2

s4dsc,ad

+ u2
s2dsa,cdP−V2

s2dsc,adg, s35d

D4
s2d = g4

s2d + g4
s2dP+D4

s4d + g4
s4dP−D4

s2d + g2
s2dP+D2

s4d

+ g2
s4dP−D2

s2d + o
cÞa

fu4
s2dsa,cdP+V4

s4dsc,ad

+ u4
s4dsa,cdP−V4

s2dsc,ad + u2
s2dsa,cdP+V2

s4dsc,ad

+ u2
s4dsa,cdP−V2

s2dsc,adg, s36d

D2
s4d = g2

s4d + g2
s4dP+D4

s4d + g2
s2dP−D4

s2d + g4
s4dP+D2

s4d

+ g4
s2dP−D2

s2d + o
cÞa

fu2
s4dsa,cdP+V4

s4dsc,ad

+ u2
s2dsa,cdP−V4

s2dsc,ad + u4
s4dsa,cdP+V2

s4dsc,ad

+ u4
s2dsa,cdP−V2

s2dsc,adg, s37d

D2
s2d = g2

s2d + g2
s2dP+D4

s4d + g2
s4dP−D4

s2d + g4
s2dP+D2

s4d

+ g4
s4dP−D2

s2d + o
cÞa

fu2
s2dsa,cdP+V4

s4dsc,ad

+ u2
s4dsa,cdP−V4

s2dsc,ad + u4
s2dsa,cdP+V2

s4dsc,ad

+ u4
s4dsa,cdP−V2

s2dsc,adg, s38d

whereP+ and P− are the respective polarizations for right
and left branches with linear dispersion, given by

P+sk,vd =
k

2psv − vFkd
, s39d

P−sk,vd =
− k

2psv + vFkd
. s40d

The equations giving the intertube verticesVi
s jdsa,bd are of

the same type as those written above and can be also ob-
tained in a straightforward way.

The resolution of the self-consistent equations produces in
general dressed verticesDi

s jd andVi
s jd that depend on the mo-

mentum transferk and the frequencyv. For the sake of
handling a simpler solution allowing to represent the vertices
as dressed coupling constants, we will take in what follows
the static approximation in the polarizations(39) and (40).
The precise form of the solution still depends on the values

FIG. 5. (a) Diagrams contributing to the screening of Coulomb
interactions between currentsla within the same nanotube. The cur-
rents have well-defined chirality and spin. The last term takes into
account the polarization of the rest ofn−1 metallic nanotubes in the
rope. The prime stands for the exclusioncÞa in the summation.(b)
Diagrams contributing to the screening of Coulomb interactions be-
tween currentsla and lb belonging to different metallic nanotubes.
The prime stands for the exclusioncÞa,b in the summation.
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chosen for the bare couplingsgi
s jd and ui

s jdsa,bd. In this re-
spect and having in mind the long-range character of the
Coulomb interaction, we will assume that the couplings
ui

s jdsa,bd do not depend on the particular pair of metallic
nanotubes, so that we can simply write them as

ui
s jd = v s41d

with v=se2/2pkdlogukc/k0u. For thegi
s jd couplings, we will

stick to the values summarized in Table I.
In the case of a bundle ofn armchair nanotubes, the so-

lution of the self-consistent equations is

D4
s4d = D2

s2d = vfsnvd + gfsgd, s42d

D2
s4d = D4

s2d = vfsnvd − gfsgd, s43d

Vi
s jd = vfsnvd, s44d

where fsxd=1/s1+4x/pvFd.
In the case of a rope withn metallic zigzag nanotubes, we

have

Di
s jd = fvfsnv + dgd + dggfsdgd s45d

for all of the four intratube vertices, and

Vi
s jd = fvfsnv + dgdgfsdgd s46d

for the intertube vertices.
There are a number of conclusions from this calculation

that have to be emphasized:
(i) As expected, the calculation producesfinite renormal-

izations. The physical process that we are considering at this
level is the screening of the Coulomb interaction, described
by RPA-like diagrams well-defined in the infrared limit(with
no logarithmic divergences).

(ii ) The effect of the Coulomb screening is well-captured
in the expression of the dressed vertices. The RPA-like dia-
grams considered screen repulsive interactions and enhance
the phonon-mediated interactions, and the latter always pre-
vail for sufficiently large numbern of metallic nanotubes
since

lim
n→`

uDi
s jdu =

ugu
1 + 4g/pvF

. s47d

(iii ) For 4ugu /pvF close to 1, we find the same kind of
divergence already observed in the bosonization picture,14,19

which corresponds to the Wentzel-Bardeen singularity. Be-
yond that limit, to treat the electron-phonon interaction as a
perturbation of the purely electronic problem makes no sense
and a careful treatment demands to deal with the electron-
phonon “bound state”(polaron) as the starting point.

(iv) The intertube verticesVi
s jd show also the effects of

screening of the repulsive interaction. They do not enter ex-
plicitly in the expression of any response function, and their
influence is not significant anyhow in the massive ropes, as
they vanish in the limit or large numbern of metallic nano-
tubes.

(v) In the limit n→0, g→0, we recover the bare vertices
used in precedent studies of superconductivity in isolated
nanotubes.28

In the ropes, the couplings that give the actual strength of
the interaction in the forward-scattering channels correspond
to the verticesD4

s4d, D2
s2d, D2

s4d, andD4
s2d. These are therefore

the couplings that have to be taken into account when look-
ing for the electronic instabilities in the bundle of nanotubes.
The intratube couplings have nontrivial scaling properties
that reflect the behavior of the electron system at low ener-
gies. Their scaling equations are similar to those derived in
Ref. 27 for individual nanotubes, except for the replacement
of the couplingsg4

s4d, g2
s2d, g2

s4d, andg4
s2d by the corresponding

dressed couplingsD4
s4d, D2

s2d, D2
s4d, andD4

s2d, that incorporate
the integration of the intertube interactions in the rope. Thus,
we have

] g1
s2d/] l =

1

pvF
sD4

s2d − D2
s2ddg1

s2d +
1

pvF
sg4

s3dg1
s3d − g2

s1dg1
s1dd,

s48d

] g1
s3d/] l =

1

pvF
sD4

s2d + D2
s2ddg1

s3d +
1

pvF
s− 2g1

s3dg1
s1d + g2

s3dg1
s1d

+ g4
s3dg1

s2dd, s49d

] g2
s1d/] l =

1

pvF
sD4

s2d − D2
s2ddg2

s1d +
1

pvF
sg4

s1dg1
s2d − 2g4

s1dg2
s1d

+ g4
s3dg1

s3d − g4
s3dg2

s3d − g1
s2dg1

s1dd, s50d

] g2
s3d/] l =

1

pvF
sD4

s2d + D2
s2ddg2

s3d +
1

pvF
sg4

s1dg1
s3d − 2g4

s1dg2
s3d

+ g4
s3dg1

s2d − g4
s3dg2

s1dd, s51d

] g4
s3d/] l =

1

pvF
2D4

s2dg4
s3d +

1

pvF
s− g4

s3dg4
s1d − 2g2

s3dg2
s1d + g1

s3dg2
s1d

+ g2
s3dg1

s2d + g1
s3dg1

s2dd, s52d

wherel stands again for(minus) the logarithm of the energy
scale in units of the high-energy cutoffEc. The rest of the
equations are completely similar to those written in Ref. 27,
again with the replacement of the forward-scattering cou-
plings by the corresponding dressed couplings.

The discussion of the low-energy properties that derive
from the scaling equations leads to a very rich phase dia-
gram, since the initial values of the couplingsD4

s4d, D2
s2d, D2

s4d,
andD4

s2d depend on the number of metallic nanotubes in the
rope through Eqs.(42), (43), and(45). In order to unveil the
different phases, we have also to pay attention to the scaling
of the amplitudes for intertube hopping, which will give a
measure of the development of 3D coherence in the rope.

V. INTERTUBE PAIR HOPPING AND COHERENCE

Maarouf, Kane, and Mele16 have elaborated a microscopic
tight-binding theory of single-electron tunneling between
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two carbon nanotubes with arbitrary helicities. According to
them, the tunneling amplitudetT between two nanotubes
with the same helicity and radiusR is

tT = tGÎ a0

4pR
, s53d

where tG is the amplitude for transverse hopping between
two graphite sheets anda0 is the length scale associated with
the hopping between carbon atoms. The mismatch of the
lattices of parallel nanotubes with different helicity makes
difficult the conservation of the longitudinal momentum in
the tunneling process, producing an exponential suppression
of the tunneling amplitude16

t' = tTe−s1/4dRa0dk2
, s54d

wheredk is the momentum mismatch of the Fermi points in
the two nanotubes, arising from the different orientation of
the respective carbon lattices. This introduces a factor of
suppression that sets the single-particle intertube hopping
about three orders of magnitude below the estimate fortT.17

The authors of Ref. 16 applied these results to a composi-
tionally disordered rope(a mixture of nanotubes with ran-
dom helicities). In this kind of system, even if all the nano-
tubes are metallic, it has been shown that the localization
length in the transverse direction isj',1 nm. One may
conclude that the single-electron states are not extended
throughout the compositionally disordered rope, but local-
ized in individual nanotubes.16

Such a small value ofj' acts as a cutoff in the scaling
equation for the single-electron tunneling amplitudet',
given in terms of the charge stiffnessK of the 1D electron
liquids by36

] t'/] l = S2 −
K + K−1

2
Dt'. s55d

Then, t' can be considered as a constant in our low-energy
analysis, at scales beyond the localization length. On the
other hand, compositional disorder does not interfere with
the tunneling of Cooper pairs in as much they are preformed
with zero total momentum. We still can have quantum coher-
ent behavior in the transverse direction beyondj', if the
amplitude for pair hopping grows at low energies.

The fact that a rope is made of nanotubes with different
helicities and diameters has another consequence regarding
its electronic properties. It prevents the formation of any
phase with spin-density-wave or charge-density-wave order
at the rope level. On the other hand, the nanotubes may have
strong SC correlations. The transport of the Cooper pairs
along each nanotube is governed by the anomalous dimen-
sion of the 1D two-particle propagator

D = −
1

pvF
sD2

s2d ± g1
s1d + g2

s1d ± g1
s2dd, s56d

where the upper sign holds for singlet pairing and the lower
sign for triplet pairing. The SC response function for a single
nanotubeRsidsvd does not scale itself homogeneously at low
energies, but its derivative

R̄sidsvd =
] Rsidsvd

] ln v
s57d

satisfies the scaling equation33

] R̄sid/] l = DR̄sid. s58d

The interactions corresponding tog1
s1d and g1

s2d are always
attractive, pointing at the enhancement of the SC correlations
with s-wave symmetry at low energies.

In the compositionally disordered ropes, the coherence is
established by the tunneling of Cooper pairs between neigh-
boring metallic nanotubes. The amplitudeJ for this process
has a dependence on the energy scale characterized again by
the anomalous dimensionD. The scaling equation forJ is

] J/] l = DJ + ct'
2 , s59d

wherec is a parameter depending on the charge stiffness in
the metallic nanotubes.36

We have characterized the SC transition by looking for a
pole vc in the 3D two-particle propagatorRsvd of the Coo-
per pairs along the rope. This is related to the SC response
function Rsidsvd in the individual nanotubes through the
Schwinger-Dyson equation

Rsvd =
Rsidsvd

1 −RsidsvdJ̃
, s60d

where J̃ is the (dimensionless) pair hopping measured in
units of the high-energy cutoff. The critical frequency can be
estimated in the SC phase by solving the equation for the
pole in the 3D Cooper pair propagator

Rsidsvcd = 1/J̃. s61d

Moreover, we have studied the competition between su-
perconductivity and other charge instabilities in the rope by
rebosonizing the system at each step in the integration of the
scaling equations for the couplings, considering backscatter-
ing and Umklapp scattering as small perturbations. Theindi-
vidual nanotubes are characterized now by the independent
velocities

vN± = vF +
D4

s4d ± D2
s4d

p
+

D2
s2d ± D4

s2d

p
, s62d

vJ± = vF +
D4

s4d ± D2
s4d

p
−

D2
s2d ± D4

s2d

p
. s63d

The corresponding Luttinger liquid parameters are

K± =ÎpvF + sD4
s4d ± D2

s4dd − sD2
s2d ± D4

s2dd
pvF + sD4

s4d ± D2
s4dd + sD2

s2d ± D4
s2dd

. s64d

We have obtained complementary information about the
physical properties of the system by studying the regions
where theK± parameters either vanish or diverge. This hap-
pens when one of the functions given by Eq.(64) develops a
branch cut at some energy scale, what has to be understood
as the onset of a phase transition in the system.
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VI. RESULTS

Before going to a detailed description of the phase dia-
grams of armchair and zigzag nanotubes, we would like to
discuss first the nature of the two fixed points that we find in
this problem. Within our computational approach we can for-
mally set to zero all the backscattering and Umklapp cou-
plings, keeping the system at a nontrivial fixed point de-
scribed in the bosonization picture.14 In that case, we can say
that the system is in the weak-coupling limit because none of
the couplings is large. However, that fixed point is in general
unstable against chirality-breaking perturbations such as
backscattering and Umklapp processes, that we know are
important in this problem because there is significant
electron-phonon coupling in the individual nanotubes. Under
these perturbations, the system moves away from the original
bosonization fixed point and approaches a strong-coupling
fixed point. However, the crossover behavior is very slow,
being characterized by a relatively small crossover frequency
vxo.

Moreover, in a large region of the phase diagram the scal-
ing as lnsEc/vd→` is cutoff by the onset of the 3D coher-
ence in the transport of the Cooper pairs. This opens a gap in
the single-particle spectrum beforevxo has been reached(see
Fig. 6). In these conditions, the SC phase remains in the
region of influence of the weak-coupling fixed point, which
governs the main physical properties. Ifvc@vxo, the de-
scription of a SC transition(two-particle propagators, gaps,
critical temperatures) obtained using the exact solution at the
bosonization fixed point is essentially correct.

A different way to study the development of SC correla-
tions in individual nanotubes is to look for the divergence in
the SC response functionRsidsvd.27,28That effect is attached
to the strong-coupling regime and has completely different
physical origin. This manifest itself in several features as, for
instance, that the critical frequency increases with the num-
ber n of metallic nanotubes in a rope in the weak-coupling
SC phase(see Fig. 7) while stays almost constant or de-
creases in the strong-coupling one. Another important differ-

ence that we find between the weak and strong-coupling re-
gimes is the scale dependence of the Luttinger-liquid
parameters. While in the weak-coupling regimeK+ and K−
hardly renormalize, in the strong-coupling regime they can
vanish or diverge as we integrate out the high-energy degrees
of freedom. This behavior is very much like that of a 1D
interacting electron liquid, with the Luttinger-liquid behavior
and its instabilities.

The different phases which arise in this approach have
been represented in Figs. 8 and 9, where contour lines of
constantlc; lnsEc/vcd have been also plotted. The critical
frequencyvc represents in either case the value at which the
SC transition takes place or the point where any of the
Luttinger-liquid parameters develops a branch cut, as the
scaling equations[including Eqs.(58) and(59)] are solved at
progressively low energies. We have discerned between the
different cases of zigzag and armchair nanotubes and
whether they are doped or not, as the initial conditions for
the scaling equations of the couplings are different in each
case.

The common trend observed in the four phase diagrams is
given by the boundary that separates the SC phase from the
region with singular behavior of any of the Luttinger-liquid
parameters at small and moderate values ofugu. This line is
actually very close to the boundary of the region in which the
pair-hopping amplitude does not grow large at low energies.
When this happens, the nanotubes in the rope start to behave
as uncoupled 1D systems, what explains the disappearance
of the SC transition. This provides a graphic representation
of the distinction we have made between the regime of weak-
coupling superconductivity and the strong-coupling regime
given by the instabilities of the individual nanotubes.

In the undoped ropes, we observe that the latter corre-
spond to the vanishing ofK+ at small values ofugu. A closer
look at the solution of the equations reveals that the velocity
vJ+ given by Eq.(63) is the parameter being driven to zero.
The physical effect corresponds then to the vanishing of the
Drude peakD+, according to Eq.(26). This new phase has to
be interpreted as the extension of the Mott insulating phase

FIG. 6. Scale dependence of
the coupling constants for
4ugu /pvF=0.3 in a bundle withn
=200 undoped metallic zigzag
nanotubes. For these parameters
the system is in the SC state with
a critical frequencyvc shown in
the figure. At that point, the scal-
ing stops due to the opening of the
SC single-particle gap. Here we
have continued the flow to show
that the system atvc is well inside
the weak-coupling regime. The
crossover to the strong-coupling
regime would take place at a
lower frequencyvxo.
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found in the studies of carbon nanotubes with repulsive
interactions.4,5 In our case, it is favored in the undoped sys-
tems, as the effective interaction from phonon exchange
shows a repulsive component in some of the interaction
channels of the carbon nanotubes at half filling.

In doped nanotube ropes, the phase that prevails in the
absence of coherent pair hopping corresponds to the diver-
gence ofK+ at moderate and large values ofn, as observed in
Figs. 8 and 9. This singular behavior stems now from the
vanishing of the renormalizedvN+ velocity in Eq. (62).
Therefore, the onset of the new phase is characterized on
physical grounds by the divergence of the compressibilityk+
in the channel of the total charge. Again, these effects have to
be understood in terms of the transition to a regime marked
by the decoupling of the different metallic nanotubes in the
rope.

For low content of metallic nanotubes or values of the
effective couplingG=4ugu /pvF close to 1, we see that the
natural tendency of the doped system is to fall into a phase
given by the divergence of theK− parameter. The onset of
this phase is characterized then by the divergence of the
compressibility in the channel of the mismatch of charge in
the two gapless subbands. For values ofG close to 1, it
becomes clear that the divergence has the same character of
the Wentzel-Bardeen singularity, which corresponds in our
description to the pole found in thefsgd component of the
dressed couplings(42), (43), and(45). That kind of phase is
the natural counterpart of the SC instability since, for suffi-
ciently strong attraction, the system finds more favorable its
macroscopic segregation than the formation of Cooper
pairs.34 From a 1D point of view, the parametersK+ andK−
give the strength of the uniform density-density correlations
in their respective channels.32,33The divergence ofK− marks
then the approach of a regime with increasingly large density
fluctuations. The singularity reflects the fact that the theoret-
ical framework applied breaks down at certain point, beyond
which the variables chosen do not allow the description of
the rope as a homogeneous system.

VII. CONCLUSIONS

We have shown that a variety of zero-temperature phases
are possible in the carbon nanotube ropes, depending mainly
on the doping level, the number of metallic nanotubes, and
the strength of the electron-phonon interaction(which is spe-
cially sensitive to the diameter of the individual nanotubes).
Our results point at the existence of a SC phase extended
over a large region of the phase diagram, given in terms of
the effective coupling for the phonon-mediated interaction
and the number of metallic nanotubes in the rope. There are
two effects that cooperate to make possible the superconduc-
tivity of the nanotube ropes. One of them is the reduction in
the strength of the long-range Coulomb repulsion, which be-
comes more suppressed for larger contents of metallic nano-
tubes in a rope. This allows us to explain the appearance of
large SC correlations in the thick ropes at low temperatures.
The other factor has to do with the fact that once the SC
correlations develop, the transport of the Cooper pairs is also
enhanced along the transverse directions of the rope. The
intertube hopping of Cooper pairs becomes actually the
dominant tunneling amplitude at low energies, in typical
ropes made of a random mixture of nanotubes with different
helicities. We have made clear with our analysis that the
superconductivity is a phenomenon that belongs to the weak-
coupling regime in sufficiently thick ropes, as it springs from
a suitable reduction of the Coulomb repulsion that makes the
phonon-mediated effective interaction to prevail in the indi-
vidual nanotubes.

The plausibility of the SC phase in the nanotube ropes is
the most significant result of our study, given the implica-
tions that it has from the phenomenological point of view.
The existence of SC transitions has been reported in Refs. 11
and 12, in experiments carried out in samples with an ap-
proximate content of about 100 metallic nanotubes. The tran-
sition temperatures that have been measured are slightly be-
low 0.5 K. When converted to energy units, that scale turns
out to be of the order of,10−3 times our high-energy cutoff

FIG. 7. Dependence of the
critical frequency in a bundle with
n-undoped metallic zigzag nano-
tubes for 4ugu /pvF=0.3 (solid),
0.4 (dashed), and 0.5(dotted). The
increase ofvc with n marks the
setting of the SC phase. That kind
of behavior, also observed in ex-
perimental samples, is characteris-
tic of weak-coupling supercon-
ductivity (Ref. 14).
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Ec. Therefore, we can infer that the samples where the SC
transitions have been observed should correspond to points
in the phase diagram with lnsEc/vcd<7. Taking the phase
diagram of the doped zigzag nanotubes as a most appropriate
guide, we see that the points for the mentioned samples seem
to be sitting near the boundary between the SC phase and the
phase with the 1D charge instability.

The temperature of the transition to the SC phase may be
also affected by factors that have to do with the internal
structure of the rope, in particular with the way the percola-
tion of the Cooper pairs takes place in the transverse section
of the rope. In any event, a distinctive prediction of our the-
oretical construction is that the SC transition has to disappear
below a certain number of metallic nanotubes in the ropes.
This is consistent with the experimental observations re-
ported in Ref. 12, where it has been shown how the transition
is not completed in a sample with relatively low resistance

and with a total of about 45 nanotubes. Looking for phenom-
enological signatures in the opposite case of very thick
ropes, the phase diagrams in Figs. 8 and 9 suggest that higher
transition temperatures could be obtained by dealing with
samples with larger number of metallic nanotubes. The
newly devised techniques to separate metallic and semicon-
ducting nanotubes could be used eventually to produce ropes
with higher content of metallic nanotubes. The phase dia-
grams we have obtained imply that, in a rope assembled with
a total of 300 metallic nanotubes, the transition temperature
could be increased by a factor of 10 with respect to those
observed in Ref. 12. Higher values can be also expected from
the enhancement of the Cooper pair tunneling amplitude be-
tween the different nanotubes.

To summarize, the nanotube ropes may show quite differ-
ent transport properties depending on their content of metal-
lic nanotubes. Only above a certain number of them it is

FIG. 8. Phase diagram of undoped(a) and doped(b) armchair
nanotubes as a function of the number of metallic nanotubesn in
the rope and the strength of the attractive interactionG
=4ugu /pvF. Thick lines represent the phase boundaries between a
3D phase-coherent SC phase and the 1D phases characterized by
the breaking of the parametersK+ andK−. Thin lines are contours of
constant critical frequencyvc, starting from above with lnsEc/vcd
=2,4,6, . . ..

FIG. 9. Phase diagram of undoped(a) and doped(b) zigzag
nanotubes as a function of the number of metallic nanotubesn in
the rope and the strength of the attractive interactionG
=4ugu /pvF. Thick and thin lines have the same meaning as in Fig.
8. In the case of doped nanotubes, the factord of reduction of the
effective interactions in Table I has been set to 0.1. The narrow
phase to the left of diagram(b) corresponds to the divergence of the
K− parameter.
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likely the observation of SC properties. For lower content of
metallic nanotubes, there may exist exotic phases with large
compressibilities, which belong to the strong-coupling re-
gime characterized by the decoupling of the nanotubes.
These phases may appear at temperatures that are below 1 K,
so they have the chance to manifest only in samples where
their effects are not overshadowed by those of Coulomb
blockade. We have seen that before that low-temperature
strong-coupling regime is reached, the transport properties
have to be given by the Luttinger-liquid behavior, which is

the counterpart to the weak-coupling SC phase, in the case of
thin ropes dominated by the Coulomb interaction.
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