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A rigorous formulation for the scattering of surface plasmon polarit@®RP’s from a one-dimensional
surface defect of any shape that yields the electromagnetic field in the vacuum half-space above the vacuum-
metal interface is developed by the use of an impedance boundary condition. The electric and magnetic near
fields, the angular distribution of the far-field radiation into vacuum due to SPP-photon coupling, and the SPP
reflection and transmission coefficients are calculated by numerically solving-gpace integral equation
upon which the formulation is based. In particular, we consider Gaussian-shaped @thetsprotuberances
or indentationsand study the dependence of the above-mentioned physical quantities on ¢haifatidth
a and heighth. SPP reflection is significant for narrow defects(\/5, for either protuberances or indenta-
tions, where\ is the wavelength of the SPPmaximum reflection(plasmon mirror$ is achieved fora
~\/10. For increasing defect widths, protuberances and indentations behave differently. The former give rise
to a monotonic increase of radiation at the expense of SPP transmission for increasing defect half-width.
However, indentations exhibit a significant increase of radidii@crease of SPP transmissidor half-widths
of the order of or smaller than the wavelength, but tend to total SPP transmission in an oscillatory manner upon
further increasing the half-width. Both the position of the maximum radiation and the oscillation period depend
on the defect height, which in all other cases only affects the process quantitatigélyemittersmight thus
be associated with either wide indentations or protuberances with widths that are of the order of or smaller than
the wavelength[S0163-1829)01735-X]

. INTRODUCTION microscopy! (PSTM), basically exploiting SPP excitation in
the attenuated total reflection arrangement, has made it pos-
In this paper, we study the scattering of surface plasmosible to probe the SPP structdfe® localized SPP on ran-
polaritons(SPP’$ by surface defects. SPP’s guepolarized  domly rough surface¥ and SPP resonances in fractal col-
electromagneti¢EM) waves bound to a dielectric-metal in- loid clusteré® and single particle®?’ Moreover, PSTM
terface and caused by the surface oscillations of the electramages have been obtained by surface-enhanced Raman scat-
plasma of the metdl They propagate along the metal inter- tering probing single molecules adsorbed on single
face a distance of the order of the SPP mean free (patty-  nanoparticle$® PSTM in combination with direct-write li-
ing from microns in the visible to millimeters in the infrared, thography has made it possible to create submicron defects
of course depending also on the metal being consideredon metal surface¥
undergoing scattering processes due to surface roughness.Particularly relevant to the present work are the recent
This constitutes a classical problem of fundamental interes¢éxperimental studies on SPP scattering by surface
not only in the case of individual defectsf. Ref. 2 and defects®3! These studies have shown evidence of drasti-
references therejnbut also for periodically or randomlfor ~ cally distinct scattering properties depending on the defect
both) distributed defectd-® Furthermore, it is obviously cru- size. Specifically, surface defects favoring SPP reflection and
cial in any light scattering problem involving rough metal light coupling, called SPP mirrors and flashlightgespec-
surfaces where roughness-induced excitation of SPP’s odively, have been described, as well as SPP microlenses and
curs. This has been explicitly shown in connection with ei-microcavities®® SPP Bloch waves have also been imaged in
ther single defecfs® or random corrugatiot? **the latter  periodic arrays of surface defecfsinterestingly, the possi-
configuration being relevant to the phenomenon(8PP- bilities of artificially creating micro-optical components for
mediatedl enhanced backscattering of light. In addition to SPP’s have also been noted in these studies. Much has to be
that, light-SPP coupling plays a central role in other phenomédone, however, from the theoretical standpoint. Quite re-
ena such as anomalous transmission through metal slabs witkently, calculations for circularly symmetric defects have
hole arrays*!® surface-enhanced Raman scattefifig® or  successfully accounted for the peculiar azimuthal depen-
biosensing?® dence of the radiated pattethin addition, such calculations
In recent years, the advent of near-field opticalhave been used to retrieve the surface prdfile.the case of
microscopy® has opened up the possibility to study experi-one-dimensional surface defects, preliminary calculations
mentally SPP’s in a direct manner. Among the various conhave focused on the optimization of the defect size to obtain
figurations developed, photon scanning tunnelingSPP mirrors and so-called light emittéfdn this regard, it is
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where

® 1 1/2
k(w)EkR(w)Jrik'(w):E(l—m) , 2
FIG. 1. lllustration of the scattering geometry.
2\ 1/2 w
our purpose to address in detail the SPP scattering by one- Bo(w)= ( k(w)?— g) ZE[—f(w)]fllz, )
dimensional surface defects, including near-field and far-
field calculations(along with energy balangeand their de- and
pendence on defect size parameters. Thus we expect not only ) "™
to shed light on the experimental works mentioned above, 5 @
but also to find and predict related effects. ao(q,w)z(?—q ) . lal= c (43
The physical system we consider here is a planar one-
dimensional metal surface with a one-dimensional defect. w2\ Y2 w
The surface corrugation is modeled by using a local imped- =i(q2— —2) . lgl>—. (4b)
ance boundary conditiofiBC) on a flat surface. The con- c ¢

nection between surface impedance and real surface corruggote that the expressions for the SPP wave-vector compo-
tion has been recently demonstratédnd its validity to give nentsk(w) and Bo(w) in vacuum apply in the limite(w)|
accurate quantitative results has been shown in numerical 1. This stems from the fact that the continuity conditions
calculations of grating-induced SPP-photon coupfing.  across the interface are mapped onto a local IBC on the
scattering-theoretic formulation of the interaction of an SPRplanar surface;=0 in the form
with the surface roughness is developed by imposing the IBC
on the amplitude of the magnetic field in the vacuum region ¢  _ o 1+s(xy)
in the form of a Rayleigh expansion. Upon solving the re- (9_>(3H2 (Xl’x3)|xs=0:_ EWHZ (Xl’x3)|xs=0’
sulting integral equation for the scattering amplitude, the (5)
magnetic field at any point in the vacuum half-space can be
calculated. We will focus on the far-field angular distribution Where the superscript- indicates the vacuum region,
and the surface field amplitudes to determine, respectively; (@/c)[ — ()]~ *?s(xy) is the contribution to the surface
the total radiated energg and the SPP reflectioRsp and ~ impedance associated with the obstacle, &) is the iso-
transmissionT gp coefficients. By numerical simulation cal- tropic, frequency-dependent dielectric function of the metal.
culations, these quantities are computed. The IBC has been widely used in the past to model the
The paper is Organized as fo”ows_ The theoretical formu_\/acuum'metal interface qualitatively, eSpeCially in the infra-
lation is derived in Sec. II, and some details pertaining to thded region of the optical spectrum. Furthermore, it has been
numerical procedure are given in the Appendix. In Sec. lI1,Fecently proven to be quantitatively accurate in calculations
we show the results obtained for a single Gaussian defect arff grating-induced photon-SPP coupfigy using the con-
the influence of defect width and height. Finally, Sec. v nection between surface impedance and real corrugation

summarizes the conclusions drawn from this research. ~ demonstrated in Ref. 35. _ _
In order to calculate the scattering amplitugég, ), we

substitute Eq(1) into Eq. (5), and obtain the integral equa-
IIl. THEORY tion
A. Scattering equations R(q,0)=Go(q,w)V(q|k(w))

We study the scattering of@polarized SPP of frequency = dp
w propagating along a flat vacuum-metal interfagg=(0) +Go(q,w)f ZV(Q|D)R(D,0)), (6)
by a one-dimensional obstac{eonstant along the, axis, o
see Fig. 1 Under these circumstances, the three-where
dimensional electromagnetic problem can be cast into a two-
dimensional scalar problem in such a way that the single, ie(w)
nonzero component of the magnetic field amplitude Go(0, )= TP 2 )
H,(x1,X3) is the solution of the corresponding two- (@) ao(q, @) Fi(w/c) - e(w)]
dimensional Helmholtz equation in the upgegacuum and s the Green'’s function of the SPP on the unperturbed surface
lower (meta) half-spaces. The magnetic field in vacuum is[s(x;)=0]. We have also introduced the scattering potential
assumed to be the sum of an incoming SPP and a scattered .
field as follows: V(q|p)=Bo(w)s(q—p), (8)
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with

s(Q)= J dxe s(xy), (9)

to simplify the notation. Equatiof6) can be rewritten in a
more convenient manner by substituting

R(qiw):GO(QIw)T(qvw) (10)

into it, so that

T(@)=Vialko)+ | SEvialpGopoTip.0).
(13)
Equation(11), along with Eqgs.(1) and (10), is the basis of
our theoretical formulation.
In solving Eq.(11), it is very important how we deal with

the poles appearing in the Green’s functiof). First, we
rewrite the latter in the form

1
q—k(o) q+k(w)/)’
with

e(w)ao(q,0) —i(w/c)[ — e(w)]"?

C(q,w)= 2ie(w)k(w)

13
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ET(X1,X3)= ZiBo(w)exdik(w)xl—ﬁo(w)xg,]
c(-d
2 S aawR@e
Xexdgigx,+iag(g,w)Xs], (163
E5 (X1,X3) =0, (16b)

3 (X1,%0)= — — k() eXTik(0)X; — Bo(w)¥s]

c (= dqg - .
- ;fﬁwﬂqR(q,w)exqulJr i ao(Q, )Xs).

(160
The time-averaged Poynting vector thus reads

c C
(9= gRe(EX H*)=§Re(— EsH3,0E.H%), (17

where Re denotes the real part and the asterisk denotes the
complex conjugate.

C. Radiated energy
The total power carried away from the surface in the form

We now assume that the metal dielectric function is given byof volume electromagnetic waves propagating in the vacuum

Drude’s expression

2

w
e(w)=1-—, (14)
w

wherew, is the plasma frequency, in the absence of absorp-

tion losses. Therefore, in light of E€R), we have to take the
limit k'(w)—0 in Eq.(12), to obtain

L
. a+kR(0)],

Go<q,w>=c<q,w>(q_kR(w)

+ [ 8(q—kR(w))+ 8(q+ kR(w))]> . (15

The first two terms on the right-hand side of Ef5) have

region above it, per unit length of the system along xhe
axis, is

c? wlc dq )
877(1)[- /CEQO(q'w)lR(q!w” .

(18)
Note that only the scattered field contribution to shaecom-
ponent of the time-averaged Poynting vector is used. Equa-

tion (18) must be normalized by the power carried by the
incident SPP per unit length along tke axis,

Psc= f_mdxl<SgSC)> =

o . c?k(w)
- (inc)y— = 77
F’Inc JO dX3<Sl > 167Twﬁ0((0) !

where (S{") is the x, component of the time-averaged
Poynting vector of the incident SPP. Then the total, normal-

(19

meanings in the Cauchy’s principal value sense, whereas thged scattered powes is given by

last two terms areS functions. Once Eq(l1l) is solved for

T(qg,w) [we will see below how to do so numerically with
the help of Eq(15)], we proceed to calculate the electric and

magnetic near fields, the SPP-photon coupling, and the SPP
reflection and transmission coefficients in the following man-where

ner.

B. Near field

The magnetic field at any point in the vacuum half-space

can be straightforwardly calculated from Ed), upon recall-
ing Eq. (10), which relatesT(qg,w) with the scattering am-

= D5 f ™ 40, 2 (20)
_Pinc_ —ml2 Saes,
R 1 Bylw) , ® | o . 2
ﬁ_ﬁs_EZK(w) ag q—Esmas R q—EsmaS
(21

is the differential reflection coefficief©RC), namely, the
fraction of the energy of the incident SPP that is scattered

plitude R(g,w). Then the electric field components in into an angular region of widtd 65 about the scattering di-

vacuum are easily written also as functionsRifq,w) by
means of a Maxwell curl equation as follows:

rection 65, where the scattering anglg is measured clock-
wise with respect to th&; axis (see Fig. L
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D. Reflection and transmission coefficients IIl. RESULTS AND DISCUSSION

In order to evaluate the amplitude of the reflected and Note that up to now no restrictions have been imposed on
transmitted SPP, we study the behaviortbf (x;,X3), EQ.  the shape of the obstacle apart from its having a finite extent
(1), with the help of Eqs(10) and (15), on the surfacex;  along thex, axis. Its surface impedance functis(x,) is
=0. At this point, great care has to be taken when calculateonnected to the actual surface profile defined sy
ing the contribution to the scattered field in Eg) from the  =f(x,) through®
Cauchy principal value integrals arising from the first two
terms on the right-hand side of E(.5). We assume that the 1-€e(w) ) 9112 )
obstacle has a finite extent and is centered akpa®. If we s(x)= m[l_ d*(@)D7]7f (x1) + O(f%), (29
focus on the regiong; <0 andx;>0 far from the obstacle,
it can be shown, by working out the contributions from thosewhere d(w) = (c/w)[ — e(w)] Y2 is the optical skin depth
integrals in the complex| space with the help of Cauchy’s andD=d/dx;. In the case of small skin depths and surface
theorent® that the magnetic field is given by slopes (iD)2<1, the square-root term on the right-hand side

of Eq. (25 can be expanded as
H5 (X1,X3=0)=exd ikR(w)x,]

1
+r(w)exd —ikR(w)x;], x;<0, [1—(dD)?]Y?=1— E(dD)Z_ R
(223 3 1.1.3--(2n—-3) (dD)™"
=t(w)exdikR(w)x;], x>0, 2.4.6---2n
(22b) +O((dD)2n+2). (26)

where the amplitudes of the reflected and transmitted SPRhen the Fourier transform of the surface impedance func-
r(w) andt(w), respectively, are tion, which is needed in the calculatigof. Eq. (8)], is re-

lated to the Fourier transformh(Q) of the surface profile
Mw)=iT(—kR(w),0)C(—kR(0),), (238 function through

t(w)=1+iTKkR(w),0)CKR(w),o). 23b 2 _ 1-e(w) 1 2 1 4

(@) (o). )ClkNw).0). (230 S(Q)—m(l 5[=1d(0)QIP~ 5[ ~id(0)Q]

Equations(22) manifest the fact that, away from the ob-

stacle, only the incident and reflected SfR the left-hand +O([—id(w)Q]6))f(Q). (27)

side, see Fig. )land the transmitted SP@n the right-hand

sidg propagate along the interface. The corresponding re-

flection and transmission coefficients are In what follows, we will restrict the analysis to a Gaussian
defect of 1& half-width a and heighth:

_ 2
R(w)=[r()]% (243 f(x,)=hexp —x%/a?). (28)

T(w)=|t(w)|?. (24  In addition, unless otherwise stated, we retain in &),

and thus in Eq(27), only the zeroth-order term in the ex-

pansion in powers of —id(w)Q]? as implicitly done in

Ref. 34. Therefore the functioé(Q) we will use in our
The integral equatioill) is numerically solved by con- calculations is

verting it into a matrix equation through a quadrature

scheme. The details are given in the Appendix. It should be s(Q)= 72,8 exf — (aQ)%/4], (299

pointed out that the discretizati@nmesh is chosen in such a

way thatq= +kR(w) are always points on the mesh, as re-with

quired by Eq.(233. In addition, the discretization is not

regular: the density ofg points around the poles & l1-e(w) h

— +kR(w) is considerably largerq~10"*w/c) than it is 0= "ew) d(@) (290)

either in the radiative regioly|<w/c or in the nonradiative

region away from the poles\g~ 10 2w/c). The numbeN It should be emphasized that the approximation involved in

of g points needed in the numerical procedure depends naoktaining only the lowest-order term in the expansi@6)

only on the accuracy required to sample the pole regions, buffects only the expression connecting the surface impedance

also on the explicit form of the obstacle, which enters in thewith the real surface profile, the scattering formulation being

calculation through its Fourier transform in Ed9). rigorous and energy conservir(gecall that losses are not

Throughout this work, typicallyN=2600, except for the accounted forwhatever the surface impedance is. Nonethe-

larger defects, for which up td=4000 points are employed. less, inasmuch as we wish to be able to quantitatively relate

The convergence of the numerical results with increading our results with real defect sizes, the effect of neglecting the

has been checked in the most unfavorable cases. higher-order terms in Eq(26) has to be determined. We

E. Numerical calculations
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tions of the Gaussian defect half-widthhw=1.96 eV (\
FIG. 2. () Square modulus of the total surface magnetic field = 632.8 nm) ande=—17.2. Long-dashed curvéi=0.2\; solid

and (b) DRC resulting from the scattering of a SPP of frequencycyrve: h=—0.2\; dot-dashed curveh=0.05: dashed curveh

hw=1.96 eV (\=632.8 nm) by Gaussian defects on a silver sur- — _ o5\. The inset zooms in the reflection coefficient in a semi-
face (8: - 172) Of half‘W|dth a=0.1\. SO"d curve: h=005\ |Ogarithmic Scale for narrow defects_

(protuberance dashed curveh= —0.05\ (indentation).

between incoming and reflected SPP on the left-hand side, or
dﬁy merely the transmitted SPP on the right-hand side. This

. . . . 2 .
ing the first-order term if —id(w)QJ" in Eq. (27) barely  orroporates, as expected, our argument in Sec. Il D leading
modifies our calculations. to Eqs.(22).

In order to establish the accuracy and efficiency of the
numerical calculations based on the formulation above, we
first calculate the functio(q,w) [cf. Eq. (11)], following
the numerical procedure outlined in Sec. Il and the Appen- The question now arises naturally as to how efficient the
dix, for two Gaussian defects of half-widt#/Ax=0.1 and surface defect is in coupling the incoming SPP into the dif-
heightsh/\ = = 0.05 (protuberance and indentation of equal ferent outgoing channeléither SPP or photopsor con-
height/depth, where\ is the wavelength of the SPP. From versely, what the appropriate defect parameters are that
these results, the SPP reflection and transmission coefficientisaximize or minimize those channels; this is crucial for both
are straightforwardly calculatefcf. Eqgs. (23) and (24)], an understanding of the scattering process and the design of
along with the DRC[cf. Egs.(10) and (21)]. Furthermore, practical devices. To that end, we have studied the depen-
the magnetic and electric fields at any point in the vacuundence of the scattering coefficier®gp, Tsp, andSon the
half-space can be calculated from E(B.and(16) by using  defect half-widtha for both Gaussian protuberances and in-
Eqg.(10). In Fig. 2 we present the results thus obtained for thedentations of different heights/\ =0.05 and 0.2. The re-
magnetic field intensities at the vacuum-metal interface irsults are shown in Fig. 3. Several general features are evident
the vicinity of the Gaussian defects, and for the angular disfrom these results.
tribution of the scattered field in the far field. From the sur-  First, SPP reflection is relevant only for very narrow de-
face magnetic field in Fig.(@), it is evident that both surface fects, a<<\/5, for either protuberances or indentations. In-
defects reflect back part of the incoming SPP, which interdeed there is an optimum defect width for whigty is
feres with the incoming SPP giving rise to the oscillatory maximum3* These defects are callgglasmon mirrors’®3*
pattern to the left of the defe¢hegativex; axis). Near the  For increasing defect widths, protuberances and indentations
defect the magnetic field is perturbed. The outgoing transmitbegin to behave differently, except for their negligible con-
ted SPP is seen to the right of the defect. The SPP reflectiomibution to SPP reflection. On the one hand, SPP transmis-
and transmission coefficients amsp=0.0025 and Tgp  sion through protuberances monotonically diminishes at the
=0.9825 for the protuberance, ariRkp—0.0041 andTsp  expense of radiation. The conversion is steeper the higher the
=0.9728 for the indentation. In Fig.(® a fairly uniform  defect is. Indentations, however, exhibit an oscillatory pat-
angular distribution of the DRC is observéthis will be  tern with increasing defect width, in such a way that radia-
discussed below The total scattered power calculated from tion (SPP transmissigrnincreasesdecreases passes through
Eq. (20) is S=0.0149 for the protuberance ai®=0.0231 a maximum(minimum), and then tends asymptotically to O
for the indentation. Energy conservation is thus satisfied1). The oscillation period, the defect width that yields maxi-
within a 0.01% error. mum radiation, and the value of this maximum all depend on

We find that away from the vicinity of the defect, the the surface height. Note that both protuberances and inden-
magnetic field is fully described by either the interferencetation may behave dight emitters* (high SPP-light conver-

A. Energy balance dependence on defect size
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FIG. 4. Near-field intensity distributiofin a logarithmic scale FIG. 5. Same as in Fig. 4 but for a Gaussian indentation
resulting from the scattering of a SPP of frequendyw =—0.05\.

=1.96 eV (\=632.8 nm) by a Gaussian protuberance on a silver

surface ¢=—17.2) of half-widtha=0.1\ and heighth=0.0%.  Spp reflection for a defect width that maximizes the scatter-
(_a) Magnetic field intensity antb) electric field intensity and Poyn- ing potential [cf. Eq. (8)] at backscatterin leads to a
ting vector. mostly uniform SPP coupling into EM waves in the radiative

i <wlC).
sion efficiency for an appropriateland distinct range of region (g <w/c)

defect parameters. Below we analyze in detail the behavior

of SPP mirrors and light emitters. C. Wide protuberances: Total light emitters
The ability of Gaussian-shaped protuberances to couple
B. Narrow defects: SPP mirrors SPP’s into light has been pointed out in Ref. 34. Here we

Surface defects playing the role of SPP mirrors have beefin@lyze in detail the conditions for protuberances and inden-
studied experimentally in PSTM configuratiofisThis phe- ~ tations alike to behave as light emitters with cou_plmg effi-
nomenon has been analyzed for different defect shapes fiencies beyond 90%, larger than that reported in Ref. 34.
Ref. 34, where in addition a simple analytical prediction isFigure 3 above illustrates the discussion. .
given through a perturbation-theoretic argument. In the case 10 Pegin with, let us focus on protuberances. For widths

of Gaussian-shaped defects, the predicted half-width thdl€yond those producing significant SPP reflect®RP mir-
yields maximum reflection g, ~[2Y%R(w)]" L. Our nu-  fors, SPP-light conversion increases monotonically,

merical results further corroborate this prediction, since it igVhereas, as expected from energy conservation, SPP trans-
seen in Fig. 3 thag,,,/\~0.1 no matter what the defect Mission decays. This variation is faster for h|gher protuber-
height is[as long as this height does not exceed the range dices- Indeed, the curves in Fig.(Bottom indicate that
validity of Eq. (25)]. Nonetheless, the maximum SPP reflec-lim, .S=1 even for the small protuberance. We have
tion increases with the defect height, and is slightly larger forfound coupling efficiencies beyond 90% in the casébt
indentations. =0.2 anda/A=3.6. In Fig. 6, the electric and magnetic near-

The electric and magnetic near-field intensities for Gaussfield intensity maps for one such defect are shown. The ab-
ian defects, placed at the origin, of widiYA=0.1 and sence of oscillations to the left of the defect reveals that SPP
heightsh/\ = =0.05 (protuberance and indentation, respec-reflection is small; SPP transmission is small tgboough
tively), are presented in Figs. 4 and 5, respectively. The neatonsiderably larger thaRsp), as seen on the right-hand side
field maps are quite similar in both cases. The oscillations t@f the defect. A light beam is observed leaving the surface
the left of the obstacles clearly reveal the interference befrom the defect at near-grazing scattering angles. This energy
tween the incident and backscattered SPP, their period beirfipw picture is further corroborated by the angular distribu-
T~27/(2kR), as expected, and their contrast being relatedion of the DRC shown in Fig. 7, with a maximum at
to Rsp. A bright region is seen to the right of the defects that~74°. Qualitatively, the fact that the metal protuberance en-
is due to the strong SPP transmission. Poynting vector mapgrs the vacuum half-space seems to favor the SPP-photon
superimposed on the electric near-field intensity maps coneoupling (playing the role of daunching platform.
firm the description of the energy flow given above.

The corresponding angular distributions of scattered light
(DRC) have been shown in Fig.(l®. There are no signifi-
cant qualitative differences between protuberances and in-
dentations, both yielding a fairly structureless angular depen- In the case of wide indentations, however, the behavior of
dence; quantitatively, an indentation leads to stronger lighthe different outgoing channels differs from that for protu-
coupling. The qualitative behavior is somewhat expected: théerances, and exhibits a richer phenomenology. Upon in-
same perturbation-theoretic argument predicting maximunereasing the width of the indentation beyond the range of

D. Wide indentations: Light emitters and SPP total
transmission
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FIG. 8. Same as in Fig.(d) but forh=—2\ anda=0.3\.

sponding maxima in th8versusa curve(see Fig. 3 There-
fore, it can be inferred that the oscillatory behavior of SPP
transmission and conversion into light in indentations is gov-
-4 erned by a cavitylike effect. In fact, the near-field mapt
shown hergin the vicinity of any minimum-radiation inden-
tation provides further evidence for this suggestion.
As a consequence, the range of defect widths for which
FIG. 6. Same as in Fig. 4 but for=2\ anda=4\ (and fora  Nigh coupling efficiencies are encountered is far more restric-
larger near-field area tive for indentations. In fact, in contrast with protuberances,
only sufficiently deep indentation$i{A =0.2) are capable of
producing radiation efficiencieS>90%, and only for a nar-
gow range of parameters. It seems as if the indentation ge-
ometry would somehow hinder grazing light scattering.
Therefore, this kind ofight emittermight not correlate with
ny of the reciprocal version§SPP flashlights seen in
STM experiment&®*°
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=
N

x (microns)

significant SPP reflectiorfsee Fig. 3, SPP transmission
reaches a minimum value leading to maximum radiation, an
then slowly grows towardstal transmissionno radiation

in an oscillatory manner. The defect width that yields maxi-
mum radiation, its value, and the oscillations depend on th
defect height.

To understand such behavior, we plot in Figs. 8 and 9 the
electric near-field intensity maps for the higher defects
(h/A=0.2) of widthsa/A=0.3 anda/\=4, respectively. Although the energy conservation criterion is reasonably
These widths correspond to the first absolute and sixth sulwell satisfied in our calculations, even for defects wider than
sidiary, maxima in Fig. 3bottom), respectively. Both inden- those used in Fig. 8we have reached up t@/\ =20), one
tations give rise to a negligible amount of SPP reflectiom  has to be careful when interpreting the results in the limit
oscillations to the left of the defectas expected from Fig. 3 a/\—oo. It turns out that the determination of the behavior
(top). SPP transmissiofto the right of the defegtis very  of defects in this limit is important, since different tendencies
small fora/A=0.3, but a strong light beam at grazing scat-have been encountered for protuberances and indentations
tering is observed$=94%). Fora/\ =4, although most of  (total radiation and transmission, respectiyely
the energy goes intdsp=286.1%, a small amount of radia-  The analysis of the appropriate defect width that yields
tion also at grazing scattering angles is sgecall that even  maximum coupling is not simple even if making use of the
though for this width a local maximum occurs $hits value  Born approximation, since it requires the evaluation of the
is very small,S=13.3%, see Fig 3bottom)]. But what is integral of $(q—kR) for all homogeneous waves| < w/c.
very illustrative to the discussion on the behavior of the out-p g yet such an approximation does not properly describe
going channels is the near-field within the indentationihe formally exact numerical calculations. Alternatively, we
(strictly speaking, right on top of the indentation region, have carried out an analytic calculation based on the use of a
since we are using an IBC on a flat surfad@scillations are  poyndary condition similar to the Kirchhoff approximation.
found therein, the number of minintane in Fig. 8 and sixin  The approach relies on the expression for the scattering am-
Fig. 9 being directly related to the position of the corre- yjiiyde in terms of an integral equation along the surface
with the magnetic field and its normal derivative inside the
integrand(cf. Refs. 37 and 38 for the integral equation for-
mulation, and Ref. 3 for its version making use of the IBC on
a flat surfacg By assuming that the surface magnetic field is
given by the incoming SPP, the scattering amplitude reads in
the large width limit

E. Large width limit

lim R(q,w)=278(q—kR(w))(1+7sy). (30

a/lN—x

0 30 . . .
8. (deg) Although it does not satisfy energy conservationt surpris-
$

ingly, due to the approximation involvigdthe former result
FIG. 7. DRC as in F|g Q)) but for upper solid Curveh:Z)\ giVeS an estimation Of the ||m|t|ng behaViOI’ ShOWﬂ abOVe

anda=4\; dashed curvéh= — 2\ anda=0.3\: lower solid curve,  (see Fig. 3 SPP transmission saturates for indentatioss (
h=—-2\ anda=4\. >0), whereas protuberances,€0) tend to decrease SPP
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FIG. 9. Same as in Fig.(B) but forh=—2\ anda=4\.

transmission(in agreement with the numerical calculations, sion without radiation with increasing half-width. The in-

yet the exact limit is not predicted crease(decreasg of the SPP transmissioflight coupling
occurs in an oscillatory manner starting from an absolute
IV. CONCLUSIONS minimum (maximum) in transmission(radiation) for small

half-widths, the period of the oscillations being related to the

We have presented a theoretical formulation that dedefect impedance in a way reminiscent of a cavitylike effect.
scribes in a rigorous manner the scattering of a surface plasnaterestingly, we have found that for sufficiently deep inden-
mon polariton propagating along a planar vacuum-metal intations, this maximum radiation value can be extremely large
terface by a one-dimensional obstacle modeled through afeven larger than 90%so that the Gaussian indentation thus
impedance boundary condition. By solving tkepace scat- behaves as a light emitter.
tering integral equation upon which the formulation is based, Our results and discussion provide a thorough picture of
the angular spectrum of the scattered electromagnetic field ithe different aspects of SPP scattering by surface defects,
the vacuum half-space above the metal surface can be calcwhich, besides being interesting in itself as a scattering pro-
lated, which in turn allows us to obtain the near electric anccess, appears to be useful in a number of related
magnetic fields, the amplitudes of the reflected and transmitproblems:*1526-31:33:34t is rigorous for one-dimensional de-
ted SPP, and the angular distribution of the intensity of radifects and indeed sheds light on the two-dimensional case,
ated waves resulting from the conversion of SPP’s into voland can in turn explain and predict experimental restits.
ume waves. A numerical method to solve the scatteringn this regard, it would be interesting to perform experiments
integral equation has been put forth. on metal surfaces with defects of controlled profile. With

We have made use of these calculation methods to studgspect to the 2D case, it should be emphasized that the
the SPP scattering by one-dimensional Gaussian defects, eecent work by Shchegroet al? for circularly symmetric
ther protuberances or indentations. In particular, the depersurface defects reproduces the radiation pattern with peculiar
dence of the scattering process on the surface defect paratobes in the azimuthal angle dependence observed
eters has been analyzed. Several conclusions can be drawrperimentally?® However, further theoretical work is
from our results with respect to the behavior of Gaussiameeded that could address more complicated geometries used
protuberances or indentations. in the experiments and/or unexplained processes involving

SPP reflection is only significant for very narrow surfacesurface plasmon polaritorf§26-3!
defects, with half-width@a<c/w. Our near-field results ex-
plicitly show that in this case protuberances and indentations
behave alike, the latter reflecting SPP’s slightly more effi- ACKNOWLEDGMENTS

ciently. The dependence of the SPP reflection coefficient on This work was supported in part by Army Research Of-

fhe halfwih confims Tor different defect eignts (e 50N fige Grant No. DAAH 0-96-1-0187, and by both the Spanish
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tions yield an entirely different picture, the only common

feature being the negligible contribution to SPP reflection.
Protuberances, on the one hand, increasingly radiate more
light at near grazing scattering angles at the expense of SPP
transmission. They behave #ight emitterswith coupling By discretizingq and p in Eq. (11) and replacing the
efficiencies approaching 100% with increasing half-width.infinite limits in the integral by sufficiently large finite limits,
The higher the defect is, the larger the SPP-light conversiorthe following system of linear equations is obtained for the
On the other hand, indentations tend to total SPP transmis;=T(p,,,®) unknowns:

APPENDIX
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[Kmnlth=Vm, (A1)

with v, =V (qm|kR(w)). The matrix element,, are given

by
Kmn= 8mnt Mmn, (A2)

where 6, is the Kronecker delta and

M= — o C(2 KR {CHES'S
mn= T 5 (kY (w),w) (qm|— (w))

|

2kR(w)—Ag/2
2kR(w) + Aq/2

X[ i+In

pr=*kR(w), (A3a)

NEAR-FIELD AND FAR-FIELD SCATTERING OF ...

8367
1
== EC(Qm -w)v(qm| Pn)

o

pn—Aq/2+kR(w)\)
Pnt AQ/2+kR(w)| |

Pt Ag/2—KR(0)|
pa—Ag/2—kR(w)|

+In

Pn# kR (). (A3b)

In obtaining Eqs(A3), the explicit form ofGy(qg,w) shown

in Eqg. (15 has been taken into account in calculating the
corresponding integrals over the sampling intervhgs,
—Aqg/2,p,+Aqg/2].
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