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Near-field and far-field scattering of surface plasmon polaritons
by one-dimensional surface defects
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A rigorous formulation for the scattering of surface plasmon polaritons~SPP’s! from a one-dimensional
surface defect of any shape that yields the electromagnetic field in the vacuum half-space above the vacuum-
metal interface is developed by the use of an impedance boundary condition. The electric and magnetic near
fields, the angular distribution of the far-field radiation into vacuum due to SPP-photon coupling, and the SPP
reflection and transmission coefficients are calculated by numerically solving thek-space integral equation
upon which the formulation is based. In particular, we consider Gaussian-shaped defects~either protuberances
or indentations! and study the dependence of the above-mentioned physical quantities on their 1/e half-width
a and heighth. SPP reflection is significant for narrow defects (a&l/5, for either protuberances or indenta-
tions, wherel is the wavelength of the SPP!; maximum reflection~plasmon mirrors! is achieved fora
'l/10. For increasing defect widths, protuberances and indentations behave differently. The former give rise
to a monotonic increase of radiation at the expense of SPP transmission for increasing defect half-width.
However, indentations exhibit a significant increase of radiation~decrease of SPP transmission! for half-widths
of the order of or smaller than the wavelength, but tend to total SPP transmission in an oscillatory manner upon
further increasing the half-width. Both the position of the maximum radiation and the oscillation period depend
on the defect height, which in all other cases only affects the process quantitatively.Light emittersmight thus
be associated with either wide indentations or protuberances with widths that are of the order of or smaller than
the wavelength.@S0163-1829~99!01735-X#
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I. INTRODUCTION

In this paper, we study the scattering of surface plasm
polaritons~SPP’s! by surface defects. SPP’s arep-polarized
electromagnetic~EM! waves bound to a dielectric-metal in
terface and caused by the surface oscillations of the elec
plasma of the metal.1 They propagate along the metal inte
face a distance of the order of the SPP mean free path~rang-
ing from microns in the visible to millimeters in the infrare
of course depending also on the metal being consider!,
undergoing scattering processes due to surface rough
This constitutes a classical problem of fundamental inte
not only in the case of individual defects~cf. Ref. 2 and
references therein!, but also for periodically or randomly~or
both! distributed defects.3–6 Furthermore, it is obviously cru
cial in any light scattering problem involving rough met
surfaces where roughness-induced excitation of SPP’s
curs. This has been explicitly shown in connection with
ther single defects7–9 or random corrugation,10–13 the latter
configuration being relevant to the phenomenon of~SPP-
mediated! enhanced backscattering of light. In addition
that, light-SPP coupling plays a central role in other pheno
ena such as anomalous transmission through metal slabs
hole arrays,14,15 surface-enhanced Raman scattering,16–18 or
biosensing.19

In recent years, the advent of near-field optic
microscopy20 has opened up the possibility to study expe
mentally SPP’s in a direct manner. Among the various c
figurations developed, photon scanning tunnel
PRB 600163-1829/99/60~11!/8359~9!/$15.00
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microscopy21 ~PSTM!, basically exploiting SPP excitation in
the attenuated total reflection arrangement, has made it
sible to probe the SPP structure,22,23 localized SPP on ran
domly rough surfaces,24 and SPP resonances in fractal co
loid clusters25 and single particles.26,27 Moreover, PSTM
images have been obtained by surface-enhanced Raman
tering probing single molecules adsorbed on sin
nanoparticles.26 PSTM in combination with direct-write li-
thography has made it possible to create submicron def
on metal surfaces.28

Particularly relevant to the present work are the rec
experimental studies on SPP scattering by surf
defects.29–31 These studies have shown evidence of dra
cally distinct scattering properties depending on the de
size. Specifically, surface defects favoring SPP reflection
light coupling, called SPP mirrors and flashlights,29 respec-
tively, have been described, as well as SPP microlenses
microcavities;30 SPP Bloch waves have also been imaged
periodic arrays of surface defects.31 Interestingly, the possi-
bilities of artificially creating micro-optical components fo
SPP’s have also been noted in these studies. Much has
done, however, from the theoretical standpoint. Quite
cently, calculations for circularly symmetric defects ha
successfully accounted for the peculiar azimuthal dep
dence of the radiated pattern;32 in addition, such calculations
have been used to retrieve the surface profile.33 In the case of
one-dimensional surface defects, preliminary calculatio
have focused on the optimization of the defect size to ob
SPP mirrors and so-called light emitters.34 In this regard, it is
8359 ©1999 The American Physical Society
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8360 PRB 60J. A. SÁNCHEZ-GIL AND A. A. MARADUDIN
our purpose to address in detail the SPP scattering by
dimensional surface defects, including near-field and
field calculations~along with energy balance! and their de-
pendence on defect size parameters. Thus we expect not
to shed light on the experimental works mentioned abo
but also to find and predict related effects.

The physical system we consider here is a planar o
dimensional metal surface with a one-dimensional def
The surface corrugation is modeled by using a local imp
ance boundary condition~IBC! on a flat surface. The con
nection between surface impedance and real surface corr
tion has been recently demonstrated,35 and its validity to give
accurate quantitative results has been shown in nume
calculations of grating-induced SPP-photon coupling.3 A
scattering-theoretic formulation of the interaction of an S
with the surface roughness is developed by imposing the
on the amplitude of the magnetic field in the vacuum reg
in the form of a Rayleigh expansion. Upon solving the
sulting integral equation for the scattering amplitude,
magnetic field at any point in the vacuum half-space can
calculated. We will focus on the far-field angular distributio
and the surface field amplitudes to determine, respectiv
the total radiated energyS, and the SPP reflectionRSP and
transmissionTSP coefficients. By numerical simulation ca
culations, these quantities are computed.

The paper is organized as follows. The theoretical form
lation is derived in Sec. II, and some details pertaining to
numerical procedure are given in the Appendix. In Sec.
we show the results obtained for a single Gaussian defect
the influence of defect width and height. Finally, Sec.
summarizes the conclusions drawn from this research.

II. THEORY

A. Scattering equations

We study the scattering of ap-polarized SPP of frequenc
v propagating along a flat vacuum-metal interface (x350)
by a one-dimensional obstacle~constant along thex2 axis,
see Fig. 1!. Under these circumstances, the thre
dimensional electromagnetic problem can be cast into a t
dimensional scalar problem in such a way that the sin
nonzero component of the magnetic field amplitu
H2(x1 ,x3) is the solution of the corresponding two
dimensional Helmholtz equation in the upper~vacuum! and
lower ~metal! half-spaces. The magnetic field in vacuum
assumed to be the sum of an incoming SPP and a scat
field as follows:

FIG. 1. Illustration of the scattering geometry.
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H2
.~x1 ,x3!5exp@ ik~v!x12bo~v!x3#

1E
2`

` dq

2p
R~q,v!exp@ iqx11 iao~q,v!x3#,

~1!

where

k~v![kR~v!1 ikI~v!5
v

c S 12
1

e~v! D
1/2

, ~2!

b0~v!5S k~v!22
v2

c2 D 1/2

5
v

c
@2e~v!#21/2, ~3!

and

ao~q,v!5S v2

c2
2q2D 1/2

, uqu<
v

c
~4a!

5 i S q22
v2

c2 D 1/2

, uqu.
v

c
. ~4b!

Note that the expressions for the SPP wave-vector com
nentsk(v) andb0(v) in vacuum apply in the limitue(v)u
@1. This stems from the fact that the continuity conditio
across the interface are mapped onto a local IBC on
planar surfacex350 in the form

]

]x3
H2

.~x1 ,x3!ux35052
v

c

11s~x1!

@2e~v!#1/2
H2

.~x1 ,x3!ux350 ,

~5!

where the superscript. indicates the vacuum region
2(v/c)@2e(v)#21/2s(x1) is the contribution to the surfac
impedance associated with the obstacle, ande(v) is the iso-
tropic, frequency-dependent dielectric function of the me
The IBC has been widely used in the past to model
vacuum-metal interface qualitatively, especially in the infr
red region of the optical spectrum. Furthermore, it has b
recently proven to be quantitatively accurate in calculatio
of grating-induced photon-SPP coupling3 by using the con-
nection between surface impedance and real corruga
demonstrated in Ref. 35.

In order to calculate the scattering amplitudeR(q,v), we
substitute Eq.~1! into Eq. ~5!, and obtain the integral equa
tion

R~q,v!5G0~q,v!V„quk~v!…

1G0~q,v!E
2`

` dp

2p
V~qup!R~p,v!, ~6!

where

G0~q,v![
i e~v!

e~v!a0~q,v!1 i ~v/c!@2e~v!#1/2
~7!

is the Green’s function of the SPP on the unperturbed sur
@s(x1)50#. We have also introduced the scattering poten

V~qup![b0~v!ŝ~q2p!, ~8!
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with

ŝ~Q!5E
2`

`

dx1e2 iQx1s~x1!, ~9!

to simplify the notation. Equation~6! can be rewritten in a
more convenient manner by substituting

R~q,v!5G0~q,v!T~q,v! ~10!

into it, so that

T~q,v!5V„quk~v!…1E
2`

` dp

2p
V~qup!G0~p,v!T~p,v!.

~11!

Equation~11!, along with Eqs.~1! and ~10!, is the basis of
our theoretical formulation.

In solving Eq.~11!, it is very important how we deal with
the poles appearing in the Green’s function~7!. First, we
rewrite the latter in the form

G0~q,v!5C~q,v!S 1

q2k~v!
2

1

q1k~v! D , ~12!

with

C~q,v![
e~v!a0~q,v!2 i ~v/c!@2e~v!#1/2

2i e~v!k~v!
. ~13!

We now assume that the metal dielectric function is given
Drude’s expression

e~v!512
vp

2

v2
, ~14!

wherevp is the plasma frequency, in the absence of abso
tion losses. Therefore, in light of Eq.~2!, we have to take the
limit kI(v)→0 in Eq. ~12!, to obtain

G0~q,v!5C~q,v!S 1

q2kR~v!
U

P

2
1

q1kR~v!
U

P

1p i @d„q2kR~v!…1d„q1kR~v!…# D . ~15!

The first two terms on the right-hand side of Eq.~15! have
meanings in the Cauchy’s principal value sense, whereas
last two terms ared functions. Once Eq.~11! is solved for
T(q,v) @we will see below how to do so numerically wit
the help of Eq.~15!#, we proceed to calculate the electric a
magnetic near fields, the SPP-photon coupling, and the
reflection and transmission coefficients in the following ma
ner.

B. Near field

The magnetic field at any point in the vacuum half-spa
can be straightforwardly calculated from Eq.~1!, upon recall-
ing Eq. ~10!, which relatesT(q,v) with the scattering am-
plitude R(q,v). Then the electric field components
vacuum are easily written also as functions ofR(q,v) by
means of a Maxwell curl equation as follows:
y

p-

he

P
-

e

E1
.~x1 ,x3!5

c

v
ib0~v!exp@ ik~v!x12b0~v!x3#

1
c

vE2`

` dq

2p
a0~q,v!R~q,v!

3exp@ iqx11 ia0~q,v!x3#, ~16a!

E2
.~x1 ,x3!50, ~16b!

E3
.~x1 ,x3!52

c

v
k~v!exp@ ik~v!x12b0~v!x3#

2
c

vE2`

` dq

2p
qR~q,v!exp@ iqx11 ia0~q,v!x3#.

~16c!

The time-averaged Poynting vector thus reads

^S&5
c

8p
Re~E3H* !5

c

8p
Re~2E3H2* ,0,E1H2* !, ~17!

where Re denotes the real part and the asterisk denote
complex conjugate.

C. Radiated energy

The total power carried away from the surface in the fo
of volume electromagnetic waves propagating in the vacu
region above it, per unit length of the system along thex2
axis, is

Psc5E
2`

`

dx1^S3
(sc)&5

c2

8pvE2v/c

v/c dq

2p
a0~q,v!uR~q,v!u2.

~18!

Note that only the scattered field contribution to thex3 com-
ponent of the time-averaged Poynting vector is used. Eq
tion ~18! must be normalized by the power carried by t
incident SPP per unit length along thex2 axis,

Pinc5E
0

`

dx3^S1
(inc)&5

c2k~v!

16pvb0~v!
, ~19!

where ^S1
(inc)& is the x1 component of the time-average

Poynting vector of the incident SPP. Then the total, norm
ized scattered powerS is given by

S5
Psc

Pinc
5E

2p/2

p/2

dus

]R

]us
, ~20!

where

]R

]us
5

1

2p

b0~v!

2k~v!
a0

2S q5
v

c
sinusD URS q5

v

c
sinusD U2

~21!

is the differential reflection coefficient~DRC!, namely, the
fraction of the energy of the incident SPP that is scatte
into an angular region of widthdus about the scattering di
rectionus , where the scattering angleus is measured clock-
wise with respect to thex3 axis ~see Fig. 1!.
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D. Reflection and transmission coefficients

In order to evaluate the amplitude of the reflected a
transmitted SPP, we study the behavior ofH2

.(x1 ,x3), Eq.
~1!, with the help of Eqs.~10! and ~15!, on the surfacex3
50. At this point, great care has to be taken when calcu
ing the contribution to the scattered field in Eq.~2! from the
Cauchy principal value integrals arising from the first tw
terms on the right-hand side of Eq.~15!. We assume that the
obstacle has a finite extent and is centered aboutx150. If we
focus on the regionsx1!0 andx1@0 far from the obstacle
it can be shown, by working out the contributions from tho
integrals in the complexq space with the help of Cauchy’
theorem,36 that the magnetic field is given by

H2
.~x1 ,x350!5exp@ ikR~v!x1#

1r ~v!exp@2 ikR~v!x1#, x1!0,

~22a!

5t~v!exp@ ikR~v!x1#, x1@0,
~22b!

where the amplitudes of the reflected and transmitted S
r (v) and t(v), respectively, are

r ~v!5 iT„2kR~v!,v…C„2kR~v!,v…, ~23a!

t~v!511 iT„kR~v!,v…C„kR~v!,v…. ~23b!

Equations~22! manifest the fact that, away from the ob
stacle, only the incident and reflected SPP~on the left-hand
side, see Fig. 1! and the transmitted SPP~on the right-hand
side! propagate along the interface. The corresponding
flection and transmission coefficients are

R~v!5ur ~v!u2, ~24a!

T~v!5ut~v!u2. ~24b!

E. Numerical calculations

The integral equation~11! is numerically solved by con
verting it into a matrix equation through a quadratu
scheme. The details are given in the Appendix. It should
pointed out that the discretizationq mesh is chosen in such
way thatq56kR(v) are always points on the mesh, as r
quired by Eq.~23a!. In addition, the discretization is no
regular: the density ofq points around the poles atq
56kR(v) is considerably larger (Dq'1024v/c) than it is
either in the radiative regionuqu<v/c or in the nonradiative
region away from the poles (Dq'1022v/c). The numberN
of q points needed in the numerical procedure depends
only on the accuracy required to sample the pole regions,
also on the explicit form of the obstacle, which enters in
calculation through its Fourier transform in Eq.~9!.
Throughout this work, typicallyN52600, except for the
larger defects, for which up toN54000 points are employed
The convergence of the numerical results with increasinN
has been checked in the most unfavorable cases.
d
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III. RESULTS AND DISCUSSION

Note that up to now no restrictions have been imposed
the shape of the obstacle apart from its having a finite ex
along thex1 axis. Its surface impedance functions(x1) is
connected to the actual surface profile defined byx3
5 f (x1) through35

s~x!5
12e~v!

d~v!e~v!
@12d2~v!D2#1/2f ~x1!1O~ f 2!, ~25!

where d(v)5(c/v)@2e(v)#21/2 is the optical skin depth
andD[d/dx1. In the case of small skin depths and surfa
slopes (dD)2!1, the square-root term on the right-hand si
of Eq. ~25! can be expanded as

@12~dD!2#1/2512
1

2
~dD!22•••

2
1.1.3•••~2n23!

2.4.6•••2n
~dD!2n

1O„~dD!2n12
…. ~26!

Then the Fourier transform of the surface impedance fu
tion, which is needed in the calculation@cf. Eq. ~8!#, is re-
lated to the Fourier transformf̂ (Q) of the surface profile
function through

ŝ~Q!5
12e~v!

d~v!e~v! S 12
1

2
@2 id~v!Q#22

1

8
@2 id~v!Q#4

1O„@2 id~v!Q#6
…D f̂ ~Q!. ~27!

In what follows, we will restrict the analysis to a Gaussi
defect of 1/e half-width a and heighth:

f ~x1!5h exp~2x1
2/a2!. ~28!

In addition, unless otherwise stated, we retain in Eq.~26!,
and thus in Eq.~27!, only the zeroth-order term in the ex
pansion in powers of@2 id(v)Q#2, as implicitly done in
Ref. 34. Therefore the functionŝ(Q) we will use in our
calculations is

ŝ~Q!5p1/2s0a exp@2~aQ!2/4#, ~29a!

with

s05
12e~v!

e~v!

h

d~v!
. ~29b!

It should be emphasized that the approximation involved
retaining only the lowest-order term in the expansion~26!
affects only the expression connecting the surface impeda
with the real surface profile, the scattering formulation be
rigorous and energy conserving~recall that losses are no
accounted for! whatever the surface impedance is. Noneth
less, inasmuch as we wish to be able to quantitatively re
our results with real defect sizes, the effect of neglecting
higher-order terms in Eq.~26! has to be determined. W
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have thus verified in the most unfavorable cases that inc
ing the first-order term in@2 id(v)Q#2 in Eq. ~27! barely
modifies our calculations.

In order to establish the accuracy and efficiency of
numerical calculations based on the formulation above,
first calculate the functionT(q,v) @cf. Eq. ~11!#, following
the numerical procedure outlined in Sec. II and the App
dix, for two Gaussian defects of half-widtha/l50.1 and
heightsh/l560.05 ~protuberance and indentation of equ
height/depth!, wherel is the wavelength of the SPP. Fro
these results, the SPP reflection and transmission coeffic
are straightforwardly calculated@cf. Eqs. ~23! and ~24!#,
along with the DRC@cf. Eqs. ~10! and ~21!#. Furthermore,
the magnetic and electric fields at any point in the vacu
half-space can be calculated from Eqs.~1! and~16! by using
Eq. ~10!. In Fig. 2 we present the results thus obtained for
magnetic field intensities at the vacuum-metal interface
the vicinity of the Gaussian defects, and for the angular d
tribution of the scattered field in the far field. From the su
face magnetic field in Fig. 2~a!, it is evident that both surface
defects reflect back part of the incoming SPP, which int
feres with the incoming SPP giving rise to the oscillato
pattern to the left of the defect~negativex1 axis!. Near the
defect the magnetic field is perturbed. The outgoing transm
ted SPP is seen to the right of the defect. The SPP reflec
and transmission coefficients areRSP50.0025 and TSP
50.9825 for the protuberance, andRSP50.0041 andTSP
50.9728 for the indentation. In Fig. 2~b! a fairly uniform
angular distribution of the DRC is observed~this will be
discussed below!. The total scattered power calculated fro
Eq. ~20! is S50.0149 for the protuberance andS50.0231
for the indentation. Energy conservation is thus satisfi
within a 0.01% error.

We find that away from the vicinity of the defect, th
magnetic field is fully described by either the interferen

FIG. 2. ~a! Square modulus of the total surface magnetic fi
and ~b! DRC resulting from the scattering of a SPP of frequen
\v51.96 eV (l5632.8 nm) by Gaussian defects on a silver s
face («5217.2) of half-width a50.1l. Solid curve: h50.05l
~protuberance!; dashed curve:h520.05l ~indentation!.
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between incoming and reflected SPP on the left-hand side
by merely the transmitted SPP on the right-hand side. T
corroborates, as expected, our argument in Sec. II D lead
to Eqs.~22!.

A. Energy balance dependence on defect size

The question now arises naturally as to how efficient
surface defect is in coupling the incoming SPP into the d
ferent outgoing channels~either SPP or photons!, or con-
versely, what the appropriate defect parameters are
maximize or minimize those channels; this is crucial for bo
an understanding of the scattering process and the desig
practical devices. To that end, we have studied the dep
dence of the scattering coefficientsRSP, TSP, andS on the
defect half-widtha for both Gaussian protuberances and
dentations of different heightsh/l50.05 and 0.2. The re-
sults are shown in Fig. 3. Several general features are evi
from these results.

First, SPP reflection is relevant only for very narrow d
fects, a,l/5, for either protuberances or indentations. I
deed there is an optimum defect width for whichRSP is
maximum.34 These defects are calledplasmon mirrors.29,34

For increasing defect widths, protuberances and indentat
begin to behave differently, except for their negligible co
tribution to SPP reflection. On the one hand, SPP transm
sion through protuberances monotonically diminishes at
expense of radiation. The conversion is steeper the highe
defect is. Indentations, however, exhibit an oscillatory p
tern with increasing defect width, in such a way that rad
tion ~SPP transmission! increases~decreases!, passes through
a maximum~minimum!, and then tends asymptotically to
~1!. The oscillation period, the defect width that yields ma
mum radiation, and the value of this maximum all depend
the surface height. Note that both protuberances and ind
tation may behave aslight emitters34 ~high SPP-light conver-

-

FIG. 3. Normalized SPP reflection and transmission coefficie
(RSP and TSP, respectively!, and total radiated energyS, as func-
tions of the Gaussian defect half-width:\v51.96 eV (l
5632.8 nm) and«5217.2. Long-dashed curve:h50.2l; solid
curve: h520.2l; dot-dashed curve:h50.05l; dashed curve:h
520.05l. The inset zooms in the reflection coefficient in a sem
logarithmic scale for narrow defects.
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sion efficiency! for an appropriate~and distinct! range of
defect parameters. Below we analyze in detail the beha
of SPP mirrors and light emitters.

B. Narrow defects: SPP mirrors

Surface defects playing the role of SPP mirrors have b
studied experimentally in PSTM configurations.29 This phe-
nomenon has been analyzed for different defect shape
Ref. 34, where in addition a simple analytical prediction
given through a perturbation-theoretic argument. In the c
of Gaussian-shaped defects, the predicted half-width
yields maximum reflection isamirr'@21/2kR(v)#21. Our nu-
merical results further corroborate this prediction, since i
seen in Fig. 3 thatamirr /l'0.1 no matter what the defec
height is@as long as this height does not exceed the rang
validity of Eq. ~25!#. Nonetheless, the maximum SPP refle
tion increases with the defect height, and is slightly larger
indentations.

The electric and magnetic near-field intensities for Gau
ian defects, placed at the origin, of widtha/l50.1 and
heightsh/l560.05 ~protuberance and indentation, respe
tively!, are presented in Figs. 4 and 5, respectively. The n
field maps are quite similar in both cases. The oscillation
the left of the obstacles clearly reveal the interference
tween the incident and backscattered SPP, their period b
T'2p/(2kR), as expected, and their contrast being rela
to RSP. A bright region is seen to the right of the defects th
is due to the strong SPP transmission. Poynting vector m
superimposed on the electric near-field intensity maps c
firm the description of the energy flow given above.

The corresponding angular distributions of scattered li
~DRC! have been shown in Fig. 2~b!. There are no signifi-
cant qualitative differences between protuberances and
dentations, both yielding a fairly structureless angular dep
dence; quantitatively, an indentation leads to stronger li
coupling. The qualitative behavior is somewhat expected:
same perturbation-theoretic argument predicting maxim

FIG. 4. Near-field intensity distribution~in a logarithmic scale!
resulting from the scattering of a SPP of frequency\v
51.96 eV (l5632.8 nm) by a Gaussian protuberance on a sil
surface («5217.2) of half-widtha50.1l and heighth50.05l.
~a! Magnetic field intensity and~b! electric field intensity and Poyn
ting vector.
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SPP reflection for a defect width that maximizes the scat
ing potential @cf. Eq. ~8!# at backscattering34 leads to a
mostly uniform SPP coupling into EM waves in the radiati
region (uqu<v/c).

C. Wide protuberances: Total light emitters

The ability of Gaussian-shaped protuberances to cou
SPP’s into light has been pointed out in Ref. 34. Here
analyze in detail the conditions for protuberances and ind
tations alike to behave as light emitters with coupling e
ciencies beyond 90%, larger than that reported in Ref.
Figure 3 above illustrates the discussion.

To begin with, let us focus on protuberances. For wid
beyond those producing significant SPP reflection~SPP mir-
rors!, SPP-light conversion increases monotonica
whereas, as expected from energy conservation, SPP t
mission decays. This variation is faster for higher protub
ances. Indeed, the curves in Fig. 3~bottom! indicate that
lim

a→`
S51 even for the small protuberance. We ha

found coupling efficiencies beyond 90% in the case ofh/l
50.2 anda/l>3.6. In Fig. 6, the electric and magnetic nea
field intensity maps for one such defect are shown. The
sence of oscillations to the left of the defect reveals that S
reflection is small; SPP transmission is small too~though
considerably larger thanRSP), as seen on the right-hand sid
of the defect. A light beam is observed leaving the surfa
from the defect at near-grazing scattering angles. This ene
flow picture is further corroborated by the angular distrib
tion of the DRC shown in Fig. 7, with a maximum atus
'74°. Qualitatively, the fact that the metal protuberance
ters the vacuum half-space seems to favor the SPP-ph
coupling ~playing the role of alaunching platform!.

D. Wide indentations: Light emitters and SPP total
transmission

In the case of wide indentations, however, the behavio
the different outgoing channels differs from that for prot
berances, and exhibits a richer phenomenology. Upon
creasing the width of the indentation beyond the range

r

FIG. 5. Same as in Fig. 4 but for a Gaussian indentationh
520.05l.
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significant SPP reflection~see Fig. 3!, SPP transmission
reaches a minimum value leading to maximum radiation,
then slowly grows towardstotal transmission~no radiation!
in an oscillatory manner. The defect width that yields ma
mum radiation, its value, and the oscillations depend on
defect height.

To understand such behavior, we plot in Figs. 8 and 9
electric near-field intensity maps for the higher defe
(h/l50.2) of widths a/l50.3 anda/l54, respectively.
These widths correspond to the first absolute and sixth s
sidiary, maxima in Fig. 3~bottom!, respectively. Both inden
tations give rise to a negligible amount of SPP reflection~no
oscillations to the left of the defect!, as expected from Fig. 3
~top!. SPP transmission~to the right of the defect! is very
small for a/l50.3, but a strong light beam at grazing sc
tering is observed (S594%). Fora/l54, although most of
the energy goes intoTSP586.1%, a small amount of radia
tion also at grazing scattering angles is seen@recall that even
though for this width a local maximum occurs inS, its value
is very small,S513.3%, see Fig 3~bottom!#. But what is
very illustrative to the discussion on the behavior of the o
going channels is the near-field within the indentati
~strictly speaking, right on top of the indentation regio
since we are using an IBC on a flat surface!. Oscillations are
found therein, the number of minima~one in Fig. 8 and six in
Fig. 9! being directly related to the position of the corr

FIG. 7. DRC as in Fig. 2~b! but for upper solid curve,h52l
anda54l; dashed curve,h522l anda50.3l; lower solid curve,
h522l anda54l.

FIG. 6. Same as in Fig. 4 but forh52l anda54l ~and for a
larger near-field area!.
d
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sponding maxima in theSversusa curve~see Fig. 3!. There-
fore, it can be inferred that the oscillatory behavior of S
transmission and conversion into light in indentations is g
erned by a cavitylike effect. In fact, the near-field map~not
shown here! in the vicinity of any minimum-radiation inden
tation provides further evidence for this suggestion.

As a consequence, the range of defect widths for wh
high coupling efficiencies are encountered is far more rest
tive for indentations. In fact, in contrast with protuberanc
only sufficiently deep indentations (h/l>0.2) are capable of
producing radiation efficienciesS.90%, and only for a nar-
row range of parameters. It seems as if the indentation
ometry would somehow hinder grazing light scatterin
Therefore, this kind oflight emittermight not correlate with
any of the reciprocal versions~SPP flashlights! seen in
PSTM experiments.29,30

E. Large width limit

Although the energy conservation criterion is reasona
well satisfied in our calculations, even for defects wider th
those used in Fig. 3~we have reached up toa/l520), one
has to be careful when interpreting the results in the lim
a/l→`. It turns out that the determination of the behavi
of defects in this limit is important, since different tendenci
have been encountered for protuberances and indenta
~total radiation and transmission, respectively!.

The analysis of the appropriate defect width that yie
maximum coupling is not simple even if making use of t
Born approximation, since it requires the evaluation of t
integral of ŝ(q2kR) for all homogeneous wavesuqu,v/c.
And yet such an approximation does not properly descr
the formally exact numerical calculations. Alternatively, w
have carried out an analytic calculation based on the use
boundary condition similar to the Kirchhoff approximatio
The approach relies on the expression for the scattering
plitude in terms of an integral equation along the surfa
with the magnetic field and its normal derivative inside t
integrand~cf. Refs. 37 and 38 for the integral equation fo
mulation, and Ref. 3 for its version making use of the IBC
a flat surface!. By assuming that the surface magnetic field
given by the incoming SPP, the scattering amplitude read
the large width limit

lim
a/l→`

R~q,v!52pd„q2kR~v!…~11ps0!. ~30!

Although it does not satisfy energy conservation~not surpris-
ingly, due to the approximation involved!, the former result
gives an estimation of the limiting behavior shown abo
~see Fig. 3!: SPP transmission saturates for indentationss0
.0), whereas protuberances (s0,0) tend to decrease SP

FIG. 8. Same as in Fig. 4~b! but for h522l anda50.3l.



8366 PRB 60J. A. SÁNCHEZ-GIL AND A. A. MARADUDIN
FIG. 9. Same as in Fig. 6~b! but for h522l anda54l.
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transmission~in agreement with the numerical calculation
yet the exact limit is not predicted!.

IV. CONCLUSIONS

We have presented a theoretical formulation that
scribes in a rigorous manner the scattering of a surface p
mon polariton propagating along a planar vacuum-metal
terface by a one-dimensional obstacle modeled through
impedance boundary condition. By solving thek-space scat-
tering integral equation upon which the formulation is bas
the angular spectrum of the scattered electromagnetic fie
the vacuum half-space above the metal surface can be c
lated, which in turn allows us to obtain the near electric a
magnetic fields, the amplitudes of the reflected and trans
ted SPP, and the angular distribution of the intensity of ra
ated waves resulting from the conversion of SPP’s into v
ume waves. A numerical method to solve the scatter
integral equation has been put forth.

We have made use of these calculation methods to s
the SPP scattering by one-dimensional Gaussian defects
ther protuberances or indentations. In particular, the dep
dence of the scattering process on the surface defect pa
eters has been analyzed. Several conclusions can be d
from our results with respect to the behavior of Gauss
protuberances or indentations.

SPP reflection is only significant for very narrow surfa
defects, with half-widthsa,c/v. Our near-field results ex
plicitly show that in this case protuberances and indentati
behave alike, the latter reflecting SPP’s slightly more e
ciently. The dependence of the SPP reflection coefficien
the half-width confirms for different defect heights the co
dition predicted in Ref. 34 of maximum SPP reflection, lea
ing to theplasmon mirrorsseen in PSTM experiments.29

For wider Gaussian defects, protuberances and inde
tions yield an entirely different picture, the only commo
feature being the negligible contribution to SPP reflecti
Protuberances, on the one hand, increasingly radiate m
light at near grazing scattering angles at the expense of
transmission. They behave aslight emitterswith coupling
efficiencies approaching 100% with increasing half-wid
The higher the defect is, the larger the SPP-light convers
On the other hand, indentations tend to total SPP trans
,
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sion without radiation with increasing half-width. The in
crease~decrease! of the SPP transmission~light coupling!
occurs in an oscillatory manner starting from an absol
minimum ~maximum! in transmission~radiation! for small
half-widths, the period of the oscillations being related to t
defect impedance in a way reminiscent of a cavitylike effe
Interestingly, we have found that for sufficiently deep inde
tations, this maximum radiation value can be extremely la
~even larger than 90%!, so that the Gaussian indentation th
behaves as a light emitter.

Our results and discussion provide a thorough picture
the different aspects of SPP scattering by surface defe
which, besides being interesting in itself as a scattering p
cess, appears to be useful in a number of rela
problems.14,15,26–31,33,34It is rigorous for one-dimensional de
fects and indeed sheds light on the two-dimensional ca
and can in turn explain and predict experimental results.29,30

In this regard, it would be interesting to perform experime
on metal surfaces with defects of controlled profile. W
respect to the 2D case, it should be emphasized that
recent work by Shchegrovet al.32 for circularly symmetric
surface defects reproduces the radiation pattern with pec
lobes in the azimuthal angle dependence obser
experimentally.29 However, further theoretical work is
needed that could address more complicated geometries
in the experiments and/or unexplained processes involv
surface plasmon polaritons.14,26,31
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APPENDIX

By discretizing q and p in Eq. ~11! and replacing the
infinite limits in the integral by sufficiently large finite limits
the following system of linear equations is obtained for t
tn[T(pn ,v) unknowns:
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@Kmn#tn5vm , ~A1!

with vm[V„qmukR(v)…. The matrix elementsKmn are given
by

Kmn5dmn1Mmn , ~A2!

wheredmn is the Kronecker delta and

Mmn52
1

2p
C„6kR~v!,v…V„qmu6kR~v!…

3S p i 1 lnU2kR~v!2Dq/2

2kR~v!1Dq/2
U D ,

pn56kR~v!, ~A3a!
et

.

lff
52
1

2p
C~qm ,v!V~qmupn!

3S lnUpn1Dq/22kR~v!

pn2Dq/22kR~v!
U

1 lnUpn2Dq/21kR~v!

pn1Dq/21kR~v!
U D ,

pnÞ6kR~v!. ~A3b!

In obtaining Eqs.~A3!, the explicit form ofG0(q,v) shown
in Eq. ~15! has been taken into account in calculating t
corresponding integrals over the sampling intervals@pn
2Dq/2,pn1Dq/2#.
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