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Thermal motions in a microscopic model for a strong glass~B2O3) are studied by means of computer
molecular dynamics simulations. A decomposition of the atomic dynamics in terms of normal modes allows the
separation of the truly harmonic components of the generalized frequency distributions. This enables us to
discuss a number of magnitudes relevant to current issues on glassy dynamics on quantitative grounds. In
particular, the microscopic origin of quantities such as the atomic mean-square displacements, the character-
ization of mode eigenvectors associated with well-defined spectral features, or the origin of the low-frequency
peak appearing in theS(Q,v) dynamic structure factor, are analyzed in some detail.

I. INTRODUCTION

The quantitative understanding of the complicated atomic
dynamics exhibited by supercooled liquids as well as that
characteristic of the glassy state achieved upon crossing from
above the glass transition still constitutes a challenge to ef-
forts within a varied set of subspecialities within condensed
matter sciences. One of the main difficulties regards the co-
existence within comparable time scales of motions repre-
senting disparate phenomena which can hardly be separated,
although attempts in this direction have recently appeared.1,2

There, the existence of well-differentiated motions is postu-
lated, ascribing as ‘‘relaxations’’ those taking place within
meso- and macroscopic scales of time and length, whereas
those occurring within the picosecond scale are termed as
‘‘vibrations.’’ The experimental evidence upon which such a
distinction is substantiated heavily relies upon some model
response function which is used to separate the high-
frequency vibrational component from the low-frequency
spectrum. Because of the complicated dynamics exhibited by
most materials being scrutinized following such approaches,
most model response functions regard oversimplified
~Debye-like! representations of the vibrational frequency
distributions,1 the validity of which can only be justified by
the complicated nature of the materials under consideration.

Our aim here is to illustrate an alternative way to unravel
the microscopic origin of the different frequency regions in
the dynamic response of disordered matter without making
recourse to such simplifying assumptions. The present efforts
are focused onto the description of the atomic dynamics of a
strong glass which is carried after its decomposition into
‘‘normal modes,’’ which are calculated for a relevant~but
large! atomic cluster. As shown below, such a separation en-
ables us to discuss the microscopic origin of some character-
istic fingerprints of glassy dynamics such as the large atomic
mean-square displacements on a quantitative basis. On the
other hand, such an approach provides a truly microscopic
correlate for some aspects currently discussed in terms of
phenomenological constructs such as the ‘‘soft-mode’’

concept3 a tool recently employed in discussions on glassy
dynamics.

The present results will also try to contribute towards the
clarification of the origin of the inelastic intensities at fre-
quencies of about 0.5–10 meV which give rise to a finite-
frequency feature in the neutron and Raman spectra com-
monly referred to as the ‘‘Boson’’ peak,4 and which is
considered to be one of the universal fingerprints of the
glassy dynamics. For such a purpose, the advantage of the
normal-mode decomposition of the atomic dynamics will be
fully exploited since it provides valuable information regard-
ing the atomic mode eigenvectors and, therefore, enables the
characterization of the excitations sampled at frequencies
comparable with those of such a peak. Additional evidence
regarding the origin of such a peak will, on the other hand,
follow from a detailed study of the wave-vector dependence
of the inelastic intensity up to length scales close to those
characteristic of full hydrodynamic behavior. The implica-
tions of the present results regarding current issues on glassy
dynamics will finally be discussed.

II. COMPUTATIONAL DETAILS

A substantial number of papers regarding the microscopic
modeling of vibrations in glassy boron trioxide have
appeared.5 Their degree of sophistication goes from the rela-
tively simple ball and stick models used by Bellet al.5 or the
central force network dynamics of Galeener and Thorpe,5 to
those employing calculations on Bethe lattices of Barrio,
Castillo-Alvarado, and Galeener.5 By construction, such ef-
forts only regard vibrations at relatively high frequencies
~above some 5 meV! which appear in the Raman spectra as
well-resolved features,5,6 whereas our main interests are fo-
cused on the low-frequency dynamics. For such a purpose,
we have chosen one of the available empirical potential mod-
els which has been developed7 to account for the most salient
features of the structure8 and thermodynamics9 of the mate-
rial, and considers all the atomic motions on equal grounds.

The computer simulations were carried out by means of
NVT molecular dynamics~i.e., constant number of particles,
volume, and temperature! using as a starting point the fourth

PHYSICAL REVIEW B 1 MARCH 1996-IIVOLUME 53, NUMBER 10

530163-1829/96/53~10!/6215~10!/$10.00 6215 © 1996 The American Physical Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital.CSIC

https://core.ac.uk/display/80861166?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


potential given in Table I of Ref. 7 which includes two-
~Born-Mayer-Huggins! and three-body~bond-bending! inter-
actions. The potential parameters were then refined by com-
parison of the experimentalS(Q) static structure factor10

measured by neutron diffraction with the calculated magni-
tude. In such a way, refined estimates for the equilibrium
value of the B-O-B bond angle ofu05110°, potential pa-
rameters for boron-boron interactions ofABB55.963103 kJ-
mol21, andAOO575.653103 kJ mol21 for oxygen-oxygen
were derived. A comparison of the calculated structure factor
with the experimental curve is shown in Fig. 1. In general
terms, the agreement between experiment and simulation is
deemed as acceptable, even if some drastic mismatch be-
tween calculation and measurement occurs about the first
diffraction peak located at a momentum transfer of
Q'1.58 Å21. Such a discrepancy arises from the fact that,
as shown in the inset of Fig. 1, the three partial structure
factors show narrow peaks within that region of momentum
transfers so that perfect matching of the three are required to
reproduce the width and intensity of the experimental pat-
tern. Up to the present moment we have been unable to find
a more reliable parameter set since improvements in the fit of
the first peak resulted in a strong mismatch of subsequent

oscillations. Most of the results here refer to a simulation
regarding 420 atoms and a density of 1.82 g cm23. Samples
at T5300 K were prepared following Ref. 7. Low-
temperature~0.01 K! runs were prepared by scaling the tem-
perature down toT50.1 K during 5 ps, and subsequent cool-
ing for the next 3 ps down to the sought temperature. A test
of the mechanical stability of the system was carried out by
means of computation of the average force on an atom which
turned out to be of the order of 10214 N, a quantity to be
compared with values of 1026 N of the force constants.

Finite-size effects were explored by means of comparison
of results from simulations using 420 and 1500 atoms. A
rather small size dependence was found as shown by results
given in Table I. From there it is seen that the main finite-size
effects are concentrated on a narrow range of frequencies
v about 0. Notice however that the large differences regard-
ing the negative moments mostly arise as a consequence of
the divergent behavior of thev2n terms in the integrand
which lead to large statistical errors.

To approach the hydrodynamic regime, calculations for
theS(Q,v) dynamic structure factor were carried out using
a large simulation box 174.74 Å317.47 Å317.47 Å con-
taining 4200 atoms. This enables the exploration of correla-
tions taking place at scales up to approximately 180 Å of
length and times of 16.4 ps.

Although a normal-mode description seems the most
natural starting point to enable a quantitative study of glassy
dynamics, a number of difficulties mostly regarding the qual-
ity of the available data have hindered any substantial
progress in this direction. As a matter of fact, specific
schemes to derive information of this kind from the mea-
suredS(Q,v) dynamic structure factor were proposed some
time ago,11 and results of an application to the study of the
dynamics of a Lennard-Jones glass were reported by Rah-
man, Mandell, and McTague12 almost two decades ago. A
reawakening of the interest in this topic has been witnessed
in recent times motivated by efforts to describe the collective
dynamics of liquids within such a framework.12 From there,

TABLE I. Finite-size effects upon the frequency moments of the
spectrum of eigenvalues of the dynamical matrix for samples of 420
and 1500 particles. The last column gives the relative error.

^vn& N5420 N51500 Error

n54 2.165833108 2.186403108 0.941%
n53 1434521. 1440889. 0.442%
n52 10383.55 10390.18 0.064%
n51 86.08042 85.85067 0.268%
n50 1. 1. 0.0%
n521 0.016283 0.015104 7.809%
n522 0.003913 0.002190 78.65%
n523 0.002212 0.000827 167.5%

FIG. 1. A comparison between theS(Q)21 static structure factor as reported by Johnson, Wright, and Sinclair~Ref. 10! ~dashed line!
and the one resulting from the present calculation~solid line!.
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two different routes have been proposed13 for the description
of the harmonic dynamics in terms of discrete modes. Both
of them start from consideration of a given atomic configu-
rationR0 chosen from the classical trajectory of a system of
N particles of massM interacting through aF(R) potential,
and follow an expansion,

F~R!5F~R0!2F•~R2R0!

1
1

2
~R2R0!•D•~R2R0!1•••

Fi j5
]F~R!

]Ri j
U
R5R0

; Di j ,kl5
]2F~R!

]Ri j ]Rkl
U
R5R0

, ~1!

where F and D stand for the force vector and dynamical
matrix, respectively. A description in terms of instantaneous
modes~INM ! would then correspond to that where configu-
rations are chosen from the glass trajectory, the mode fre-
quencies being determined by thel i5Mv i

2(R) eigenvalues
of D and the frequency distribution~i.e., vibrational density
of states! calculated from

Z~v![K 1

3N(
i51

3N

d~v2v i !L
Av

, ~2!

where the index on the angle bracket stands for an average
over different configurations. Because the sample obtained
by quenching a high-temperature liquid will contain some
regions of significant strain, this will make the force term to
assume finite values which in turn gives rise to mode insta-
bilities as attested by imaginary values ofv i . Rather than
being a nuisance, these frequencies which correspond to un-
stable motions can provide valuable information regarding
some thermostatic properties such as the average potential
energy and constant-volume heat capacity,14 and therefore
serve to quantify the dynamic state of a finite-temperature
system. On the other hand, an alternative approach could be
pursued where diagonalization of the Hessian matrix is only
done after performing a number of steepest descents to allow
partial relaxation of unstable modes. In consequence, the
modes calculated in such a way, usually referred to as
quenched normal modes~QNM! being restricted to potential
local minima do not show mode instabilities, and therefore
the calculated frequency distributions will be devoid of a
lobe at imaginary frequencies. A comparison between results
obtained following the two approaches also shows that the
QNM distributions evidence a more structured shape than
the ones calculated from INM analyses~as an example see
Fig. 2 of Ref. 13!. The main advantage in the use of a QNM
description perhaps regards its usefulness as a source of in-
formation for studies on transitions between different stable
configurations of a liquid~‘‘inherent liquid structures’’15!.

III. RESULTS AND DISCUSSION

A. Frequency distributions and thermodynamics

The experimental6 Z(v) distribution for relatively low
energy transfers and the one calculated from the time Fourier
transform of the atomic velocity autocorrelation function, are
compared in Fig. 2. As shown there, the simulation gives an

acceptable account of the experimental function, even
though the features giving rise to the first peak at approxi-
mately 5 meV are somewhat overemphasized in the calcula-
tion and the leading edge of the calculatedZ(v) is shifted by
some 0.8 meV with respect to experiment.

The distributions spanning the whole range of frequencies
of interest and corresponding to temperatures of 0.01 and
300 K are shown in Fig. 3. The inset of Fig. 3~a! is to be
compared with experimental neutron spectra shown in Fig. 3
of Ref. 16 which displays a relatively broad feature at 82
meV and two relatively narrower ones~width of about 2
meV! at ' 90 and 100 meV. The calculation shows some
features clearly related to those seen by experiment, although
some mismatch in frequencies is to be noted. In particular,
the band at 82 meV~labeled as 4 in the Galeener and Thorpe
nomenclature5! appears in the calculation downshifted by
some 8 meV, that of' 90 meV ~labeled as 5 in the figure!
correlates with intensities of about 88 meV and that of 100
meV has a clear counterpart in a sharp peak at about the
same frequency. The last feature appears in the calculation
with an intensity substantially reduced with respect to ex-
periment, and its origin still is a matter of debate. Some
authors,6,16 ascribe its origin to a breathing mode of the
B3O6 boroxol ring, whereas results from calculations of
B3O6 rings on a Bethe lattice carried out by Barrio, Castillo-
Alvarado, and Galeener5 seem to contradict such an assign-
ment, since such a mode was found to correspond to a far
less intense feature appearing in the horizontally polarized
Raman spectrum at' 75 meV. On the other hand, and since
no measurable amount of boroxol rings is present in the
simulation box, it seems clear that the relatively small fea-
ture seen here at' 100 meV cannot be assigned to such a
motion, and further discussion regarding the origin of the
most prominent spectral features is deferred to the next sec-
tion where these topics are discussed in some more detail.

The harmonic frequency distributions as calculated from
INM analysis using Eq.~2! are also compared with those
calculated from the atomic velocity autocorrelations in Fig.
3. As expected, the harmonic distributions show a rather
weak dependence with temperature, being the small differ-
ences between both temperatures confined to a region about
80 meV where the high-temperature system shows a
smoother behavior, and also to the lobe of imaginary fre-
quencies which, in contrast with findings regarding simpler
systems,12,17 shows a far milder dependence with tempera-

FIG. 2. A comparison between the calculated~vertical bars! and
measured~thick solid line! frequency distributions for energy trans-
fers below 50 meV. Both curves have been normalized to unit area
to facilitate comparison. Experimental measurement corresponds to
T5100 K.

53 6217MOLECULAR DYNAMICS ON A REALISTIC MODEL FORA . . .



ture. In opposition, the spectra calculated from the atomic
velocity correlations, which include all possible sources of
anharmonicity, show a far more dramatic dependence with
temperature, especially for frequencies below some 20 meV,
which is strongly enhanced at low temperatures. Such a
counterintuitive result~i.e., an increase in intensity at low
frequencies is common at temperatures close toTg due to the
onset of quasielastic scattering! has a clear experimental
counterpart since available neutron scattering data have also
unveiled such an effect.18 For frequencies 40 meV
<v<130 meV, the twoZ(v) curves just referred can be
scaled to a common one, something which serves to set a
frequency domain where vibrations show a harmonic behav-
ior. Such a scaling cannot be followed to higher frequencies
since vibrations above such a limit mostly involve the mo-
tion of boron atoms which, due to its relatively light mass
exhibit substantial anharmonic effects. On quantitative
grounds the relative importance of the anharmonic effects is
best specified in terms of the reduced frequency moments,
^vn&5$ 1

3@31*dvvnZ(v)#%1/n which are also shown in the

figure. All the spectral moments corresponding to the high-
temperature calculation are above those regardingT50.1 K,
and this translates into different values for several thermody-
namic properties which can be calculated from these magni-
tudes. In particular, the limiting values of the Debye tem-
perature concerning the heat capacity and entropy for high
temperatures result asQ`

C5\vD(2)/kB5318 K and
Q`

S5\vD(0)/kB5227 K with vD(n)5@(n13)^vn&/3#1/n.
Such values which correspond to the simulation performed at
300 K can be compared with the experimental Debye tem-
perature of 259 K~Ref. 19! derived from low-temperature
specific-heat data. A better agreement is found if data of 0.01
K are considered instead since a value ofQ`

C5271 K would
then result. A comparison of both values serves then to set
some bounds to the contribution of anharmonic processes to
the measured heat capacity and entropy, which, according to
this, should be large but not exceeding some 15% of the
experimental heat capacity at 300 K.

The harmonic heat capacityCv(T) evaluated fromZ(v)
for T5300 K yields a value of 12.01 J mol21 K 21, to be
compared with an experimental one of 12.31 J mol21

K 21.9 At low temperature~10 K! our result gives 0.16m
J mol21 K 24, which compares well with that measured by
Ramoset al.9 once the linear contribution arising from two-
level states is accounted for. The maximum of the calculated
C(T)/T3 curve is located about 8 K, that is upshifted some
2–3 K with respect to experiment, a fact also evidenced by
comparison with the data of White, Collocott, and Cook9

shown in Fig. 4.
Quantitatively, the extent of anharmonic interactions~ne-

glecting thermal expansion effects! can be estimated from
the temperature dependence of the frequency moments. In
particular, their contribution to the thermodynamic functions
is accounted by means of a quasiharmonic approximation
following Hui and Allen,20 where the entropy and a first-
order correction to the high-temperature heat capacity are
evaluated as

S~T!53RE dvZ~v,T!@2 ln~2 sinhx!1x cothx#, ~3!

DCp523R
]*dvZ~v,T!lnv

] lnT
, ~4!

FIG. 3. Generalized frequency distributions as calculated from
the atomic velocity autocorrelation functions~lozenges and dash-
dot lines! and those derived from decomposition of the atomic dy-
namics into INM ~solid lines!. The upper frame shows the two
quantities forT50.1 K. The inset shows an enlargement of part of
the quantity calculated from the atomic velocity autocorrelation.
Digits and arrows show the approximate location of peaks in the
Raman spectra and follow the nomenclature of Galeener and
Thorpe. The lower frame shows data forT5300 K. The inset shows
the reduced frequency moments^vD

n & ~triangles for T5300 K,
circles forT50.1 K!.

FIG. 4. C/T3 heat-capacity data of White, Collocott, and Cook
~Ref. 9! ~circles! and that calculated from theZ(v) at 0.1 K
~dashes! and 300 K~solid!.
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with x5\v/kBT, and Z(v,T) stand for the temperature-
dependent frequency distributions. Evaluation ofDCp from
the calculated distributions gives a correction which repre-
sentsa loweringof the heat capacity with respect to its har-
monic value atT5300 K by 1.2%. On the other hand, rather
more drastic effects are noticeable in the entropies calculated
within the quasiharmonic approximation.20 The calculated
value for this function yields at 300 K 10.58 J mol21

K 21, which is about 30% below the value that would be
obtained for a harmonic system characterized by the fre-
quency distribution corresponding to 0.1 K.

The estimation of the atomic mean-square displacements
was carried first within the~quasi-!harmonic approximation
from integrals over theZ(v) distributions. A value of 0.017
Å 2 was found for theT50.01 K case which is to be com-
pared with a lower bound for this property of some 0.006
Å 2 derived from diffraction studies,8 whereas a value of
0.096 Å2 is calculated for the high temperature.

B. Dynamic correlations at microscopic scales

From the ,D, dynamical matrix~1!, information regarding
the geometry of the atomic motions becomes available in
terms of thegm,i mode eigenvectors which are normalized as
( i ,m(gm,i)

25N whereN is the number of particles. These
specify the motions of eachmth atom in thei th spatial di-
rection. The spatial extent of the different atomic motions is
given in terms of mode participation ratios

p5
@(m( i~gm,i !

2#2

(m( i~gm,i !
4 ~5!

which are calculated for motions involving boron, oxygen, or
both kinds of atoms and the results are shown in Fig. 5.
There, the quantity averaged over all atoms is shown along-
side with the individual~unnormalized! contributions regard-
ing oxygen and boron motions, the shape of the function
dealing with cross~O-B! terms being easily inferred from

comparison between total and the two partials. Notice that
approximatelyp>0.6 or above indicates that the modes are
of extended character, showing that most of the atoms in the
glass configuration participate in such motions. Two different
ranges of frequencies appear as characteristic of extended-
mode behavior. They correspond to motions of mainly oxy-
gen ~from some 30 to 90 meV! and boron atoms~from ap-
proximately 135 to 180 meV!, being the motions of the two
atomic species outside of that ranges substantially localized.
As expected, the motions of B-O pairs are spatially confined
for all the range of frequencies. It also seems remarkable
that, contrary to other cases studied so far such as simple
Lennard-Jones systems,17 the distribution of localized modes
is not confined to both low- and high-frequency ends of the
spectrum, but covers a rather substantial range of it.

The harmonic contribution to thêu2& atomic mean-
square displacements can be readily evaluated from the
mode eigenvectors11 gm,i using

uui
mu5S \

NMmv D 1/2ugm,i u ~6!

with Mm the mass of themth atom and it is shown in Fig. 6.
The interesting point to note regards the rather different re-
sults which are obtained whether the calculated displace-
ments are averaged over all atoms within the sample or taken
over the number of atoms participating in such modes only.
The results shown in Fig. 6 indicate that whereas for real
frequencies above some 20 meV both quantities are not too
far from each other, a rather dramatic difference is readily
observed in the region of frequencies corresponding to un-
stable modes. Also notice that the absolute magnitude of
such displacements has to be compared with the value of
^u2&'0.06 Å2 calculated from the average atomic displace-
ments directly obtained from the simulation run or with that
of 0.096 Å2 calculated under the quasiharmonic approxima-
tion from the frequency distributions shown in Fig. 3. The
values averaged over frequencies corresponding to the two
curves shown in Fig. 6 are 1.631023 Å 2 and 3.431023

Å 2, respectively, which are about one order of magnitude
smaller than the total atomic displacement. The important
thing to note here is that, in common with other systems
explored so far,21,22 the higher-amplitude motions which cor-
respond to the imaginary-frequency side of the spectrum
only involve a reduced number of atoms. In fact as can be

FIG. 5. Mode participation ratios as defined by Eq.~3!. Line a
shows the total~averaged over all atoms! quantity and is normalized
to the total number of atoms within the simulation cell. Modes
above the dotted line are above somep>0.6 and are to be consid-
ered as fully extended. Lines b and c display the quantities~unnor-
malized! for oxygen and boron atoms. The magnitude of the func-
tion regarding the cross terms can be inferred by difference with the
total ratio. The extended modes for O atoms would correspond to
those above the horizontal dash-dotted line~at p5151! and those
involving extended motions of borons would be those above
p5101 shown by the dotted line.

FIG. 6. Average atomic mean-square displacement~solid line!
and the same quantity averaged over atoms which participate in
such modes only~vertical bars!.
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judged from a joint inspection of Figs. 5 and 6, motions with
frequencies below220 meV are executed by clusters of less
than 50 atomic masses. It is worth pointing that such an
estimate for the participation ratio is comparable albeit
somewhat smaller than that ofNs5 68 derived from macro-
scopic data given in Ref. 3 and used to parametrize the soft-
potential for this glass.

One of the advantages of the decomposition of the dy-
namics in terms of the INM regards the access to the mode
eigenvectors so that the motion of thel th atom within the
lth mode is fully specified by its characteristic frequency
and itsg l

l vector displacement. Following procedures devel-
oped by Carpenter and Pelizzari,11 the one-phonon partial
scattering terms are written as11

S1~Q,v!5(
l ,m

Sl ,m
1 ~Q,v! ~7!

5(
l ,m

(
l

\2csch~\vl/2kBT!

4\vl @d~v2vl!

1d~v1vl!#Fl ,m
l ~Q! ~8!

wherevl stands for the frequency of thelth mode where
nuclei l and m move obeying a partial inelastic structure
factor

Fl ,m
l ~Q!/Q25

1

AMlMm
F13 ~g l

l
•gm

l* ! j 0~Qdl ,m!

1S 13 ~g l
l
•gm

l* !2
1

dl ,m
2 ~dl,m•gm

l* ! D
3 j 2~Qdl ,m!G , ~9!

whereMl stands for the mass of atoml th, which is separated
by an equilibrium distance ofdl ,m from atomm, and j 0,2 are
spherical Bessel functions. Since theFl ,m

l (Q) inelastic form
factors can be calculated in closed form from knowledge of
the g l

l vector displacements, a real-space correlation func-
tion can be defined as11,23

Dr~r ,v
l!5

2

pE0
`

dQQ(
l ,m

Fl ,m
l ~Q!sin~Qr ! ~10!

in analogy with the usual treatment for the static~diffraction!
case. TheDr(r ,v) correlation function so obtained thus con-
tains relevant geometric information regarding the identifica-
tion of atom pairs executing motions at a given frequency as
well as their relative phases.

Several cuts over theDr(r ,v) surface are shown in Fig.
7. The selected energy transfers correspond to frequencies
close to the strong low-frequency peak in theZ(v) distribu-
tions shown in Fig. 3~i.e., the ‘‘Boson peak’’!, as well as to
other relatively well-defined features seen there. The first
comment regarding those graphs regards the well-defined
phase relationships characteristic of motions involving par-
ticles separated by less than some 4–5 Å. The fact that such
peaks are mostly positive~or negative! serves to identify the
in-phase~acoustic! or out-of-phase~optic! character of the

modes here selected~notice that each one of the graphs cor-
responds to a normal mode!. TheDr(r ,v) curve correspond-
ing to the lowest energy~4.55 meV! can be taken as a char-
acteristic one for modes with energies below some 7 meV.
They show rather localized motions where B-O, O-O, and
B-B pairs execute in-phase movements involving up to sec-
ond neighbors~i.e., involve distances up to 5–6 Å!. The
acoustic character of modes within this range of frequencies
is also ascertained by comparison of the relative intensities
of the stronger peaks inDr(r ,v), with those found in the
staticT(r ) pair-correlation function.

The three higher-lying modes at 80, 90, and 100 meV
show a strong ‘‘optical’’ character, also being more extended
than the ones at lower energies, a fact which agrees with the
participation ratios discussed above. That at 80 meV corre-
sponds in frequency to mode 4 of Galeener and Thorpe5

FIG. 7. Real spaceDr(r ,v) correlation functions for different
values of the energy transfers given in the inset.
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which was assigned to mostly B motions on the basis of
comparisons between experimental Raman isotopic shifts
and calculations based upon a central-force model.16 Our re-
sult agrees with such a view and shows that mainly B atoms
vibrate within this mode, which has a somewhat extended
character as seen by the feature atr'8 Å. In contrast, our
result for that at' 90 meV, an energy comparable to mode 5
of the referred authors,5 shows that such a mode involves
both out-of-phase extended motions of B-O and O-O pairs in
a similar extent whereas a limited extent of B-B pairs move
in-phase. Finally it is worth remarking that the mode at 100
meV gives rise to an isolated peak, as shown in the inset of
Fig. 3~a!, which could be identified in part with that assigned
to breathing motions of the boroxol ring. Since such struc-
tures are absent in this simulation its origin has to be as-
signed to a different entity. Notice that it corresponds to pre-
dominantly out-of-phase O-O motions involving up to
second neighbors as shown by the significant structure at
approximately 5 Å which basically coincides with the long-
est one within a boroxol ring.

C. Collective behavior

Up to this point, only the harmonic part of the dynamics
has been studied in terms of space-dependent motions after
its decomposition into individual INM’s. However, as evi-
denced in Fig. 3, a rather substantial number of states with
energies below some 15 meV are strongly anharmonic in
nature. The intensities within such a range of frequencies are
known to give rise to a characteristic low-frequency inelastic
peak commonly referred to as the ‘‘Boson’’ peak in the lit-
erature dealing with glassy dynamics. Such a feature is also
visible in spectra measured atQ→0 ~i.e., the Brillouin zone
center if the material were a powder! by Raman scattering.
This has led some to infer that such a spectral feature does
not exhibit any substantial dependence with the wave vector.
If this were the case, then the single-particle character of the
excess modes would then be ensured. On the contrary, if
some nontrivial spatial dependence is found for these inten-
sities, then the origin of such low-energy excitation should
be sought in terms of many-particle correlations. Because of
the limitations of the neutron kinematics and the relatively
low values of the momentum transfers required to reach full
hydrodynamic behavior, no unambiguous experimental evi-
dence regarding this particular has ever been produced. Such
a difficulty can be circumvented by simulational means em-
ploying large sets of particles, and therefore we set our ef-
forts towards the analysis of the wave-vector dependence of
the simulated total ~i.e., anharmonic effects included!
S(Q,v).

Figure 8 shows calculated spectra spanning from the low-
est reachableQ values, up toQ'1.345 Å21, that is well
within the experimentally accessible range. TheS(Q,v)
spectrum displayed in the bottom-right frame shows a shape
characteristic of those forQ>1 Å21 which can be scaled to
a common one once the intensity modulation dictated by the
staticS(Q) and those of inelastic nature which follow a law
proportional toQ2 are accounted for. Such a null~or at least
rather feeble! dependence with wave vectors is in stark con-
trast with the one observed for wave vectors below some
0.14 Å21. The relatively sharp feature centered at'5 meV

with a width of about 3.5 meV shown inS(Q,v) for
Q51.345 Å21 corresponds to the ‘‘Boson’’ peak of this ma-
terial. It seems clear after inspecting the graph that the spec-
trum corresponding toQ'0.035 Å21 shows vanishing in-
tensity at frequencies comparable with those of the ‘‘Boson’’
peak, and only atQ'0.1 Å21 and above the intensity in
such a frequency region starts to build up. In consequence,
the feature sampled by Raman scattering~i.e., characteristic
wave vectors of the order of 1023 Å 21) within a similar
range of frequencies has to correspond to either second or
higher-order processes involving wave vectors almost equal
in magnitude and directed oppositely, or to zone-center scat-
tering of the same kind of that enabling the detection of
acoustic phonons in polycrystals within the THz range.

To explore with somewhat greater detail the wave-vector
dependence of the spectra, a comparison between the
S(Q,v) structure factors and those expressed as
JL(Q,v)5v2/Q2S(Q,v) is also provided in Fig. 8. The ra-
tionale behind such an exercise stems from the fact that for a
sharp~hydrodynamic! phonon, that is a well-resolved exci-
tation of sonic origin, the correspondingJL(Q,v) would be
a narrow function of frequency with maxima at
vmax5Avb

21G2, given in terms of a ‘‘bare’’ frequencyvb

dressed by theG damping term. Within such a~low-Q) limit,
most of the spectral power is attributable to sound-wave-like
excitations, and thereforevmax can be rightly interpreted as
the frequency of a longitudinal sound wave. If this were the
case, then thevmax frequency derived from maxima in
JL(Q,v) should become close to that defined from the
square root of the reduced second frequency moment of the
S(Q,v), that is,

v05F E dvv2S~Q,v!/S~Q!G1/2, ~11!

lim
Q→0

v05cTQ, ~12!

where cT5Agc0 stands for the isothermal sound speed,
which is given in terms of theg ratio of specific heats and
the adiabatic sound velocity.24 The calculated values forv0
andvmax are shown in Fig. 9 alongside with the hydrody-
namic sound dispersion laws for thev l longitudinal,v t trans-
verse, and average velocityveff5(3/@1/v l

312/v t
3#)1/352093

m s21, which was calculated using values ofv l53468 m
s21, v t51875 m s21 derived from light-scattering
measurements25 for T5300 K. Thev0 frequencies show the
characteristic shape of a phonon dispersion curve in an iso-
tropic medium, evidencing a shallow minimum at wave-
vectors close toQp @i.e., that corresponding to the first maxi-
mum in S(Q)#, a maximum at the ‘‘effective zone center’’
Qp/2, and an approach towards the hydrodynamic regime
which follows a rather complex behavior. AboveQp a strong
rise due to the increasing importance of higher-lying optical
excitations is found. As shown in the inset, at wave vectors
below some 0.08 Å21, that is for characteristic distances
above approximately 80 Å, the calculatedv0 follows a linear
dispersioncTQ5veffAgQ. From there up to 0.25 Å21 the
v0 frequencies approach the limit given by the longitudinal
sound velocity, and from 0.3 Å21 a prominent change of
shape is apparent. On the other hand, the values forvmax
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display a far stronger dispersion which if analyzed in terms
of phase velocities would correspond to ones well above hy-
drodynamic sound. In fact, as shown in Fig. 9~b!, the phase
velocitiesvp5v/Q associated withvmax are about 1.4 times
that of longitudinal hydrodynamic sound, whereas those cor-
responding tov0 lead to the correct hydrodynamic limit. The
origin of such a discrepancy arises from the contribution to
the JL(Q,v) current-current spectra of inelastic intensities
corresponding to the lowest excitations of ‘‘optical’’ origin
which are barely visible inS(Q,v) but are greatly enhanced
in JL(Q,v) due to thev2 factor ~for a discussion of these
matters within the context of fast-sound modes in liquids see
~Ref. 26!. In consequence, only thev0’s can be rightly inter-
preted as physical frequencies identifiable in the hydrody-
namic limit with those characteristic of sound propagation.

However, the comparison ofv0 and v max serves to give
some estimation about the onset of full hydrodynamic behav-
ior, where both dispersion branches should merge. As seen
from the inset of Fig. 9~a!, such a regime has not yet been
attained even at the lowest explored wave vector. An esti-
mate of the range of wave vectors where such a crossover
takes place can be made after extrapolation atQ→0 of
v max(Q), subtraction of such a constant and location of the
point where it now joins the extrapolatedv0→0 line @the
finite curvature ofvmax(Q) is clearly seen after converting
the frequencies to phase velocities, see Fig. 9~b!#. This yields
a value ofQ'0.02 Å21 corresponding to distances of some
300 Å, a figure to be compared with the one of 105 Å
(Q'0.06 Å21) recently found by us in a study on a dense-
gas mixture.26

FIG. 8. The right column shows the calculatedS(Q,v) dynamic structure factors for momentum transfer values given in the insets. The
column at the left-hand side shows the correspondingJL(Q,v)5v2/Q2S(Q,v) longitudinal current-current correlations. The arrows show
the frequencies which would correspond to hydrodynamic excitations with frequenciesv lQ andv tQ corresponding to the propagation of
longitudinal and transverse sound.
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IV. CONCLUSIONS

Although the model potential has to be improved to be
fully compatible with some experimental observations~i.e.,
the presence of large amounts of boroxol rings8!, the present
calculations can be regarded as reliable since for the rela-
tively low temperatures considered here@i.e., with respect to

the full frequency extent ofZ(v)#, a more detailed descrip-
tion of the higher-frequency~above some 30 meV! dynamics
does not seem to be essential as far as one is only concerned
with properties defined in terms of integrals over the fre-
quency distributions.

The results provided here show that far from being of
single-particle character the excess modes evidence a strong
collective nature which is only manifested at rather large
spatial scales. This has immediate implications regarding the
possible relationship between the presence of the ‘‘Boson’’
peak and medium-range order in glasses, a rather controver-
sial topic at present.27 Our results show that spectral intensi-
ties corresponding to such a peak only develop for wave
vectors above someQ'0.1 Å21, which corresponds to a
scale of some 60 Å. Such a length is about three to six times
larger than those discussed within the context of
approaches27 which try to relate the frequency of the maxi-
mum of the ‘‘Boson’’ peakvB with a characteristic length
l below which localized long-wavelength, heat-carrying
phonons are localized by means of some strong-scattering
mechanism. In the simplest of those treatments,
vB52pvA/ l wherev is the sound velocity andA a constant
close to 1~i.e.,A51 for a Debye model!. It seems clear then
that the characteristic frequency ofvB'5 meV cannot be
reconciled with such a simple model since substitution of the
relevant values for the constants will give a value for such a
frequency about five times shorter than the observed one.

The present results are also at odds with attempts28 to
relate such characteristic length with the position inQ,
Qp , or the width DQp of the first diffraction peak of
S(Q). The lengths associated with the experimental values
of those quantities are of 4 and 9.2 Å and those from simu-
lation give 4.6 and 5.7 Å, respectively. In both cases such
distances are far shorter than that discussed above and, on
the other hand, no distinctive feature appears in the simu-
latedS(Q,v) for the respective values of the wave vector.

Finally, our findings can also be rationalized within the
‘‘soft potential’’ model3 since, as discussed above, the largest
displacements’ amplitudes are those of unstable modes aris-
ing from strongly strained configurations.
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