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Abstract

A powerful way of gaining insight into biological systems is by creating a nonlinear differen-

tial equation model, which usually contains many unknown parameters. Such a model is

called structurally identifiable if it is possible to determine the values of its parameters from

measurements of the model outputs. Structural identifiability is a prerequisite for parameter

estimation, and should be assessed before exploiting a model. However, this analysis is

seldom performed due to the high computational cost involved in the necessary symbolic

calculations, which quickly becomes prohibitive as the problem size increases. In this

paper we show how to analyse the structural identifiability of a very general class of nonlin-

ear models by extending methods originally developed for studying observability. We pres-

ent results about models whose identifiability had not been previously determined, report

unidentifiabilities that had not been found before, and show how to modify those unidentifi-

able models to make them identifiable. This method helps prevent problems caused by lack

of identifiability analysis, which can compromise the success of tasks such as experiment

design, parameter estimation, and model-based optimization. The procedure is called

STRIKE-GOLDD (STRuctural Identifiability taKen as Extended-Generalized Observability

with Lie Derivatives and Decomposition), and it is implemented in a MATLAB toolbox which

is available as open source software. The broad applicability of this approach facilitates the

analysis of the increasingly complex models used in systems biology and other areas.

Author Summary

Advances in computing power have facilitated the development of increasingly larger
dynamic models of biological processes, which usually have many unknown parameters.
Often times, such models contain parameters that are structurally unidentifiable, i.e., they
cannot be uniquely determined from experiments. Any parameter estimation algorithm
will fail when trying to estimate unidentifiable parameters, leading to waste of resources
and possibly wrong model predictions. Hence, it is essential to assess structural identifia-
bility before exploiting a model. However, performing such analysis can be hard, especially
as models become increasingly complicated. To address this challenge, we developed a
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methodology for structural identifiability analysis that aims at generality—it can handle
any analytic model written as a set of ordinary differential equations—and computational
efficiency—it includes features that facilitate the analysis of large systems. We provide an
implementation of the methodologyas a MATLAB toolbox called STRIKE-GOLDD.We
illustrate its applicability to systems biologymodels of genetic, signalling,metabolic, and
pharmacokinetic networks, showing which of them are unidentifiable and how they can
be made identifiable.

This is a PLOS Computational BiologyMethods paper

Introduction

Mathematical modelling has become a fundamental tool in present day biology [1], and system
identification is one of the key tasks of this process [2]. Building a dynamic model usually
requires establishing the values of some unknown parameters, which raises the issue of param-
eter identifiability [3]. A model is structurally identifiable if it is possible to determine the val-
ues of its parameters from observations of its outputs and knowledge of its dynamic equations
[4]. While the related concept of practical identifiability refers to quantifying the uncertainty in
parameter values when estimated from noisy measurements, structural identifiability does not
take into account limitations caused by the quality or availability of experimental data. It is,
however, a necessary (a priori) condition for practical identifiability, which, in turn, is a prereq-
uisite for model calibration, also known as parameter estimation [5]. Any identification efforts
aimed at estimating unidentifiable parameters will fail, leading to wrong estimates, waste of
resources, and possibly misleadingmodel predictions [6]. Furthermore, if structural uniden-
tifiability is mistaken for practical unidentifiability, it may lead to trying to overcome it by
investing additional efforts in designing and performing new experiments [7], which will nev-
ertheless be sterile. Hence it is essential to assess the structural identifiability of any unknown
parameters in a model before attempting to calibrate it. As stressed in the conclusions of a
recent parameter estimation challenge [8], “modelers must avoid creating structurally uniden-
tifiable parameters that can never be estimated”. However, in real applications structural iden-
tifiability is seldom checked before performing parameter estimation [9]. This is at least partly
due to the computational complexity of the problem: structural identifiabilitymethods gener-
ally require symbolic manipulations, which can quickly give rise to long expressions as the sys-
tem size increases [10].

This is a major challenge in systems biology, as the models constructed are increasingly
complex, large [11], and more difficult to identify [8]. However, the development of structural
identifiability tools has been lagging behind, and, despite the wide variety of methods devel-
oped for this task (some of which have publicly available implementations [12–16]), the analy-
sis of somemodels remains elusive. For example, although recent improvements in efficiency
[16, 17] have enabled the analysis of increasingly large rational models (those that can be
expressed as fractions of polynomial functions), non-rational systems such as those including
trigonometric expressions or Hill-type kinetics (which are common in mechanical and bio-
chemical models, respectively) can currently be analysed only for small sizes.While in certain
cases non-rational models can be rewritten in rational form, by introducing additional
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variables and equations, it is not always possible or convenient to do so. Furthermore, the
results obtained for the rational counterpart are not necessarily valid for the original non-ratio-
nal model in the case of unidentifiability [18]. Recent studies [9, 10, 19–21] show that, in gen-
eral, the choice of a structural identifiabilitymethod involves trade-offs between generality of
the application, computational cost, and level of detail of the results. In conclusion, there is cur-
rently a lack of structural identifiabilitymethods of the sufficient generality and robustness to
be applied to nonlinear models of general form and realistic size [21, 22].

To address this issue, we propose a methodology applicable in principle to any analytic sys-
tem and geared towards computational efficiency. This method approaches local structural
identifiability as a generalized version of observability, a classic concept in systems and control
theory [23]. A system is observable if it is possible to determine its internal state from output
measurements in finite time. If the model parameters are considered as state variables with
zero dynamics, structural identifiability analysis can be recast as a generalization of observabil-
ity analysis [17, 24, 25]. In this way it is possible to assess the structural identifiability of nonlin-
ear systems using results from differential geometry [21]. Essentially, identifiability is
determined by calculating the rank of a generalized observability-identifiability matrix, which
is constructed using Lie derivatives. When this rank test classifies a model as unidentifiable, the
procedure determines the subset of identifiable parameters. In some cases it is also possible to
find identifiable combinations of the remaining parameters. This approach is directly applica-
ble to many models of small and medium size; larger systems can be analysed using additional
features of the method. One of them is decomposition into more tractable submodels, which is
performedwith a combinatorial optimization metaheuristic as in [26]. Another possibility is to
build identifiabilitymatrices with a reduced number of Lie derivatives. In some cases these
additional procedures allow to determine the identifiability of every parameter in the model
(complete case analysis); when such result cannot be achieved, at least partial results—i.e. iden-
tifiability of a subset of parameters—can be obtained.

We illustrate the applicability of this method to systems biologymodels of different types,
including genetic, signalling,metabolic, and pharmacokinetic networks. Some of them are non-
rational systems exhibiting Hill kinetics, that is, with expressions containing terms of the form
k1xn/(k2 + xn), such as the Goodwinmodel of transcriptional repression [27], the mitogen-acti-
vated protein kinase (MAPK) signalling cascade [28], and the genetic network that controls the
circadian clock in Arabidopsis thaliana [29]. Other models analysed here include drug uptake
into hepatocytes [19], NF-κB [30] and JAK/STAT [31] signalling pathways, and the central car-
bonmetabolism of Chinese hamster ovary cells [32]. These case studies include models whose
identifiability had not been previously determined, and for some of themwe found unidentifi-
abilities that had not been reported before. In those cases, we obtained identifiable reparameteri-
zations by removing redundant parameters and fixing the values of other parameters a priori.

Methods

We consider dynamic models describedby ordinary differential equations of the following gen-
eral form:

M :

_xðtÞ ¼ f ½xðtÞ; uðtÞ; p�;

yðtÞ ¼ g½xðtÞ; p�;

x0 ¼ xðt0; pÞ

8
><

>:
ð1Þ

where f and g are analytic (and therefore infinitely differentiable) vector functions, p 2 Rq is a
real-valued vector of parameters, uðtÞ 2 Rr is the input vector, xðtÞ 2 Rn the state variable vec-
tor, and yðtÞ 2 Rm the measurable output, also called the observables vector. In Eq (1) the
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dependence on the parameters p is made explicit, but it will be usually dropped for ease of nota-
tion. Parameter pi is structurally globally identifiable (s.g.i.) if it can be uniquely determined
from the system output, that is, if for almost any p� 2 Rq (i.e., for any p except those belonging
to a set of measure zero) the following property holds [5, 33]:

yðt; p̂Þ ¼ yðt; p�Þ ) p̂i ¼ p�i ð2Þ

A parameter pi is structurally locally identifiable (s.l.i.) if for almost any p� there is a neigh-
bourhoodV(p�) in which Eq (2) holds. A modelM is said to be s.g.i. if all its parameters are
s.g.i., and s.l.i. if all its parameters are s.l.i. If Eq (2) does not hold in any neighbourhoodof p�,
parameter pi is structurally unidentifiable (s.u.), and a modelM is s.u. if at least one of its
parameters is s.u.

Observability of nonlinear systems

In this work we consider identifiability as an augmented observability property. We begin the
description of the approach by defining observability and showing how it can be assessed. A
system is (locally) observable at a state x0 if there exists a neighbourhoodN of x0 such that
every other state x1 2 N is distinguishable from x0. Two states x0 6¼ x1 are said to be distinguish-
able when there exists some input u(t) such that y(t, x0, u(t)) 6¼ y(t, x1, u(t)), where y(t, xi, u(t))
denotes the output function of the system for the input u(t) and initial state xi(i = 0, 1).

The concept of observabilitywas initially formulated by Kalman for linear systems [34], and
then extended to the nonlinear case by Hermann and Krener [23]. For a nonlinear system
given by Eq (1) it is possible to obtain information about the states x from its outputs y by cal-
culating the derivatives _y; €y; . . .. These differentiations are performed by taking Lie derivatives
of the output function g. The Lie derivative of g with respect to f is:

Lf gðxÞ ¼
@gðxÞ
@x

f ðx; uÞ ð3Þ

For a system with n states andm outputs, @
@x gðxÞ is anm × nmatrix, and Lf gðxÞ ¼

@gðxÞ
@x f ðx; uÞ

is anm × 1 column vector. The ith order Lie derivatives are recursively defined as follows:

L2
f gðxÞ ¼

@Lf gðxÞ
@x

f ðx; uÞ

� � �

Li
f gðxÞ ¼

@Li� 1
f gðxÞ
@x

f ðx; uÞ

ð4Þ

Stacking n sub-matrices, we obtain the nonlinear observabilitymatrix:

OðxÞ ¼

@

@x gðxÞ
@

@x ðLf gðxÞÞ
@

@x ðL
2
f gðxÞÞ

..

.

@

@x ðL
n� 1
f gðxÞÞ

0

B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
A

ð5Þ

We can now formulate theObservability Rank Condition (ORC) as follows: if the system
given by Eq (1) satisfies rankðOðx0ÞÞ ¼ n, whereO is defined by Eq (5), then it is (locally)
observable around x0 [35].
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The rank condition provides a result about local observability of any possible state x0. That
is, if the matrix is full rank then for every state x0 there exists a neighbourhoodN(x0) in which
x0 can be distinguished from any other state x�. In other words, every state can be distinguished
from its neighbours, but not necessarily from other distant states. In contrast, global observabil-
ity is a property that must hold for every possibleN(x0). The difference is clearly shown with
the following example [23]:

_x ¼ u; y1 ¼ cos ðxÞ; y2 ¼ sin ðxÞ ð6Þ

While this system satisfies the observability rank condition and is therefore locally
observable, it is not globally observable because it is impossible to distinguish between x0

and xk = x0 + 2kπ, for any integer k.
We remark that the observability rank condition does not require the assumption of con-

stant inputs u; analytic differentiable input functions can be used [36, 37]. As noted in [38],
this entails that u can be treated symbolically in rank calculations.

Structural identifiability as augmented observability: The OIC

While identifiability problems can be addressed by a number of techniques not explicitly
related to nonlinear observability, it is possible to consider the parameters p as additional states
with trivial dynamics _p ¼ 0 and, in this way, the identifiability problem can be recast in the
framework of observability [17, 21, 24]. Thus, by augmenting the state variable vector so as to
include model parameters, ~x ¼ ½x; p�, we obtain a generalized observability-identifiability
matrix,OIð~xÞ:

OIð~xÞ ¼

@

@~x gð~xÞ
@

@~x ðLf gð~xÞÞ
@

@~x ðL
2
f gð~xÞÞ

..

.

@

@~x ðL
nþq� 1

f gð~xÞÞ

0

B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
A

ð7Þ

With this formulation we can define a generalizedObservability-Identifiability Condition
(OIC) as follows: if the system given by Eq (1) satisfies rankðOIð~x0ÞÞ ¼ nþ q, it is (locally)
observable and identifiable in a neighbourhoodNð~x0Þ of ~x0.

Since we have recast the analysis of structural identifiability as a particular case of observ-
ability, the same remark that was made in the preceding subsection about the difference
between local and global properties applies here.

It has been noted [39] that in certain cases a systemmay become unreachable for specific
values of the initial conditions, leading to the impossibility of determining the values of param-
eters classified as identifiable by structural identifiabilitymethods. This situation can be
detected if rankðOIð~x0ÞÞ is calculated using a vector of specific initial conditions instead of a
generic symbolic vector.

Finally, we note that the idea of treating parameters and state variables similarly is also
adopted by estimation methods such as extended Kalman filtering [40]. However, the context
is different, since the goal of such techniques is to determine the value of states and parameters
from data, while structural identifiability analysis aims at establishing whether such estimation
is theoretically possible.

Structural Identifiability of Dynamic Systems Biology Models
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Assessing the OIC efficiently

In practice, checking the aforementioned Observability-Identifiability Condition (OIC) is often
computationally inefficient (or even infeasible) because buildingOI and calculating its rank is a
highly demanding,memory-consuming task. Fortunately, sometimes this cost can be decreased
by building a smallermatrix. Let us first note that each of the n + q sub-matrices vertically stacked
in the generalized observability-identifiabilitymatrix of Eq (7) has dimensionm × (n + q), and
the full matrixOI has dimensions (m � (n + q)) × (n + q). Therefore it may not be necessary to
calculate the n + q − 1 Lie derivatives in order to test whetherOI is full rank, since full rank may
be achievedwith a lower number of derivatives. The minimum number of Lie derivatives for
which the matrix may be full rank is

nd ¼
nþ q
m
� 1

l m
ð8Þ

that is, the smallest integer not less than (n + q)/m − 1, where n, q, andm are the numbers of
states, parameters, and outputs, respectively. The maximum number of Lie derivatives is also
known a priori: derivatives of order higher than n + q − 1 cannot increase the matrix rank [38].
Having lower and upper bounds for the necessary Lie derivatives is an advantage of this method-
ology compared to, e.g., power series approaches, for which the maximum number of derivatives
is in principle infinite [10].

Our method buildsOI recursively. Once nd is reached, addition of a new Lie derivative is fol-
lowed by calculation of the rank. This process is repeated until the maximum number n + q − 1
is reached, or until adding a new Lie derivative does not increase the matrix rank; in both cases
no further derivatives are necessary [38]. At that point, if OI is full rank the corresponding
model is observable and identifiable, as seen in the previous subsection. If OI is not full rank, the
algorithm proceeds to find identifiable parameters, as explained in the following subsection.

Further improvements in the computational burden can be obtained by calculating the rank
numerically instead of symbolically. A way in which this can be performed is by replacing the
symbolic variables in the OI with prime numbers to minimize the risk of accidental cancella-
tions, which would reduce the rank.

Determining identifiability of individual parameters

If OI is not full rank, the Observability-IdentifiabilityCondition (OIC) does not inform us
about which parameters are identifiable and which are not. This can be achieved by realizing
that each column of OI corresponds to a parameter-to-output relation (or state-to-output):

@

@x1
gð~xÞ @

@x2
gð~xÞ � � � @

@pq
gð~xÞ

@

@x1
ðLf gð~xÞÞ @

@x2
ðLf gð~xÞÞ � � � @

@pq
ðLf gð~xÞÞ

..

. ..
. ..

. ..
.

@

@x1
ðLnþq� 1

f gð~xÞÞ @

@x2
ðLnþq� 1

f gð~xÞÞ � � � @

@pq
ðLnþq� 1

f gð~xÞÞ

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

Therefore, if deleting the ith column of the generalized observability-identifiability matrix
does not change its rank, then the corresponding ith state (parameter) is non-observable
(unidentifiable). This fact can be exploited to determine which of the parameters in an uniden-
tifiablemodel are identifiable and which are not, using a sequential procedure: after the matrix
rank has been calculated and the model has been found to be unidentifiable, each of the col-
umns in OI corresponding to a particular parameter is removed one by one and the rank is
recalculated. In this way the identifiability of each of the parameters is evaluated.

Structural Identifiability of Dynamic Systems Biology Models
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Finding identifiable combinations of otherwise unidentifiable parameters

The procedure outlined in the preceding subsections classifies the model parameters as either
identifiable of unidentifiable. A question that naturally follows is: are there combinations of the
unidentifiable parameters which are themselves identifiable? If the answer is affirmative, the
model can be reparameterized and converted to a structurally identifiablemodel. However,
this is a difficult problem, which fewmethods can address, and only for models of moderate
size. An example is COMBOS [41, 42], which is based on differential algebra. Here we suggest
an approach based on ideas presented in [43, 44] and on the method for finding symmetries
proposed by [38]; related work has been recently presented in [45].

The procedure is as follows: if OI is rank-deficient, remove the columns corresponding to
identifiable parameters and obtain a reduced submatrix,OU [38]. Then, obtain a basis for the
kernel (null space) of this matrix,NðOUÞ (step 2 in [44]). Its coefficients define one or several
partial differential equations whose solution(s) are the identifiable combinations (step 3 in
[44]). This procedure is illustrated in the Methods sectionwith the JAK/STAT signalling path-
way, for which an identifiable combination of two parameters is found. While this example
shows the potential of this procedure, it must be acknowledged that the computational com-
plexity of calculating the kernel of OU limits its applicability to models with a moderate num-
ber of unidentifiable parameters.

Decomposing large models into submodels to facilitate their analysis

The methodologydescribed in the previous subsections can be used to analyse the identifiabil-
ity of whole models and, if the model is unidentifiable, of its parameters individually. However,
since it relies heavily on symbolic operations, it may be computationally infeasible for large or
complex models. It should be noted that the main limiting operations are:

• Obtaining high order Lie derivatives to buildOIð~xÞ.

• Calculating the rank of the resultingOIð~xÞ.

The minimum number of derivatives necessary for buildingOIð~xÞ is given by nd as defined
in Eq (8). The limit of what is computationally possible is difficult to quantify a priori, since it
depends on the model equations and the machine used in the calculations. As a rule of thumb,
analyses involving nd� 10 are infeasible except for very small models. As model size or com-
plexity increases, this upper bound decreases; some examples will be shown in the Results
section.

One solution is to decompose those models into smaller submodels whose analysis is possi-
ble computationally. Thus, we seek to decompose a modelM into submodels {M1,M2, . . .}
which require few Lie derivatives for their analysis, that is, they have a small nd. Each submo-
delMsub includes a subset of the model states, xsub. Its outputs, ysub, are the outputs of M
which are functions of at least one state included in xsub. The submodel parameters and inputs
are those appearing in the equations of xsub and ysub. There may be states that appear in the
equations of xsub or ysub but are not part of xsub; they are considered as additional unknown
parameters of Msub.

The submodels can be found by optimization as follows. For each submodelMi we select a
subset of the states inM by performing a combinatorial optimization where we minimize nd:

min
s

ndðsÞ ð9Þ

where s = {s1, s2, . . ., sn} is a binary vector of size n, whose entries sj 2 {0, 1} denote inclusion
(sj = 1) or exclusion (sj = 0) of the corresponding state. The combinatorial optimization is

Structural Identifiability of Dynamic Systems Biology Models
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performedwith the Variable Neighbourhood Search metaheuristic [46]. We carry out n opti-
mizations (one per state); in the jth optimization we force sj = 1, so that each state appears in at
least one solution. This, in turn, guarantees that all the parameters will eventually be evaluated.
A penalty term is included in the objective function to penalize solutions that have more states
than a chosenmaximum.

Apart from this optimization-based decomposition, it may sometimes be useful to specify a
particular submodel in order to explore the identifiability of a specific part of the model.

Assessing identifiability of decomposed models

Let us clarify how we can conclude identifiability of a parameter from analysis of a submodel.
As an example, considerM to be the model of Arabidopsis thaliana described in the Results
section; its equations are given in the Supplementary Information (S1 Text). Let us consider a
submodelMsub consisting of two states, xsub = {x1, x7}. The equations ofMsub are those that cor-
respond to the states {x1, x7}, that is:

_x1 ¼ n1

xa
6

ga
1
þxa

6

� m1

x1

k1þx1
þ q1x7uðtÞ;

_x7 ¼ p3 � m7

x7

k7þx7
� ðp3 þ q2x7ÞuðtÞ;

x1ð0Þ ¼ 0; x7ð0Þ ¼ 0

8
>><

>>:

ð10Þ

The outputs ofMsub are those outputs ofM which are functions of at least one of the states in
Msub (in this example, y1 = x1). The parameters and inputs ofMsub are those present in Eq (10):
respectively, {n1, g1, a,m1, k1, q1, p3,m7, k7, q2} and u. Additionally, we must also include as
parameters the states that do not belong to xsub but appear in Eq (10) or in ysub (in this case, x6).
Thus in this example the submodel parameters would be {n1, g1, a,m1, k1, q1, p3,m7, k7, q2, x6}.
By including states such as x6 as parameters we are considering them as unknown and constant.
In contrast, if they were included as inputs to the submodel, we would be implicitly assuming
that they provide sufficient excitation for identification purposes. Thus, including them as
parameters is a conservative assumption in terms of identifiability. Therefore, if a parameter is
classified as identifiable in a submodel under these conditions, it will also be identifiable when
considering the whole model.

Building OI with less than nd Lie derivatives

When the nd of the full model is so high that it is not feasible to buildOI , one solution is to
decompose the model into smaller submodels as described in the previous subsections.
Another possibility is to buildOI with i< nd derivatives. In this case we know that full rank
cannot be achieved, so even if the model is identifiable we will not be able to determine it in
this way. However, it may be possible to determine identifiability of at least some of the param-
eters. Note that this procedure can be helpful exactly in the same circumstances as decomposi-
tion. In some cases one approach will be more appropriate than the other, but both can be used
to determine the identifiability of different parameters, and may therefore be complementary.

Fig 1 shows a diagram of the methodologypresented so far. The next sections discuss the
types of analyses that can be performedwith this methodologyand show how to refine the
solutions iteratively in order to obtain more complete diagnoses.

Complete and partial analyses

By assessing identifiability as explained in sections “Assessing the OIC efficiently” and “Deter-
mining identifiability of individual parameters” we are performing a “Complete Case Analysis”
(CCA): every parameter in the model is either classified as identifiable or as unidentifiable.

Structural Identifiability of Dynamic Systems Biology Models
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However, it may not always possible to carry out the aforementioned procedure due to
computational limitations, as explained in sections “Decomposing large models into submo-
dels to facilitate their analysis” and “BuildingOI with less than nd Lie derivatives”, which pre-
sented two different alternatives. In certain cases these alternatives can yield incomplete
results, that is, they may fail to determine the (un)identifiability of some parameters. For exam-
ple, this may happen in the following scenarios:

1. When, due to computational limitations,OI is calculatedwith less Lie derivatives than
those needed to guarantee identifiability or lack thereof. In this case, it may happen that an
OI calculated with more Lie derivatives would have a higher rank, and therefore reveal the
identifiability of more parameters.

2. When using decomposition, a parameter may not be determined as identifiable if the submo-
del in which it is being tested does not include some necessary states and outputs. Imagine, for
example, that identification of a particular parameter pi requires observing two outputs, ya and
yb, but only one of themwas included in the submodel used to evaluate the identifiability of pi.

The two cases mentioned above will be called “Partial Analyses for Identifiability” (PAI):
some parameters are conclusively classified as identifiable, but nothing can be said about the
rest. It is also possible to perform similar analyses to guarantee unidentifiability of some
parameters, leading to what we will call “Partial Analyses for Unidentifiability” (PAU). In such
tests, some parameters are classified as unidentifiable while the analysis of the rest is not con-
clusive. This can happen in at least two situations:

1. Assume we are considering the full model with a full size matrix OI (i.e., a matrix built with
as many Lie derivatives as states, n) or with a number of derivatives such that the rank of
the matrix has stopped increasing. In this case, if we remove identifiable parameters we still
have a CCA. However, if we remove parameters whose identifiability has not been assessed,
the result of the subsequent rank test is conclusive only if it reports unidentifiability.

Fig 1. Core elements of the structural identifiability analysis method. Further refinements are possible: in some cases more complete solutions may

be obtained by re-running the procedure after removing parameters already classified as identifiable. The model M used as example is the Goodwin

oscillator analysed in the Results section.

doi:10.1371/journal.pcbi.1005153.g001
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2. In the situation above, if instead of removing parameters we consider more outputs than are
actually measured in the model.

The different types of analyses that can be performed are summarized in Table 1.

Iterative refinement of the diagnosis

As shown in the preceding subsection, for some complex problems a complete analysis—that
is, classifying all the parameters as identifiable or unidentifiable—may not be possible, at least
in a first approach, due to computational limitations. In such cases, one can try to obtain more
complete diagnoses by running the procedure iteratively. At each time, the computational cost
can be reduced by removing from the augmented state vector, ~x ¼ ½x; p�, those parameters that
were already found to be identifiable in previous steps. This operation, which leads to a smaller
OI matrix, does not alter the result of the identifiability test, because the resultingOI is identi-
cal to the one obtained with the original vector ~x ¼ ½x; p� after removing the columns corre-
sponding to identifiable parameters—which results in a decreased rank. Note that this
equivalence is made possible by the fact that _p ¼ 0, so the procedure cannot be applied to the
model states, since _x 6¼ 0.

In summary, if a modelM is too large to be analysed as a whole—i.e. to directly calculate the
rank of its identifiabilitymatrix and perform a complete case analysis (CCA)—identifiability
analysis can be approached as follows:

1. Decompose the model, possibly (but not necessarily) using an optimization-based proce-
dure to minimise computational effort, into several submodels, Si.

2. Analyse identifiability of the resulting Si submodels using the generalised observability-
identifiability rank condition. If the array is not full rank, test the identifiability of each
parameter separately by comparing the rank before and after removing its column.

3. Parameters found to be identifiable in a submodel Si are identifiable in the whole modelM.

4. Several decompositions can be tested, which may lead to complementary results.

5. Additionally, as an alternative or a complement to steps (1–4), it may be possible to find
identifiable parameters by checking the rank of a OI built with less than nd Lie derivatives.
Steps (1–5) correspond to what we call partial analyses for identifiability (PAI).

6. Remove all the parameters determined to be identifiable in the previous steps from the
modelM. This results in a reduction of the dimension of M which may enable its analysis

Table 1. Types of analyses possible with this methodology.

Analysis # states # derivatives, rank(OI) other states parameters outputs

CCA s = n (i = n) OR (ranki+1 = ranki)

PAI s = n (i < n) AND (ranki > ranki-1)

PAI s < n as unknown p

PAU s = n (i = n) OR (ranki+1 = ranki) removed s.u. p

PAU s = n (i = n) OR (ranki+1 = ranki) o > m

CCA: Complete Case Analysis; PAI: Partial Analysis for Identifiability; PAU: Partial Analysis for Unidentifiability; i: number of Lie derivatives used to build OI;

ranki: rank of OI with i derivatives; s: number of states taken into account; n: total number of states in the model; o: number of measured outputs; m: number

of outputs in the original model; x: states; p: parameters. For detailed explanations, see section “Complete and partial analyses”. In all cases it is possible to

remove from the model those parameters that have already been classified as identifiable, see section “Iterative refinement of the diagnosis”.

doi:10.1371/journal.pcbi.1005153.t001
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using the generalised observability-identifiability rank condition without resorting to
decomposition. In that case, it will be possible to determine the identifiability of all the
parameters (CCA) or, alternatively, to perform a PAI.

7. For those parameters that are not classified as identifiable, try to assess their unidentifiability
by performing the corresponding partial analysis, PAU.

Implementation: The STRIKE-GOLDD toolbox

The present method has been implemented as a MATLAB toolbox named STRIKE-GOLDD
(STRuctural Identifiability taKen as Extended-GeneralizedObservability using LieDerivatives
andDecomposition). It is an open source tool licensed under the GNUGeneral Public License
version 3 (GPLv3). It is freely available from https://sites.google.com/site/strikegolddtoolbox/
and as supplementary information accompanying this article (S1 File). It requires a MATLAB
installation with the Symbolic toolbox. Additionally, to use optimization-based decomposition
it is necessary to install the MEIGO toolbox [48]. The usage of the STRIKE-GOLDD software
is discussed in detail in the manual (S2 Text); in the following lines we provide a brief descrip-
tion of the key options.

The toolbox allows limiting the number of Lie derivatives that are calculatedwhen building
OIð~xÞ. This is useful to prevent the algorithm from getting stuck in excessively lengthy calcula-
tions. To adapt this limit to the computer where the algorithm is running, it is specified as a
machine-dependent criterion: the user can set a limit on the time invested in calculating these
derivatives by entering it in opts.maxLietime (that is, the algorithmwill not calculate the
ith + 1 derivative if the time spent in obtaining the ith one was ti> opts.maxLietime).

Furthermore, the user can choose what to do if this time limit is reached withoutOIð~xÞ being
full rank: by setting opts.decomp= 0, STRIKE-GOLDDwill perform a partial analysis of the
whole model with the currentOIð~xÞ; if opts.decomp= 1, it will decompose the model. It is
also possible to enforce the use of decomposition from the start, i.e. without checking whether
the time limit is reached, with the option opts.forcedecomp.The submodels can be found
by optimization or specified by the user; this choice is made by opts.decomp_user.

Another option, opts.numeric, allows deciding whether to calculate rank(OIð~xÞ)
numerically or symbolically. The symbolic calculation is always exact. It is possible to perform
a numerical calculation by replacing the symbolic variables with prime numbers. This usually
reduces the computational cost, although in some cases it might lead to accidental cancellations
that decrease the rank artificially. However, the risk of obtaining a spurious result is low, and it
can be minimized by running the procedure several times, since the substitutions are random.
In all of the case studies analyzed in the Results sectionwe found agreement between numeric
and symbolic rank calculations.

Finally, it is possible to assess identifiability for specific values of the system’s initial condi-
tions. As mentioned in subsection “Structural identifiability as augmented observability: the
OIC”, this can be useful in order to detect situations in which loss of reachability from particu-
lar initial conditions leads to loss of identifiability. Such pathological cases are not detected if
rankðOIð~x0ÞÞ is calculated using a generic symbolic vector of initial conditions. However, they
can be tested by setting the option opts.knowninitc= 1 and entering the corresponding
vector of initial conditions in the script that creates the model.

Results

We applied the proposedmethodology to a number of published models of varying size and
complexity [19, 27–32], some of which have been recently used to benchmark identifiability
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analysis methods [10, 19, 20]. The main features of the models are summarized in Table 2, and
schematic diagrams are shown in Figs 2–4. Their equations are given in the supplementary
information. Calculations were carried out on a computer runningWindows7 SP1 64bit, with
an Intel processor at 3.40 GHz and 16 GB of RAM, usingMATLAB R2015b.

Pharmacokinetic model of in vitro Pitavastatin hepatic uptake

In [19], Grandjean and coworkers proposed 18 alternative pharmacokinetic nonlinear com-
partmental models of the uptake process of Pitavastatin (a drug used to treat hypercholestero-
laemia) into hepatocytes. They applied five different methods to analyse their structural
identifiability: similarity transformation, differential algebra, Taylor series, and two approaches
based on a non-differential input/output observable normal form and an algebraic input/out-
put relationship approach. With these techniques they established the identifiability of most of

Table 2. Main features of the models analysed in this study.

Nr. Description Ref. States Outputs Parameters Identifiable

1 Pitavastatin hepatic uptake [19] 3 1 7 yes

1.b 1 with steady state assumption [19] 2 1 6 yes

2 Goodwin oscillator [27] 3 1 8 no

3 MAPK with mixed feedback [28] 3 3 14 yes

4 NF-κB pathway [30] 15 6 29 no

5 JAK/STAT pathway [31] 10 8 23 no

6 Circadian clock A. thaliana [29] 7 2 28 no

7 CCM of CHO cells [32] 34 13 117 no

doi:10.1371/journal.pcbi.1005153.t002

Fig 2. The first three models analysed in this work. (A) Pharmacokinetic model of Pitavastatin hepatic uptake. (B) Goodwin oscillator. (C) MAPK

cascade with mixed feedback. The upper part of the figure shows functional diagrams of the three systems. The lower part shows the connections

between the states (blue stars), outputs (red squares), and parameters (green circles); a directed arrow from X to Y indicates that Y appears in the

dynamic equation of X.

doi:10.1371/journal.pcbi.1005153.g002
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the models. However, for several model formulations none of the methods was able to produce
results. This was the case for two candidate models (with or without pseudo-state assumption)
that accounted for drugmetabolising within the cell.

A diagram of these Pitavastatin uptake models is shown in panel A of Fig 2. The upper part
of the panel shows the system’s functional diagram. The lower part shows a graph drawn fol-
lowing the same convention as in [47], in which a directed arrow from A to B indicates that B
appears in the dynamic equation of A. This graphical approach was originally proposed to
study observability, and hence in [47] only the states were shown in the graphs. Since here we
use it for identifiability purposes, we extend it to include both states and parameters (see figure
caption for more details).

The method presented here determines that both Pitavastatin uptake models (with and
without pseudo steady state assumption) are structurally identifiable.

Enzymatic oscillations: The Goodwin model

The classical model of oscillations in enzyme kinetics proposed by Goodwin in 1965 [27] and
shown in panel B of Fig 2 is still the subject of analyses [28]. It was selected by [10] to compare
the performance of several structural identifiabilitymethods, considering two different scenar-
ios or variations of the model: when the three states are measured, or when only one of them—
the enzyme concentration, x1—can be measured. The latter situation is more realistic, but its
analysis is particularly challenging, and none of the methods tested by [10] managed to reach a
conclusion due to computational complexity.

According to Eq (8), the minimum number of Lie derivatives for which the identifiability
matrix may be full rank is nd = 10 for this model. While the subsequent rank calculation is
very demanding, the computational cost is substantially reduced by buildingOIð~xÞ with only
9 Lie derivatives. In this way the method classifies four parameters as identifiable: b, σ, β, δ.
Then, removing these parameters from the model as explained in “Iterative refinement of
the diagnosis” enables the analysis of the remaining parameters (a, A, α, γ), which are found
to be unidentifiable.

Fig 3. The NF-κB model.

doi:10.1371/journal.pcbi.1005153.g003
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Thus this model is unidentifiable. It can be made identifiable by considering two parameters
as known, one from each of the pairs {A, a} and {α, γ}. For example, if we fix the values of
{A, α}, the remaining six unknown parameters in the model are identifiable. An alternative
solution is to measure more states, if it is experimentally possible. In this case, if all three states
are outputs, the model is structurally identifiable.Measuring only two of the three states, how-
ever, increases the number of identifiable parameters but does not render the model fully iden-
tifiable. The subsets of unidentifiable parameters for y = {x1, x2}, y = {x1, x3}, and y = {x2, x3}
are, respectively, {a, A, γ}, {α, γ} and {a, α}.

Three-layer MAPK cascade with mixed feedback

This model was presented in [28] as an example of a system exhibiting both oscillation and
bistability. It is a three-layer signalling cascade with positive and negative feedback loops and

Fig 4. Models of JAK/STAT (A) and Arabidopsis thaliana (B). Note that states x7 and x9 in the upper diagram of JAK/STAT do not appear in the lower

diagram since they are expressed as functions of x6 and x8 respectively.

doi:10.1371/journal.pcbi.1005153.g004
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Hill nonlinearities, shown in panel C of Fig 2. It has three states, which are the phosphorylated
forms (x1, x2, x3), and 14 parameters (k1, k2, k3, k4, k5, k6, s1t, s2t, s3t, K1, K2, n1, n2, α).

This system requires that all its three states are measured in order to be identifiable. How-
ever, if just one of the states is left unmeasured, some parameters become unidentifiable: if x1 is
not measured, k3 and s1t are unidentifiable; if x2 is not measured, k5 and s2t are unidentifiable;
and if x3 is not measured,K1, K2, and s3t are unidentifiable.

NF-κB signalling pathway

This model was presented by [30] and was used by both [10] and [16] as a benchmark for
structural identifiabilitymethods. In the formulation of [10], only 13 parameters are consid-
ered unknown. In that case, all of them are identifiable. The general case, in which all 29
parameters are in principle unknown, is more challenging. For this case STRIKE-GOLDD clas-
sifies 5 parameters as unidentifiable: c1c, c2c, c3c, c4, and k2, and the remaining as identifiable.
Part of this diagnosis can be confirmed by inspection of the connection diagram in the right
side of Fig 3, which shows that c1c, c2c, and c3c only appear in the equation of state x15. Since x15
is in turn “disconnected” from the rest of the model (i.e. it does not appear in the equation of
any other state), and it is not measured, there is clearly no way of determining its value. Hence
x15 is unobservable, and the three parameters associated with it are unidentifiable. In contrast,
the unidentifiability of c4 and k2 is by no means apparent from the figure. However, it can be
determinedwith the methodology that they are not only unidentifiable, but related: fixing any
of the two renders the other one identifiable. In summary, this 29-parameter model can be con-
verted into a structurally identifiable 25-parameter model by fixing the values of four parame-
ters: c1c, c2c, c3c, and either c4 or k2.

JAK/STAT signalling pathway

This model of the IL13-Induced JAK/STAT signalling pathway was presented in [31] and later
used in [20] to benchmark three identifiability analysis methods. The network interaction dia-
grams are shown in panel A of Fig 4. The results of our method coincide with those reported in
[20], that is, five of the 23 parameters are unidentifiable, pu = [θ11, θ15, θ17, θ21, θ22]. Following
the procedure outlined in the Methods section, it is possible to find an identifiable combination
of unidentifiable parameters. To do this we remove the columns corresponding to identifiable
parameters and obtain a reduced submatrix,OU . Calculation of a basis of the kernel of OU

yields the following vector:

v ¼ 0; 0;
� y17

y22

; 0; 1

� �

ð11Þ

which in turn leads to the following PDE:

� y17

y22

�
@F

@y17

þ
@F

@y22

¼ 0 ) F ¼ y17 � y22 ð12Þ

Thus, F = θ17 � θ22 is an identifiable parameter combination. The methodologydoes not
report any combination involving θ11, θ15, θ21. If, additionally, we fix the value of θ11 a priori,
we obtain a structurally identifiablemodel with 21 unknown parameters.

Circadian clock in Arabidopsis thaliana

The genetic subnetwork that controls the circadian clock in the plant A. thaliana was modelled
in [29]; its diagram is shown in Fig 4. This model uses bothMichaelis-Menten and Hill
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kinetics. Two Hill coefficients of transcription (a, b) were considered as known parameters in
the original publication [29]. Although it was argued in [29] that there is evidence that b = 2,
coefficienta was fixed to a = 1 without experimental evidence. In [10] it was reported that (for
the case of a = 1) no global structural identifiabilitymethod was capable of successfully analys-
ing the model; at most, identifiability of five parameters was established.

While the choice of a = 1 makes the system rational and reduces the problem dimension,
here we consider the more general case in which a is an unknown parameter. According to Eq
(8), the minimum number of Lie derivatives for whichOIð~xÞmay be full rank is very high for
this model (nd = 16). This is the same situation as with the previously analysed Goodwinmodel,
that is, the computational cost of the construction and subsequent rank calculation of OIð~xÞ
with nd derivatives is too high. Furthermore, we found that the approach adopted for the Good-
winmodel—building the matrix with less than nd derivatives—was not successful in the case of
this example, at least when performedwith few derivatives. Hence we turned to the alternative
procedure, i.e. decomposing the model using optimization. In this way, identifiability of ten
parameters was established: a, k1, k4,m1,m4, n1, n2, q2, r2, and r4. Removing these parameters
from the model decreases the number of required derivatives nd to 12, which is still very high;
however, buildingOIð~xÞ with 9 derivatives reports identifiability of an additional parameter, r1.

By performing partial analyses for unidentifiability (PAUs) we confirmed that the model is
indeed unidentifiable. This can be remedied in several ways. A possible solution is to measure
more states, if it is experimentally feasible. In the model it has been assumed that only mRNA
concentrations are measured (i.e. states x1 and x4); however, if protein concentrations (i.e. the
remaining states) are also measured, then all the parameters become structurally identifiable.
Alternatively, if we assume that only the original outputs can be measured, it is possible to
obtain an identifiable reformulation of the model by fixing some parameters. For example,
choosing fixed values for the five degradation constants that were not found to be identifiable
(k2, k3, k5, k6, k7) yields a structurally identifiablemodel with 23 parameters.

Metabolic model of Chinese Hamster Ovary cell (CHO)

This large-scale model was taken from the BioPreDyn-bench collection [32], where it was
included as benchmark B4. It models a batch fermentation process for protein production
using Chinese Hamster Ovary cells. Its diagrams are shown in Fig 5. It contains 34 states
(which are metabolites present in three compartments: fermenter, cytosol, and mitochondria),
of which 13 are measured outputs. Its 32 reactions include protein product formation, the
Embden-Meyerhof-Parnas pathway (EMP), the TCA cycle, a reduced amino acid metabolism,
lactate production, and the electron transport chain. The reactions are modelled using lin-log
kinetics [49], resulting in non-rational equations with 117 unknown parameters. While it was
noted in [32] that the parameter estimation results suggested practical identifiability issues,
possible deficiencies in structural identifiability were not mentioned. Given the size of this
model, its analysis is very challenging.

Using decomposition it is possible to classify most of the parameters in the model as identi-
fiable. However, we also found that at least four parameters are structurally unidentifiable: they
are the parameters numbered 47, 48, 55, and 57, which correspond to the following kinetic con-
stants (elasticities): {e54, − e55, − e62, e64}. After inspecting the model, we realised that it is possi-
ble to rewrite its dynamic equations in such a way that these parameters appear as (e54 + e55)
and (e62 + e64); clearly, the individual parameters appearing in these sums are not identifiable.
Thus, we replaced these four parameters with two new ones, en1 = e54 + e55 and en2 = e62 + e64.
In this way we obtained a newmodel with 115 parameters, and confirmed that the newly intro-
duced ones are structurally identifiable. Overall, we determined the identifiability of 97
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Fig 5. Metabolic model of Chinese Hamster Ovary cells used in a fed-batch fermentation process.

doi:10.1371/journal.pcbi.1005153.g005
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parameters. While we did not manage to assess the identifiability of the remaining 18, we did
find that fixing six of them (e.g. {p28, p72, p77, p101, p105, p115}) results in a structurally identifi-
able model. This action is slightly conservative, since those parameters can in principle be s.l.i.
However, since the model has practical identifiability deficiencies [32] (as is typical of models
of this type and size [49]), and given that it would be necessary to performmany Lie derivatives
to relate these parameters to the model outputs, it is likely that in practice their values will be
difficult to estimate. Therefore, fixing a subset of them appears as a reasonable solution.

In summary, we found that: (i) this model is structurally unidentifiable, (ii) there exist two
identifiable combinations of parameters, which convert 4 unidentifiable parameters into 2 iden-
tifiable ones, (iii) of the remaining 113 parameters, at least 95 are identifiable, and (iv) fixing the
values of 6 parameters ensures that the remaining 12 (and the model as a whole) are identifiable.

Discussion

We have presented a methodology for analysing the structural identifiability of dynamic mod-
els describedby a system of ordinary differential equations. It builds on concepts and tech-
niques originally presented in the context of nonlinear observability analysis. More specifically,
it adopts a differential geometry approach, which is based on building an augmented observ-
ability matrix—with the parameters considered as additional state variables—and calculating
its rank. This formulation, as opposed to other approaches based on differential algebra, allows
handling any analytic models, without requiring them to be in rational or polynomial form. If
a model is structurally unidentifiable the method determines the identifiability of each parame-
ter individually, by recalculating the matrix rank after removing the corresponding column.

Realising that the structural identifiability analysis of nonlinear dynamic models is a chal-
lenging task, and that this difficulty increases rapidly with the problem size, our method is
geared towards computational efficiency. To this end it includes several algorithmic develop-
ments to facilitate the analysis of models of larger size. One is the possibility of decomposing
the model into smaller submodels, which can be found by optimization or specifiedby the
user. Another is the calculation of the matrix rank with a reduced number of Lie derivatives.
These alternatives lead in some cases to partial analyses, whose result is only conclusive if a
parameter is classified as identifiable, but not as unidentifiable (or vice versa, depending on the
type of analysis). In these situations the method also allows for an iterative refinement of the
diagnosis: by removing parameters already classified as identifiable, the problem size is reduced
and more complete analyses are made possible.

To facilitate the application of this methodology, we have provided it as a freeMATLAB
(The MathWorks, Natick, MA) toolbox called STRIKE-GOLDD (STRuctural Identifiability
taKen as Extended-Generalized Observabilitywith Lie Derivatives and Decomposition),
available under the GNUGeneral Public License from https://sites.google.com/site/
strikegolddtoolbox/.We expect that STRIKE-GOLDDwill contribute to fill the gap between
the complexity of current systems biologymodels and their usability, which can be compro-
mised unless structural identifiability is assessed.

We have validated the methodologyusing a set of nonlinear systems biologymodels whose
size and/or complexity make them challenging case studies. They range from a classic model of
enzymatic oscillations with 8 parameters proposed by Goodwin in 1965 [27] to a metabolic
model of more than 100 parameters published in 2015 [32]. Interestingly, we found structural
identifiability issues even in models of relatively small size, such as the aforementioned Good-
win model. Indeed, the results show that identifiability issues are likely to appear in over-
parameterizedmodels (with many parameters per state), specially if only few of their states are
available for measurement (in order words, if there are few outputs).
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A large parameter-to-output ratio also implies that the structural identifiability of the model
will be difficult to analyse, because it will be necessary to performmany Lie derivative calcula-
tions in order to build the augmented observabilitymatrix, thus incurring a high computa-
tional cost. Could this common cause mean that the difficulty in analysing a model is a hint of
lack of identifiability?We ask this question because we know that, on the other hand, it is pos-
sible to analyse models with many parameters as long as sufficientmeasurements are available.

Among the models analysed here, the JAK/STAT pathway had already been studied [20],
and for that case our method confirmedpreviously reported results. In other cases we estab-
lished the identifiability of systems that had not been analysed before, such as the mixed feed-
backMAPK pathway [28] or the model of Pitavastatin hepatic uptake (which had been reported
to resist analysis when attempted with other methods, although it was suspected that it was
identifiable [19]). Perhaps more interestingly, we also found some unidentifiabilities that had
not been previously reported. An example is the Goodwinoscillator [27], for which it was estab-
lished that half of its parameters are structurally unidentifiable. Despite the relatively small size
of this model (3 states and 8 parameters), the fact that it is not a rational system, combined with
the high parameter-to-output ratio (given that only one of its states is measured)make it a very
challenging problem. Similar issues were found in the NF-κB signalling pathway [30] and in the
genetic subnetwork of the circadian clock in Arabidopsis thaliana [29]. In these cases it can be
noted that the ratio of unidentifiable parameters is larger in models with a lower ratio of mea-
sured outputs. Finally, we also detected unidentifiabilities in a recently presented large-scale
dynamic model of metabolism of ChineseHamster Ovary cells [32] with 117 parameters.

We have also shown how to turn unidentifiablemodels into identifiable ones. With the pro-
cedure described in this paper it is sometimes possible to combine several unidentifiable
parameters into a single identifiable combination. More often the solution is to reparameterize
the model by considering some of the unidentifiable parameters as known constants, fixing
them to values that appear reasonable according to available knowledge. In this way the
remaining unknown parameters are rendered identifiable. Finally, a model can also be made
identifiable by increasing the number of its outputs, if it is experimentally possible to measure
more of its states.
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