
Microscopic dynamics in molten Ni: Experimental scrutiny of embedded-atom-potential
simulations

M. D. Ruiz-Martín, M. Jiménez-Ruiz, and M. Plazanet
Institute Laue Langevin, 6 Rue Jules Horowitz, F-38042-Grenoble Cedex 9, France

F. J. Bermejo, R. Fernández-Perea, and C. Cabrillo*
Instituto de Estructura de la Materia, CSIC, and Departamento Electricidad y Electrónica-Unidad Asociada CSIC, Facultad de Ciencia

y Tecnología, Universidad del País Vasco/EHU, P.O. Box 644, E-48080-Bilbao, Spain
�Received 30 January 2007; revised manuscript received 12 March 2007; published 5 June 2007�

The stochastic dynamics in molten nickel is studied by neutron scattering. The quasielastic spectrum shows
two distinct components having disparate linewidths. The wave-vector dependence of the narrow component is
shown to arise from incoherent scattering at low momentum transfers. In turn, the spectral half-width of the
wider component shows a modulation with wave vector characteristic of coherent quasielastic scattering. The
analysis of both components provides direct experimental estimates for the self-diffusion coefficient, as well as
the effective particle diameter. The experimental data are then used to validate computer simulation results
which are derived using an embedded-atom potential. Such results are also employed to explore regions in
frequency-wave-vector space not easily amenable to experiment. In addition, simulation results are also com-
pared with data pertaining to the collective motions. Such an exercise reveals the need to develop a further
level in the memory function expansion of the coherent dynamic structure factor. The implications of such
findings for our current understanding of the dynamics of liquid metals are finally assessed.
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I. INTRODUCTION

Studies on the transport properties of molten transition-
metal elements have mostly remained within the realm of
computer simulations1 due to stringent conditions imposed
by sample containment requirements.2 Such a dearth of reli-
able experimental data contrasts with the technological or
geophysical3 importance of such materials. In fact, knowl-
edge of the transport properties of liquid iron, nickel, and
mixtures of both elements with a third light-alloying compo-
nent such as sulfur or silicon is of fundamental importance
for the understanding of the basic physics of many planetary
cores, including Earth. A glance at experimental data con-
cerning the perhaps most fundamental transport property
such as the shear viscosity of molten Ni serves to exemplify
the state of affairs on these matters since the available data
set4 yields estimates spanning some 60% around its mean
value.

On a more fundamental vein, additional interest in pursu-
ing the studies reported here arises from consideration of
liquid metals as the closest physical realization within the
microscopic realm of a hard-sphere fluid.5,6 The attractive-
ness of such similitude comes from the availability of closed-
form expressions for most transport and dynamical proper-
ties of hard-sphere or even Lennard-Jones fluids which have
been derived from recourse to kinetic theory,7 and therefore,
studies on liquid metals provide a benchmark to scrutinize
the accuracy of such theoretical predictions.

Although a good number of simulations by computer mo-
lecular dynamics �MD� on liquid Ni of varying degrees of
sophistication have already appeared,1,8 their predicted re-
sults have most of the times been compared to structural,
mechanical, or macroscopic properties only. Here, we report
on a comparison between the computer predictions and prop-

erties most sensitive to fine details of atomic interactions
such as those pertaining to the atomic dynamics within the
microscopic realm. In particular, we explore here the predic-
tive capabilities of MD approaches based on
embedded-atom-potentials8 �EAMs� versus experimental
data derived from neutron scattering. To such an avail, the
experiments reported here mostly concern the low-frequency
part of the wave-vector-dependent frequency spectrum
S�Q ,�� or dynamic structure factor which can be accessed
with rather high resolution in energy transfers by means of
cold-neutron spectroscopy. Such a range of frequency is
dominated by quasielastic-scattering effects which are pro-
duced by Doppler broadening of the incident beam due to its
interactions with stochastic particle motions such as space-
dependent mass diffusion. Because of the characteristics of
neutron interactions with the nuclei of normal abundance Ni,
we explore here both single-particle properties which domi-
nate the measured double-differential scattering cross sec-
tions for values of the momentum transfers where coherent
effects are minimal �i.e., well below those where the static
structure factor S�Q� attains relatively large values� and
those related to stochastic albeit correlated particle motions.
Both kinds of motions represent those executed by a tagged
particle which give rise to the incoherent scattering structure
factor Sinc�Q ,��, as well as those giving rise to backflow due
to the motion of a given particle which are seen as an inter-
ference effect within the coherent Sc�Q ,�� structure factor.

A second issue of interest concerns the part of Sc�Q ,��
that is dominated by finite-frequency excitations, which, for
a molten metal such as Ni, exclusively corresponds to acous-
tic phonons. Although experimental data for such excitation
frequencies9 were recently compared to simulation results by
Jakse et al., the main focus of interest concerns some devel-
opments which arose from the analysis of the spectral line
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shape of the complete Sc�Q ,��. In fact, as we show below,
proper account of the calculated Sc�Q ,�� requires an exten-
sion of the theoretical frameworks which have been shown to
be suitable to reproduce data for the molten alkali metals10

but fail to account for that on liquid Ni.
In the following sections, we summarily describe the ex-

perimental and computational methods, as well as some of
the results and a detailed comparison between both. Results
derived from the MD simulation are later described and, fi-
nally, the relevance of the present findings for our current
knowledge on the dynamics of liquid metals within micro-
scopic scales is briefly addressed.

II. EXPERIMENT

The experiment was performed on the IN5 cold-neutron
chopper spectrometer located at the Institut Laue Langevin
�ILL� �Grenoble, France�. This instrument offers large flex-
ibility for wavelength selection and chopper speed which
permits considerable optimization of the energy range, en-
ergy resolution, momentum transfer, and count rate.

The sample, a Ni powder of 99.999% purity, was held
within a flat ceramic container made of Al2O3 to avoid the
chemical reactions that usually occur between the sample
and the container when working at high temperatures. Its
dimensions were calculated in order to have �20% of the
incoming neutrons scattered and/or absorbed by the sample
plus container, taking into account the values of the neutron
scattering and absorption cross sections, �scatt=18.5 b and
�abs=4.49 b, respectively. The slab container had dimensions
of 40�27 mm2 and the wall thickness was 2 mm. The liquid
state was achieved by slowly heating the sample up to its
melting point into a Nb furnace designed at ILL. The entire
ensemble is under vacuum to prevent its oxidation, at pres-
sures of �10−6 mbar. The temperature was measured with
two tungsten thermocouples placed in close contact with the
cell. In order to minimize the background, the flight path
�volume� between the sample and the detectors is filled with
argon.

Two sets of measurements were carried out employing
two different wavelengths. The first corresponds to �
=5.5 Å−1, which gave us access to the region of small Q
values where incoherent scattering dominates the double-
differential scattering cross section. The energy resolution, as
measured at the elastic peak position using vanadium foil for
this configuration, was a Gaussian of 94 �eV, full width at
half maximum.

The second set of measurements was performed with a
higher energy of the incident beam and used a shorter wave-
length ��=2.5 Å−1�. These measurements allowed us to map
a wider region of the �Q ,�� reciprocal space with far less
resolution in energy transfers �0.65 meV�.

Naturally abundant Ni is mostly a coherent scatterer hav-
ing a cross section �c=13.3 b, while the incoherent scatter-
ing yields �inc=5.2 b, thus totaling �scatt=18.5 b. Both
single-particle and collective dynamical properties are of in-
terest here. The former contributes to the incoherent-
scattering cross section and the latter yields purely coherent
scattering. The total cross section I�Q ,�� would then be

composed by a sum of incoherent and coherent dynamic
structure factors S��Q ,��,

I�Q,�� = A� �inc

�scatt
Linc�Q,�� +

�c

�scatt
Lc�Q,��� � R�Q,�� ,

�1�

L��Q,�� =
	��

�2 + 	��
2 , �2�

where A is a global normalization constant and R�Q ,��
stands for the finite instrument resolution function, and the
functional form assumed for both components corresponds to
Lorentzian function L��Q ,�� with half-widths 	��. As we
will show below, an instrumental separation of coherent and
incoherent contributions is made possible by the rather dis-
parate values exhibited by both incoherent- and coherent-
scattering linewidths. At momentum transfers well below
that where the static structure factor S�Q� shows its maxi-
mum, Qp=3.1 Å−1,13 the scattering is dominated by the in-
coherent cross section.

The spectral intensity shown in Fig. 1 arises from
incoherent-scattering effects, with the exception of a small,
nearly Q-independent background term attributable to mostly
coherent effects. Within the range of momentum transfers
where incoherent scattering dominates, the spectral response
is described very well by a single Lorentzian with half-
widths 	�inc and peak intensities Sinc�Q ,0�, which are also
shown in Fig. 1. The results show that the asymptotic
	�inc
Q2 �i.e., Fickian� behavior is approximately followed
by the linewidths up to relatively large momentum transfers
Q�1.5 Å−1 and the same applies to the intensity that follows
S�Q ,0�
Q−2. From such data, an estimate for the apparent
self-diffusion coefficient is derived since the expression
	�inc=DsQ

2 applies and yields Ds=0.28 meV Å2. This fig-
ure is to be compared to computational estimates that range
between Ds=0.1672 meV Å2 and Ds=0.3403 meV Å2.1,8

Also, the dependence with wave vector of the intensity at the
peak maximum S�Q ,�=0� follows an apparently hydrody-
namic dependence according to S�Q ,�=0�
1/�DsQ

2.
Some deviations from such long-wavelength behavior are
expected due to coupling between particle diffusion and the
collective modes and are discussed below with the aid of
computer simulation results.

The measurements employing the shorter wavelength
gave us access to a more extended range of frequencies. The
data shown in Fig. 2 have been analyzed on the grounds set
by Eq. �1� using the values derived for the incoherent com-
ponent that have been discussed above as a constraint. A
sample of spectra corresponding to wave vectors comprising
the maximum of the structure factor S�Q� is shown in Fig. 2,
together with the results depicting the variation with momen-
tum transfer of the coherent linewidth, as well as its intensity.

As shown in Fig. 2, the Q dependence of the integrated
intensity within this spectral range follows the oscillations
present in S�Q�. This proves that this wider quasielastic com-
ponent is dominated by coherent effects. As derived from
kinetic theory11 and proven against experimental data in
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some other liquid metals,12 an approximate expression to de-
scribe the half-width of the coherent quasielastic spectrum
for wave vectors comprising Qp, where the static S�Q� shows
its maximum, is given by

	�c�Q� =
DsQ

2

S�Q��1 − j0�Qrm� + 2j2�Qrm��
. �3�

In addition, as shown in Ref. 12, good results are obtained
if the particle self-diffusion coefficient is set to its experi-
mental value rather than that given by the Enskog prescrip-
tion, as initially proposed.11 The parameter rm is defined by
the value where the radial distribution shows its first maxi-
mum, and experimental data for S�Q� have been taken from
Ref. 13. Finally, jx� � are spherical Bessel functions. A com-
parison between the experimental values for the linewidths
about Qp and those calculated using Eq. �3� using the value
for Ds derived here1 reveals that the linewidths can be ac-
counted for in terms of Eq. �3� which, in other words, means
that no contributions different from those of structural nature
�i.e., thermal diffusivity� need to be called upon to explain
such a spectral component.

III. COMPUTER SIMULATIONS

The simulations were performed for an ensemble of 4000
atoms close to melting �Tm=1728.15 K� at T=1800 K. We
have employed the EAM potential used by Ogando Arregui
et al.1 that did adequately reproduce the structure and ther-
modynamics of both the hot solid and the liquid. An initial
fcc crystal configuration was melted at high temperature and
equilibrated under NPT conditions, yielding a final number
density matching the experimental estimate of �=0.078 Å−3.
Production runs of 82 ps were carried out in order to com-
pute the properties of interest.

The Sc�Q ,�� dynamic structure factors to be compared
with those derived from coherent neutron scattering of the
liquid were calculated as an average over 80 different con-
figurations for an interval 0.128 Å−1
Q
3.128 Å−1.

Four different runs were needed to obtain accurate esti-
mates of the Sinc�Q ,�� self-dynamic structure factors. These
were calculated over a wide range in Q stretching from Q
=0.128 Å−1 to Q=9.707 Å−1. For those runs with wave vec-
tors Q�0.35 Å−1, the simulation time was extended up to
829.6 ps to allow for a complete decay of the intermediate
scattering function.
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FIG. 1. �Color online� The
left-hand side shows spectra as
measured using the lowest inci-
dent energy. The right-hand side
depicts the dependence with mo-
mentum transfers of the line-
widths and peak intensities. Open
symbols depict computer simula-
tion data which are considered be-
low. Lines are best fits to either
experimental or computer simula-
tion data.
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The calculated S�Q� was found to be in good agreement
with experimental neutron and x-ray diffraction results13,14 as
far as the perfect match of the position and width of the main
diffraction peak. However, and in common with most pub-
lished simulation results, the simulation overemphasizes the
height of S�Q�. On the other hand, the estimate for the self-
diffusion coefficient, as calculated from the long-time limit
of the mean-squared displacement �msd� 	u2
, yields a value
of 0.26�3� meV Å2, to be compared with our estimate of
0.28 meV Å2, as well as with that of 0.30 meV Å2 derived
from a diffusion equation15 based on a hard-sphere theory.
What particularly merits some comment concerns the long
time required for the msd to achieve the linear regime
��40 ps�. In fact, our results show a region of strong ballis-
tic motion attributable to vibratory motions that extends up
to about 10 ps, followed by an intermediate-time region re-
flecting a strong coupling between single-particle and vibra-
tory �collective� motions.

IV. RESULTS AND DISCUSSION

The main aim of the experiments described here was to
validate simulation results which provide us with access to
regions of momentum and/or energy transfer not easily ac-
cessible by experiment. Data already shown for the Q depen-
dence of the incoherent and coherent quasielastic linewidths
displayed in Figs. 1 and 2 prove that the simulation is able to
reproduce the measurements up to a significant level of ac-
curacy and, on such grounds, we extend the kinematic range
explored by experiments solely by the use of simulation data.

A. Single-particle dynamics

A set of calculated Sinc�Q ,�� dynamic structure factors is
displayed in Fig. 3 on a semilogarithmic scale. A first point
to remark here concerns the presence of a noticeable broad
inelastic wing that shows a width nearly independent of
wave vector.
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FIG. 2. �Color online� The left-hand side shows spectra as measured using the higher incident energy. Dotted lines depict the coherent-
scattering contribution, while dashed lines account for the incoherent-scattering contribution described above. The right-hand side depicts the
dependence with momentum transfers of the linewidths and peak intensities. Solid symbols show experimental results while open symbols
depict data derived from computer simulations that are discussed below. The two curves comparing experimental and calculated values for
	�c�Q� depict the functions calculated using our experimental estimate for the self-diffusion coefficient �solid�, as well as that calculated
using the value given by the revised Enskog theory �see below�.
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Such a feature seems to be related to the markedly sharp
peak that appears in the Fourier transform of the particle
velocity time-autocorrelation function, which is shown in
Fig. 4 as the normalized frequency spectrum Z���.

The peak which comes out at some 17.4 meV in Z��� is
far better defined here than those seen for other alkali metals
such as potassium10 and, again in contrast with the alkali
metals, it has a significantly lower value than our estimate
for the Einstein frequency which yields 30.27 meV. Its fre-
quency extent curiously enough matches that for the first
peak within the vibrational density of states of room tem-
perature Ni.16

From the calculated set of spectra, the peak maxima and
linewidth of the central quasielastic component were mea-
sured. The first comparison between the experimental and
calculated data for the linewidths and amplitudes has already
been shown in Fig. 1, which shows that experimental and
simulation data are remarkably close. There are, however,

relevant details involving larger momentum transfers which
are difficult to access by experimental means but are easily
explorable by simulations. Figure 5 displays the wave-vector
dependence of the reduced half-width ��Q�=	�1/2 /DQ2 and
the peak height Sinc�Q ,�=0�Q2.

The reduced linewidth ��Q� shows that a small but sig-
nificant deviation from the Fickian regime can be accounted
for in terms of the function �c�Q�=1−b�� ,T�Q2, as given by
the mode-coupling prediction,17 at the lower Q values. The
value for the density- and temperature-dependent coefficient
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FIG. 3. A sample of self-dynamic structure factors calculated for
wave vectors given as insets. The uppermost inset depicts the quan-
tities �2Sinc�Q ,�� /Q2 showing the presence of the broad inelastic
background.
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gives 0.05 Å2, which compares with that of 0.074 Å2 re-
ported for sodium near melting.17 Such deviation is inter-
preted as a retardation effect of mass diffusion due to a
strong coupling with longitudinal collective modes. Put into
different words, under the present conditions, mass diffusion
takes place only after a relatively large lapse of time where
liquid cages become unable to maintain collective oscillatory
motions.

A marked crossover from a sub-Fickian regime to another
with linewidths exceeding the DQ2 limit sets in for both the
reduced linewidth and amplitude shown in Fig. 5 at wave
vectors past that signing the maximum in S�Q�. In fact, both
quantities show a change in trend, as measured by the shape
parameter B�Q�=2	�1/2Ss�Q ,�=0�, which monitors a de-
parture from the Lorentzian line shape toward a more Gauss-
ian form that becomes dominant at large Q. Notice, however,

that because of the close-packed arrangement within the liq-
uid, free particle motions �i.e., free gas behavior� are con-
fined to wave vectors well above those explored in this study.

B. Collective dynamics

A set of Sc�Q ,�� spectra is displayed in Fig. 6 for repre-
sentative wave vectors. From Fig. 6, it is readily seen that
remarkably well defined excitations persist up to wave vec-
tors above 2 Å−1. A first-hand evaluation of the physical fre-
quencies involved in such motions is provided by graphs of
maxima of J�Q ,��=�2Sc�Q ,�� /Q2 versus wave vector
shown in Fig. 8. Because of well resolved peaks which ap-
pear in most of the explored range of wave vectors, the
maxima of J�Q ,�� can be in principle taken as the relevant
excitation frequencies. These reach values of 34.5 meV at
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the maxima of the excitation curve that may be favorably
compared to those reported from experiment.9

In what follows we describe the route followed to analyze
such line shapes. We will employ procedures already tested
for molten metals.6 In particular, our starting point will be
that followed by Cabrillo et al.10 for the analysis of the spec-
trum of molten potassium which is based on the generalized
Langevin equation formalism. There, the analysis is couched
in terms of a model where all the relevant details are encom-

passed within the M̃�Q ,�� memory function so that the spec-
trum is written as

Sc�Q,�� = S�Q�R�i� + M̃�Q,���−1. �4�

The simplest form for M̃�Q ,�� assumes that viscous
damping having a single-relaxation time � is the dominant
process in the decay of density oscillations since further de-
cay channels are only relevant for far shorter times. Such an
approach is referred to in the literature as the “viscoelastic”
ansatz which represents a microscopic correlate of the relax-
ation time �visc=� /G, where � stands for the shear viscosity
and G is the spring constant of the Maxwell element.18 Such
a single-relaxation time approach was unable to account for
the spectrum of molten K and the same applies here. An
improvement able to account for the experimental line shape
was implemented by Cabrillo et al.10 that extends a further
level in the continued fraction expansion of the memory
function, so that

M̃�Q,s� = �0
2�s +

�l
2 − �0

2

s +
�s

4 − �l
4

��l
2 − �0

2��s + 1/��
�

−1

, �5�

where �0
2 and �l

2 are the second spectral frequency moment,
normalized to S�Q�, and the fourth frequency moment, which
is defined below, and �s

4 is the sixth frequency moment,
which was treated there as a free parameter. Both �l

2 and �s
2

are given in terms of �0
2.

Equation �5� did represent an improvement over the sim-

plest form for M̃�Q ,�� but still was unable to reproduce
spectra for molten Ni at low and intermediate Q values es-
pecially within the quasielastic region. As an example, Fig. 7
compares the best fits obtained using data given by Eq. �5� as
a memory function to data reported here. As can be seen
from a glance at Fig. 7, Eq. �5� provides a semiquantitative
representation of experimental spectra which cannot account
for their line shapes in full.

The reason why Eq. �5� fails to provide a better fit to
simulated data is not entirely clear. In terms of macroscopic
quantities, the main difference between a molten alkali metal
such as K and liquid Ni concerns the more packed structure
of the latter, together with enhanced thermal effects. As a
matter of fact, one may expect a larger influence of the ef-
fects of thermal conduction in liquid Ni than those operative
in K since thermal conductivity ��T� for transition metals is
usually three to five times higher than that for molten alkali
metals. Such an effect is, however, counterbalanced by the
far larger mass densities and larger specific heat Cp which
makes the heat diffusion coefficient Dth=��T� /Cp�T���T� be-

come comparable or even smaller than those of molten alkali
metals. One also has to take into account that the ratio of
specific heats � is here significantly larger than that for mol-
ten K and this would lead us to expect on purely hydrody-
namics grounds an additional central component to the
spectrum.20 At any rate, recent theoretical approaches31

couched for the analysis of the dynamics of metallic �Pb� or
semimetallic �Bi� liquids make recourse to an extended set of
components of the dynamical variable entering the general-
ized Langevin equation, leading to the appearance of six

FIG. 7. �Color online� A comparison between calculated spectra
for selected values of the momentum transfer �vertical bars� and the
best approximation obtained using Eq. �5� as a representation for
the memory function �dashes�.
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generalized hydrodynamics modes. Similar findings are also
reported in a recent reanalysis of experimental data on mol-
ten Al �Ref. 21�, which required the use of four-frequency
parameters which are needed to account for two-, three-, and
four-particle interactions.

Here, we make use of a minimal model able to fit spectra
such as those shown in Fig. 6 which makes use of a memory
function,

M̃�Q,s� = �0
2�s +

��l
2 − �0

2���
s� + 1

+
�0

2�� − 1�

s +
a�2Q2

s�2 + 1
�

−1

, �6�

where �, �, and �2 are all wave-vector-dependent parameters,
�0

2 is calculated from static quantities as �0
2= Q2

�MS�Q� , a�2

=�Dth with Dth being the �wave-vector-dependent� thermal
diffusivity, and �l

2 is given by

�l
2 =

3Q2

�M
+ �E

2�1 −
3 sin�QR0�

QR0
−

6 cos�QR0�
�QR0�2

+
6 sin�QR0�

�QR0�3 � , �7�

where �E plays the role of an Einstein frequency with an
optimum �i.e., fitted� value of 30.27 meV and R0 stands for a
distance which is approximately that corresponding to the
main minimum in the interaction potential, and its optimum
value was found to be 2.17 Å. The derivation of the above

equation starts from Eq. �5.196� of Ref. 20 for M̃�Q ,s�
which rests within the standard three variable approach. It
constitutes the natural and consistent generalization of hy-
drodynamics treating the three hydrodynamic variables in an
equal footing. Fits to Eq. �6� were carried out using a set of
five wave-vector-dependent parameters, namely, Dth ,� ,� ,�2,
and a.

Equation �6� gives rise to five poles in the complex plane,
two of which comprise the Brillouin modes. The three addi-
tional poles correspond to one of the components of the
quasielastic peak arising from correlated motions of a diffus-
ing particle, as described above, a very broad contribution
due to thermal diffusion that acts as a background signal, and
finally, to a broad contribution centered at zero frequency.
The fact that thermal effects, per se, contribute as a back-
ground means that the broadening of the Brillouin peaks
mostly arises from viscous damping effects.

The model resulting from the use of Eq. �6� is able to
represent all the calculated spectra and provides information
about the several, wave-vector-dependent quantities. Most of
them do have a clear correlate within the hydrodynamic
realm. Indeed, the following hydrodynamic limits for the re-
duced second frequency moment and the thermal contribu-
tion are easily verified:

lim
Q→0

�0
2 = Q2cT

2 = Q2�−1cs
2, �8�

lim
Q→0

a�Q��2�Q� = �Dth, �9�

where cs is the adiabatic sound velocity, � represents the
ratio between heat capacities, and Dth is the thermal diffusiv-
ity.

As seen from Fig. 8, the hydrodynamic isothermal sound
velocity cTQ joins 	�0
1/2�Q� at about 0.5 Å−1, while
maxima of J�Q ,�� approach the hydrodynamic law calcu-
lated for the adiabatic value at the lowest explored wave
vector.

Data concerning parameters related to the thermal contri-
butions are displayed in Fig. 9. The estimated values for the
thermal diffusivity show an exponential decay with wave
vector extrapolating to values within limits set by different
experimental observations. Notice, however, that because of
difficulties in measuring adiabatically the thermal conductiv-
ity at high temperatures, the experimental estimates span a
rather large range of values,22 and therefore, the closeness of
our result for Q→0 and the hydrodynamic values cannot be
taken as a proof of the accuracy for the calculated quantity.

As regards the ��Q� which becomes a generalized, wave-
vector-dependent ratio of the specific heats, it shows a rapid
decay with wave vector starting from a macroscopic value of
1.88 and then shows a peak at Q values where S�Q� shows
its maximum.

V. CONCLUSIONS AND OUTLOOK

One of the most significant results derived within the
present work concerns the experimental data per se. Data
shown in Fig. 1 display a behavior with momentum transfer
for the incoherent linewidth, as well as its peak height which
do not strongly depart from 
Q2 and 
Q−2 laws which are
expected to be followed for an ensemble of hard spheres.23

Such a deceptively simple behavior contrasts, however, with
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FIG. 8. Maxima of J�Q ,�� �filled symbols� together with esti-
mates for the second 	�0
1/2 �solid line� and fourth 	�l
1/2 �dashed�
reduced frequency moments. The straight lines give the hydrody-
namic dispersion using the tabulated values of the adiabatic sound
velocity �Ref. 19� �dash dots�, as well as the isothermal value, as
calculated using the tabulated value for the ratio of specific heats
�Ref. 19�.
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the transport properties expected for a hard-sphere fluid of
equivalent density. In fact, an estimate for the hard-sphere
diffusion coefficient is given by the Enskog expression,

DE =
1

16

�kBT

M

3 6

���2

�1 − ��3

1 − �/2
, �10�

with the packing fraction defined as �=� /3��3. The figure
calculated from the above written equation using for the pur-
pose the experimental values for the number density �
=0.08 Å−3, the atomic mass, and a value for the particle
diameter set to that given by the experimental value of the
radial distribution at contact,13,24 �=1.88 Å, yields DE
=0.75 Å2 meV. If � is set by the condition Qp�=2� so that
the position of the maxima of the structure factors of molten
Ni and that for an equivalent hard-sphere fluid match, we
still get 0.41 Å2 meV, which is to be compared to our current
experimental value of Ds=0.28 Å2 meV. The ratio D /DE
=0.68 thus provides a first-hand measure on how single-
particle dynamics compare to that of a hard-sphere liquid. To
quantitatively estimate the departure from idealized hard-
sphere behavior, we have evaluated the strength of mode-
coupling effects which predict that at moderately low values

of momentum transfer, the linewidth and peak height of
Ss�Q ,�� should vary as25

	��Q� = D�Q2 − bQ3 + O�Q3/2�� , �11�

Sinc�Q,� = 0� =
1

�DQ2 �1 + aQ−1 + O�Q3/2�� . �12�

The two parameters governing the departure from Fickian
behavior, namely, b and a, can be explicitly calculated from
macroscopic properties, as well as from the value of the self-
diffusion coefficient. Their values b=0.023 Å and a
=0.056 Å are about one-half of those reported for liquid al-
kali metals where mode-coupling effects are known to be
strong. Stronger deviations are also expected for larger val-
ues of the momentum transfer, as seen above, as well as
demonstrated by previous studies on molten alkali metals.26

The comparison of experimental data concerning the co-
herent linewidth of the quasielastic spectrum to that pre-
dicted by Eq. �3� shows that such spectral width for wave
vectors close to Qp is mostly attributable to phenomena in-
volving the decay of density fluctuations via self-diffusion
processes, as originally proposed in Ref. 11. Taking it at its
face value, this could be taken as an indication of the absence
of any significant contribution from thermal diffusion effects
arising from either electronic or ionic conduction, a topic
which received some attention recently.27 Notice, however,
that as shown in Ref. 28, the shape of the curve giving the Q
dependence of this coherent linewidth for wave vectors is
better reproduced if thermal effects are also accounted for.

In terms of characteristic relaxation times which could be
attributed to structural relaxation effects, the quasielastic co-
herent linewidths for wave vectors in the vicinity of Qp cor-
respond to processes taking place within the range of some
0.8–2 ps.

The need to extend the memory function to account for
the line shape of Sc�Q ,�� in full arises from the presence in
such quantity of a broad quasielastic component, in addition
to that experimentally explored in the present study. Its
physical soundness is ascertained here by the presence of a
component sharing the same characteristics within the
single-particle spectra comprised within Sinc�Q ,��. Within
the framework of Eq. �6�, it corresponds to a purely imagi-
nary pole which is clearly distinct from that attributable to
thermal diffusion effects since its reaches frequencies up to
some 15 meV at Q�Qp /2 that are more than 1 order of
magnitude smaller than those spanned by the component at-
tributable to a wave-vector-dependent thermal diffusion co-
efficient shown in Fig. 9. The precise physical origin of such
a feature cannot be ascertained at present.

To provide an explicit comparison between the present
simulation results concerning Sc�Q ,�� and experimental
neutron inelastic scattering data reported in Ref. 9, Fig. 10
depicts a comparison between the estimated excitation fre-
quencies as inferred from the data using for the purpose a
conventional damped harmonic oscillator �DHO� model de-
fined by a renormalized frequency �osc�Q�, a linewidth
�osc�Q�, and a central quasielastic line defined in terms of its
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FIG. 9. The upper frame depicts the fitted values found for the
wave-vector-dependent ratio of specific heats. The thick symbol on
the ordinate axis represents the experimental estimate. The lower
frame shows estimates for the generalized, wave-vector-dependent
thermal diffusion coefficient. Quantities plotted as solid symbols
represent experimental macroscopic estimates. Solid lines are in
both cases a guide to the eyes.
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linewidth �q.el�Q�. In turn, the simulation data were analyzed
using the same approach which employs a single quasielastic
component.

The comparison depicted in Fig. 10 shows a reasonable
agreement between the excitation frequencies obtained from
simulation and experimental means. Accounting for the lim-
ited accuracy of the neutron scattering data, the experimental
points at low momentum transfers seem to lie closer to the
hydrodynamic dispersion law rather than that to the adia-
batic. Such a result would be expected on the grounds of the
large thermal conductivity of molten Ni, together with the
high frequencies of the neutron probe,29 which make sound
propagation isothermal rather than adiabatic. On the other
hand, the discrepancy between experimental and simulation
data can also be attributed in part to some effects already
commented on by some authors8 which show that most EAM

approaches usually lead to some overestimation of the elastic
properties.

The width of the quasielastic component �q.el�Q� becomes
significantly larger than that explored by experiment using
higher resolution in energy transfers, and therefore cannot be
attributed to mass-diffusion processes. It basically gives the
same values for the linewidth as one of the purely imaginary
poles in Eq. �6�.

The detailed analysis of Sc�Q ,�� shows that the structure
factor significantly departs from the linearized hydrodynamic
approximations usually employed to analyze experimental
data, such as DHO models. Our present findings show a clear
need to go beyond the two-relaxation time approach which
seems to account for the dynamics of molten alkali metals
reasonably well.6 The results come into line with predictions
made from some theoretical approaches31 which show that
the number of components needed to describe in detail the
shape of the dynamic structure factor for a molten metal
significantly exceeds that of three peaks given by the linear-
ized hydrodynamic prescription. In fact, the predictions
made on the grounds of the theoretical framework just re-
ferred to portray the presence of two purely relaxing �i.e.,
quasielastic� kinetic modes in addition to propagating exci-
tations. Put into different words, the present results empha-
size the need to account for couplings between structural and
thermal degrees of freedom which are deemed to be espe-
cially relevant for a molten metal such as Ni.

In summary, the concurrent use of experimental and com-
puter simulation methods to explore the atomic dynamics in
this molten transition metal shows that it can only be quali-
tatively related to that shown by a hard-sphere liquid. Previ-
ous attempts to relate the transport coefficients of liquid tran-
sition metals to appropriate hard-sphere systems30 have to
rely on some uncontrolled assumptions to choose the rel-
evant parameters such as the hard-sphere diameter and the
packing fraction.

Finally, it goes without saying that further progress in the
field is now expected mostly due to the advent of levitation
techniques32,33 which have been recently employed with suc-
cess to study the collective dynamics of molten Ti.34
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