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Low-frequency phonons in carbon nanotubes are studied using a continuum model which allows consider-
ation of an arbitrary wall thickness for the nanotube. Phonon dispersion relations are calculated for two
archetypal examples of carbon nanotubes, the �5,5� and �10,10� tubes. The dependence of the radial breathing
mode frequency at � on the inverse nanotube diameter is verified within this model; furthermore, we prove it
to hold for all pure modes within the thin-shell approximation. The effect of the nanotube wall thickness on the
eigenfrequencies of carbon nanotubes is also analyzed, and a criterion to fix this parameter within a continuum
model is presented. We compare our results to other continuum approaches, and show that by choosing the
appropriate parameters, excellent agreement with recent first-principles calculations can be achieved.
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I. INTRODUCTION

Vibrational properties of carbon nanotubes are the focus
of increasing attention for various reasons. Besides the basic
interest in the phonons of such intriguing quasi-one-
dimensional systems,1 detailed knowledge of the phonon
spectrum of carbon nanotubes is a key ingredient for
temperature-dependent transport, superconductivity, and op-
tical characterization. Indeed, transport measurements at
high electric fields indicated current saturation with increas-
ing electric field, which can be understood in terms of
electron-phonon interaction.2,3 Superconductivity in carbon
nanotubes, reported in single-wall samples embedded in a
zeolite matrix4 and in carbon nanotube ropes,5 has been ex-
plained within a conventional BCS theory of electron-
phonon coupling. But the main practical aspect for which
vibrational modes of carbon nanotubes should be taken into
account is their optical characterization: Raman spectra give
vibrational information limited to the center of the Brillouin
zone which can be used to discriminate among nanotubes of
different diameters through the radial breathing modes
�RBMs�.6,7 Recently, a different way to assign chiral indices
to carbon nanotubes has been developed by studying the
resonant Raman intensity and frequency of radial breathing
modes.8

Even though phonon dispersion relations for carbon nano-
tubes have been obtained using realistic models,9–12 the use
of simpler approaches has proved to be rather fruitful: for
example, Jishi et al.13 derived a widely used relation between
the RBM frequency and the inverse tube diameter using a
zone-folding method, and Popov et al. obtained the phonon
spectrum of a �10,10� nanotube using a force-constant
model.14 Mahan and Jeon have also studied the vibrational
modes of zigzag and armchair carbon nanotubes with a
spring-and-mass model,15 analyzing the appropriate symme-
try rules which give the correct flexure modes at low fre-
quencies.

Continuum models have also been employed to investi-
gate the vibrational properties of low-dimensional systems

such as carbon nanotubes and fullerenes.16 Such models are a
basic element in the formulation of electron-phonon interac-
tion theories and allow for a better understanding of the
physical properties of these systems. The longitudinal optical
�LO� modes of infinite carbon nanotubes have been studied
within the continuum approximation,17 allowing for the deri-
vation of the optical deformation potential. However, it is
well known that pure transverse or longitudinal modes are
obtained in bulk homogeneous media; notwithstanding, in an
interface problem or when boundary conditions in a finite
region are imposed, modes have a mixed character. A con-
tinuum formulation which considered both longitudinal and
transverse optical �TO� vibrations in a carbon nanotube was
recently presented,18 demostrating that in general there is a
considerable LO-TO mode mixing.

Low-frequency modes of infinite carbon nanotubes have
also been studied within the continuum approximation:
Suzuura and Ando19 derived a model for a cylindrical mem-
brane, explicitly studying the effect of curvature, and formu-
lated an electron–acoustic-phonon interaction Hamiltonian.
Mahan20 obtained the classical vibrational modes of a thin
hollow cylinder, thus considering the finite wall thickness of
the nanotube. He solved the problem in the thin-wall limit;
this allows one to obtain an analytical solution of the prob-
lem, but leaves aside the case of nanotubes with small diam-
eter, for which the wall thickness cannot be considered small
with respect to the nanotube radius. Very recently,
Goupalov21 applied group theory techniques to derive the
equations of motion for the vibrations of two-dimensional
graphite and carbon nanotubes in the thin-wall approxima-
tion. And in addition to carbon nanotubes, vibrational prop-
erties of infinite cylindrical hollow structures have also been
studied employing continuum models; for example, me-
chanical properties and interface modes of microtubules of
biological interest have been explored within a continuum
approach.22,23

Even though there is a considerable number of works that
employ continuum models to describe the low-frequency
modes of carbon nanotubes, to our knowledge all of them
assume a small shell thickness. This approximation may not
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hold for small radii, and a discussion on the role of this
parameter in continuum models is needed. In this work we
obtain the low-frequency phonon dispersion relations of a
hollow cylinder, particularizing for carbon nanotubes, with-
out assuming beforehand any special value for the nanotube
wall thickness. Results for the �5,5� and �10,10� tubes are
presented and compared to results of other theoretical calcu-
lations. In order to improve quantitative agreement, we ex-
plored the dependence of the phonon spectrum on the nano-
tube thickness. We have found that it is an important
parameter for some specific modes, which can be used as a
guide to fix the shell width.

II. MODEL

The main assumption of a continuum model is that the
properties of a low-dimensional structure can be described
by bulk parameters. By applying appropriate boundary con-
ditions to the bulk system, the modes of the low-dimensional
system are obtained. Although the detailed atomic structure
and geometry are lost, many basic features are correctly
given. In fact, long-wavelength properties of bulk and low-
dimensional systems are well described by a continuum ap-
proximation.

We assume that the bulk medium �graphene� is isotropic
and homogeneous, and the basic parameters are the trans-
verse and longitudinal velocities vT and vL. With these pa-
rameters in mind, the equation of motion for the acoustic
mechanical displacement u� is given by24

�2u� = − vL
2�� �� · u� + vT

2�� � �� � u� . �1�

This equation can be easily derived from the optical con-
tinuum model presented in Ref. 18 by a simple change of
parameters; see Appendix A.

In a system with cylindrical symmetry modes can be la-
beled by a wave vector along the tube axis kz, and an integer
n which gives the angular dependence of the modes and is
related to the order n of the Bessel functions appearing in the
solutions. For the purpose of giving a compact expression for
the eigenbasis it is useful to introduce the wave vectors

qT
2 =

�2

vT
2 − kz

2, �2�

qL
2 =

�2

vL
2 − kz

2. �3�

A set of basis vectors for this problem can be found follow-
ing the general method of potentials as shown in Refs.
25–27. For the sake of completeness, we give them explicitly
here:

u�L =�
fn��qL��

in

qL�
fn�qL��

ikz

qL
fn�qL�� �ei�n�+kzz�, �4�

u�T1 =�
ikz

qT
fn��qT��

−
nkz

qT

1

qT�
fn�qT��

fn�qT��
�ei�n�+kzz�, �5�

u�T2 =�
in

qT�
fn�qT��

− fn��qT��
0

�ei�n�+kzz�, �6�

where the vector components are understood in cylindri-
cal coordinates �u� ,u� ,uz�; the prime denotes the derivative
with respect to the argument and fn is an order-n Bessel
function of the first or second kind �Jn or Yn, respectively�,
so for fixed n and kz we have a six-function basis. L and
T stand for longitudinal and transverse, respectively;28 in-

deed, it is straightforward to check that �� �u�L=0 and

�� ·u�T1=�� ·u�T2=0.
A general solution for the cylindrical hollow cylinder is a

linear combination of the basis vectors which verifies the
physical boundary condition of free surfaces, that is, the me-
chanical displacement at the inner and outer surfaces can be
nonzero, but the momentum transmitted outside the cylinder
should be zero. This condition can be cast in terms of the
stress tensor: radial stress components at the inner and outer
cylindrical surfaces must vanish. Detailed expressions of the
stress tensor for an isotropic medium and the corresponding
boundary conditions are given in Appendix B, from which
the secular equation is obtained.

In any continuum model there is an infinite number of
solutions which correspond to all possible indices n. When
modeling a discrete system, the number of modes should be
limited, keeping only a finite number. This cutoff is intro-
duced by physical arguments: for acoustic phonons, direct
comparison to discrete calculations in the frequency window
of interest can set a natural cutoff for n.

There is an additional mode that verifies the equation of
motion and the boundary conditions, but cannot be obtained
by the above-mentioned method. It is a transverse mode with
order n=0, for which the vibration is a pure twist around the
tube circumference and it propagates with the bulk transverse
velocity vT:

u�TB � �0

�

0
�eikzz. �7�

This mode was already described by Love,29 and has also
been mentioned in more recent works on continuum models
for carbon nanotube phonons.19–21 It has a linear dispersion
relation �=kvT independent of the tube thickness and radius.
Notice that this solution identically satisfies Neumann
boundary conditions.
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III. DESCRIPTION OF THE NANOTUBE
ACOUSTIC MODES

As the method of solution is formally equivalent to the
one employed for optical phonons,18 the behavior of longi-
tudinal and transverse solutions is obviously the same. We
recall that it can be inferred from the structure of the basis
vectors �4�–�6�. We briefly summarize it here.

Axisymmetric �i.e., n=0� L, T1, and T2 modes are decou-
pled at kz=0: from Eqs. �4�–�6� it is easy to see that the
vectors u�L ,u�T1 ,u�T2 with kz=0 and n=0 have a single com-
ponent in the e�� ,e�z ,e�� directions, respectively. Thus, in this
case the solutions are either pure radial breathing �L�, pure
torsional �T2�, or pure axial �T1� modes. By “axial” mode
we mean displacements along the cylinder axis, i.e., the z
direction. For kz�0, it can be seen from the basis vectors
that L-T1 mixing arises in axisymmetric modes. However,
T2 modes with n=0 retain their pure torsional character. This
also applies for the bulk twisting mode u�TB above described
and given in Eq. �7�, which stays pure for kz�0.

As to flexural solutions �n�0�, L-T2 coupling is expected
even at �. However, for kz=0, transverse T1 modes are
uncoupled from the rest and correspond to pure axial solu-
tions. Finally, away from the center of the Brillouin zone,
L-T1-T2 mixing is expected for flexural modes. To describe
the precise dispersion relations in the general case, it is nec-
essary to solve the problem numerically.

IV. LOW-FREQUENCY PHONONS IN CARBON
NANOTUBES: NUMERICAL RESULTS

To proceed with the numerical calculations we should
choose the corresponding bulk parameters in the first place.
The bulk material to which we are applying the hollow cyl-
inder boundary conditions is graphene. The in-plane phonon
dispersion relations for graphite are a good approximation
for the graphene modes. From the experimental phonon dis-
persion relations30 we can extract the transverse and longitu-
dinal sound velocities, vT�14 km/s and vL�24 km/s. The
fit was carried out in the region where the graphite LA and
TA bands can be considered as linear, which is roughly for
k	1 Å−1. This in turn sets the frequency cutoff around
400 cm−1 and, as we discussed in Sec. II, we should not
consider frequencies far above this value.

As to the structural parameters, we model a nanotube as a
hollow cylinder of inner radius a=R−h and outer radius
b=R+h. Having in mind the armchair �N ,N� nanotubes,
we will take R to be the calculated nanotube radius
R=3NaC-C / �2
�, where the carbon bond length is aC-C

=1.42 Å. The cylinder thickness 2h is an important param-
eter of the model; in our previous work in optical phonons18

we took it to be equal to the graphite layer-to-layer distance
3.4 Å. Here we will initially take this value and then proceed
to study the effect of nanotube wall thickness on the acoustic
phonon spectrum.

We first discuss the results for a �5,5� nanotube with
R=3.39 Å; in Fig. 1 the dispersion relations for this case are
displayed. In the frequency window of interest we only find
modes with n=0,1 ,2; there is no need to artificially select

the lowest-n solutions. Let us examine the bands with zero
frequency at �: two of them have a linear dispersion, one is
the twisting bulk mode with slope given by vT and the other
one is a longitudinal acoustic band with slope close to vL
when �→0; both are axisymmetric modes �n=0�. Both are
also given by Goupalov21 and Suzuura and Ando;19 however,
Mahan only predicts the twisting transverse mode.20

Particularly interesting is the acoustic mode with n=1. It
appears to have a quadratic dispersion relation at small wave
vectors. Such behavior was already discussed by Popov.14

Indeed, Mahan20 has demonstrated its k2 dependence up to
second order in the tube thickness 2h. Furthermore, Suzuura
and Ando showed that without curvature effects, there are
quadratic dispersion solutions for all nonzero n, but when
curvature is taken into account they are shifted up at � for all
n for except n=1,19 as we find here. Goupalov,21 however,
has to introduce a corrective term in the equations of motion
in order to get the right behavior for this mode, i.e., �→0
when kz→0. The inset in Fig. 1 shows a quadratic fitting at
low k of our result. The excellence of the fit strongly sup-
ports a quadratic character independent of the thickness 2h,
since in this case the thin-wall approximation is no longer
valid �2h /R�1 for the case shown in Fig. 1�. A quadratic
dependence in the dispersion relation is not unique to nano-
tubes: it is also observed in graphite31 in an out-of-plane
acoustic mode of the single layer. In fact, this kind of depen-
dence has also been described in classical elasticity theory;24

it arises in systems with at least one small dimension with
respect to the wavelength. An interesting property of a one-
dimensional system with a quadratic acoustic dispersion is

FIG. 1. �Color online� Acoustic phonon dispersion relations for
a �5,5� tube with R=3.39 Å, 2h=3.4 Å. Axisymmetric bands are
plotted with full �black� lines; bands with n=1 and 2 are plotted
with dotted �red� and dashed �green� lines, respectively. The bands
with nonzero frequency at � are labeled according to their L, T1, or
T2 character. Inset: Detail of the parabolic mode near �. The dots
are the results of our calculation; the quadratic fit at low k is de-
picted with a solid line.
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that it yields a divergence in the density of phonon modes at
�=0. This has dramatic thermodynamic consequences at low
temperatures.32

Among the rest of the bands that have a nonzero fre-
quency at �, the most relevant one is the radial breathing
mode, with n=0, which for this narrow tube appears at rather
high frequencies. The repulsion with the formerly described
n=0 band with linear dispersion at the origin is quite evi-
dent, marking the deviation from linear behavior. Such repul-
sion does not exist between this band and the torsional bulk
mode, even though they have the same order, i.e., angular
momentum. We find the same behavior in the dispersion re-
lations obtained by other authors.19,21 This result, at first
sight surprising, can be understood by recalling that the
twisting bulk mode �7� does not belong to the subspace of
solutions spanned by the vectors �4�–�6�. The only band with
n=2 appearing in this frequency window has a frequency at
� around 205 cm−1. This is one of the parabolic bands de-
scribed by Suzuura and Ando19 which are shifted to nonzero
frequencies when curvature effects are considered. Thus we
confirm the importance of curvature, especially for small-
radius nanotubes.

Let us proceed with the results for the �10,10� tube. This
case is far more interesting because the majority of theoret-
ical calculations choose this tube as an example, motivated
by the great amount of experimental data attributed to this
particular nanotube. Given that the diameter is doubled, we
will consider higher-order solutions in the dispersion rela-
tions. In Fig. 2 the phonon band structure for a �10,10� tube
is presented; the radius is R=6.78 Å and the wall thickness is
2h=3.4 Å. Doubling the radius has the expected effect of
lowering the frequencies at � of all the branches. This can be
easily understood as the consequence of the smaller confine-
ment in larger tubes. The overall picture agrees with other

theoretical results; let us see whether quantitative agreement
can also be achieved. We see that the radial breathing mode
frequency has a frequency of 182 cm−1, which is nicely close
to the experimental result6 of 186 cm−1, and within the range
of other theoretical calculations.7,10,12

The analysis of other bands indicates that some tuning is
necessary. The lowest nonzero frequency at � is too high in
our results. Let us note, however, that the dispersion in the
theoretical values for this mode is non-negligible: the low-
frequency dispersion relations given by ab initio calculations
can be affected by the interaction cutoff in the force-constant
approach. The recent work by Ye and co-workers12 gives a
rather high value, around 40 cm−1; but notice this E2g mode
was reported to be around 20 cm−1 by other authors.14,19,33

This latter value of the lowest nonzero frequency is further
substantiated by molecular dynamics calculations34 of the
density of modes, which yield a value of 17 cm−1.

To achieve quantitative agreement, especially for low-
frequency modes at �, we have studied the dependence on
the tube wall thickness. In Fig. 3 we show the variation of
the mode frequencies at the center of the Brillouin zone with
respect to 2h for a �10,10� tube �R=6.78 Å�. We find that
several modes do not depend on the wall thickness; in par-
ticular this happens to the RBM. This can be understood by
recalling the geometry of this vibration. Other modes do
change noticeably with 2h, and even the ordering of the
modes can be affected by this parameter. If we want to fit the
E2g frequency at � around 17 cm−1, we have 2h=0.9 Å. This
thickness is closer to the � orbital size of carbon than to the
van der Waals distance previously used.

Let us reexamine the phonon dispersion relations for the
�10,10� nanotube, but with the fitted wall thickness. In Fig. 4
we present our calculated results for the �10,10� tube with
2h=0.9 Å, along with the ab initio calculations that we have
digitalized from Ref. 12. We see that the agreement at kz
�0 is excellent, especially considering there was no fine
tuning of the fitting parameter. A fine tuning—not only of 2h,
but also of vL and vT—would probably lead to an improved

FIG. 2. �Color online� Acoustic phonon dispersion relations
for a �10,10� tube with R=6.78 Å, 2h=3.4 Å. Bands with
n=0,1 ,2 ,3 ,4 ,5 are plotted with solid �black�, dotted �red�, dashed
�green�, dot-dashed �blue�, double-dot-dashed �magenta�, and
double-dash-dotted �maroon� lines, respectively.

FIG. 3. �Color online� Variation of the phonon frequencies at �
with the nanotube wall thickness for a �10,10� tube. As a guide to
the eye, two thin full lines indicate the values corresponding to Fig.
2, i.e., 2h=3.4 Å, as well as the fit �2h=0.9 Å�. The symbols �col-
ors� indicate the order of the mode: n=0, circles �black�; n=1,
squares �red�; n=2, diamonds �green�; n=3, triangles �blue�; n=4,
crosses �magenta�; n=5, plus signs �maroon�.
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agreement. Obviously, there is a clear mismatch in the lowest
finite-frequency mode, since our fitting criterion was inde-
pendent of the result given by Ye et al. for this mode. But in
fact we would have obtained the same fit if we had chosen
the other h-dependent modes with n=3,4 ,5. The fact that
the overall agreement is remarkably good supports the valid-
ity of both calculations, ours and that of Ref. 12. We consider
that the discrepancy for the lowest nonzero mode might in-
dicate that some problems still remain in the ab initio
approach for the low-frequency region. Notice also that
Suzuura and Ando19 predict an order-5 mode almost degen-
erate with the RBM at �; this is not given by the ab initio
results12 nor by our model. This indicates that the finite wall
thickness does have a role in a continuum approach.

We have also studied the frequency dependence on h for
other tubes. In Fig. 5 we present the frequency dependence
on 2h for two other cases, namely, the �5,5� and the �6,6�
armchair tubes. Our results are shown together with the cal-
culated values extracted from Ref. 12. We see that the value
2h=0.9 Å nicely fits the ab initio results, so within our
model one can expect that the tube thickness should be ap-
proximately the same for all tubes. As mentioned above, this
value is close to the � orbital size in graphite. These are the
orbitals responsible for in-plane bonding in graphene, and
one should not expect this value to vary much when rolling
the graphene layer into a tube. In this light, our results may
indicate that the key factor as to elastic properties of nano-
tubes are the � in-plane bonds.

From these results, a criterion to fix the nanotube thick-
ness in a continuum model can be inferred. The lowest
nonzero-frequency modes with n�2 have a significant de-
pendence on h, and they can be used to fix this parameter.
Within our continuum model it is preferable to use the E2g
mode or, if this value is not available or reliable, the above-
mentioned n
2 modes in the range 0–100 cm−1. The reason

to prefer this low-frequency region is that the graphene
bands entering the model were modeled as linear. Such ap-
proximation is excellent for the low-frequency spectrum, but
deviations from parabolicity can be expected for higher fre-
quencies.

Finally, we have verified that our continuum model does
predict the linear relation between the RBM frequency and
the inverse diameter of the nanotube. In fact, it predicts that
this linear relationship holds for any pure mode at �. This
can be easily understood by recalling some features of the
secular equation. It depends on Bessel functions and its de-
rivatives evaluated in any of the following arguments: qLa,
qLb, qTa, qTb. For pure modes, the secular equation depends
only on two arguments, either qLa, qLb or qTa, qTb. Thus,
such equations can be cast in terms of the arguments qL�d
−h /2�, qL�d+h /2� or qT�d−h /2�, qT�d+h /2�, depending on
the transverse or longitudinal character of the solution. For h
small, these transcendent equations are functions of either
qLd or qTd. Hence the behavior ��C /d for pure acoustic
modes. A similar argument can be applied to the optical pho-
non calculation, yielding a slightly different expression for
pure optical modes.

In Fig. 6 we present the frequency at � of several modes
versus the tube radius in a log-log plot. Calculations were
done for a fixed shell thickness of 3.4 Å.

We see that our continuum model does yield the 1/d be-
havior for the RBM predicted by Jishi et al.13 and later veri-
fied by different theoretical methods, which constitutes one
of the main features studied in the experimental characteriza-
tion of carbon nanotubes. Concentrating on the higher-radii
nanotubes �N=10–15� for which the small h approximation
is better, we obtain

FIG. 4. �Color online� Acoustic phonon dispersion relations
for a �10,10� tube with R=6.78 Å, and fitted wall thickness
2h=0.9 Å. Our results are compared to the ab initio calculation by
Ye et al., digitalized from Ref. 12.

FIG. 5. �Color online� Variation of phonon frequencies at � with
nanotube thickness for the �5,5� �bottom� and the �6,6� �top� nano-
tubes. Symbols �colors� indicate the order of the mode: n=0, circles
�black�; n=1, squares �red�; n=2, diamonds �green�; n=3, triangles
�blue�. As a guide to the eye, a thin full line marks the thickness
value 2h=0.9 Å. Thin dashed lines show the frequencies as calcu-
lated by Ye et al. in Ref. 12.
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�RBM =
2460 cm−1 Å

d
. �8�

This value is within the range found by other methods.35 As
discussed before, the 1/d law is verified not only by the
RBM, but for several other modes. Our model predicts that
only modes with a mixed character deviate from the 1/d
behavior. One example is the lowest-frequency mode with
n=2, plotted with diamonds in Fig. 2. This behavior of the
lowest E2g Raman-active mode was also reported by other
authors.33 With our model we can relate such behavior to its
mixed L-T character, and extending our analysis to all modes
�that is, not only to those which are Raman active�, we find
several which do not follow the 1/d law, as can be clearly
seen in Fig. 5.

V. CONCLUSIONS

We have presented a continuum model for acoustic
phonons in carbon nanotubes, valid for arbitrary shell thick-
ness, which shows excellent agreement with experimental
results and recent ab initio calculations. We have studied the
frequency dependence on the nanotube thickness, finding
that several modes do have a strong dependence on this pa-
rameter. From these results, we give a criterion to fix the
nanotube wall thickness in a continuum model. We have also
verified the well-known relation between the RBM and the
inverse diameter. Furthermore, we have shown that such be-
havior should be followed for all pure transverse or longitu-
dinal modes at �, provided that the thin-shell approximation
is valid. By introducing the nanotube wall thickness as an-
other parameter without making any particular assumptions
on its value, we have been able to improve the quantitative
agreement given by continuum models and clarified its im-
portance in the nanotube phonon spectrum.
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APPENDIX A: DERIVATION OF THE ACOUSTIC
EQUATIONS OF MOTION FROM THE

OPTICAL CONTINUUM MODEL

Let us briefly recall the main ingredients of our model for
optical phonons: we assumed that the bulk medium is isotro-
pic and homogeneous, and its optical modes are given by
parabolic dispersion relations. Thus, the basic parameters
are the transverse and longitudinal bulk frequencies at the
center of the Brillouin zone ���, �T and �L, and the corre-
sponding parabolicity parameters, �T and �L, which can be
fitted to experimental dispersion relations; for nonpolar me-
dia, �L=�T��0.

For optical phonons the equations of motion are given
by18

��2 − �0
2�u� = �L

2�� �� · u� − �T
2�� � �� � u� . �A1�

The equations for acoustic phonons �1� can be obtained
from Eq. �A1� by a simple change of parameters: bulk fre-
quencies at � are set equal to zero ��0=0�, and the squared
values of the parabolicity parameters �T

2, �L
2 are chosen as

negative values which model the linear dispersion relations
of the bulk acoustic branches, i.e., �T

2 →−vT
2, �L

2 →−vL
2. This

sets a natural frequency cutoff, namely, the frequency win-
dow for which such a linear approximation for bulk bands
can be made. The appropriateness of our procedure is con-
firmed by the fact that the equations of motion �1� are equal
to those derived from elasticity theory.29

APPENDIX B: BOUNDARY CONDITIONS
AND SECULAR EQUATION

The stress tensor ��� for an isotropic medium can be written
as36

��� = �m�2vT
2 − vL

2��� · u�I�
�

− �m2vT
2�� u� , �B1�

where �m is the mass density. The free surface boundary
conditions imply that the radial stress components ���, ���,
and ��z vanish at the inner and outer cylindrical surfaces.29

Denoting the inner radius and outer radii by a and b respec-
tively, this gives

��2vT
2 − vL

2���� · u�� − 2vT
2 �u�

��
�

�=a,b
= 0, �B2�

FIG. 6. �Color online� Log-log plot of the phonon frequencies at
� as a function of the radius for a series of �N ,N� nanotubes from
N=5 to 15. A fit to a �1/d law is shown for those modes which
approximately follow it.
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	1

�

�u�

��
+ �

�

��
�u�

�
�


�=a,b
= 0, �B3�

� �u�

�z
+

�uz

��
�

�=a,b
= 0. �B4�

A general solution to the problem is a linear combination
of the basis vectors �4�–�6�:

u� = �
M

AM
+ u�M

+ + �
M

AM
− u�M

− . �B5�

Here M runs over the modes L, T1 or T2, and +, − indicates
that the Bessel function fn is Jn or Yn, respectively. Imposing
the boundary conditions �B2�–�B4� to this eigenfunction, we
have a homogeneous linear system for the six coefficients.
The eigenfrequencies are calculated by setting the corre-
sponding secular determinant equal to zero: for each fre-
quency, the eigenmodes are found up to normalization by
solving for the six coefficients.
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