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The microscopic low-frequency dynamics of glassy selenium is investigated by means of the con-
current use of neutron inelastic scattering and computer simulations. A separation of the dynamic
response in terms of intra- and interchain processes is achieved from the analysis of the simulation
results. The S(Q, E) dynamic structure factors are analyzed in terms of the frequency moments
or from a model scattering law, and the wave-vector dependence of the relevant quantities is es-
tablished. Finally, the anomalous behavior of the heat capacity at moderately low temperatures is
shown to be originated by mostly interchain interactions.

I. INTRODUCTION

The interest in studies on the thermal and transport
properties of glassy selenium stems from its technologi-
cal importance in semi- or photoconducting devices, as
well as for being one of the best-studied materials where
the universal anomalies that characterize the glassy state
have been studied in detail.! However, the complicated
atomic entanglements present in the liquid and glassy
phases have precluded any microscopic analysis on the
origin of the dynamic anomalies found by experimental
means.? In this respect, some of the ideas advanced more
than a decade ago by Lucovsky and others® on the origin
of the different dynamical behavior in glassy and poly-
crystalline selenium remain to be assessed. This situation
contrasts with the wealth of experimental data measured
either in the hydrodynamic limit or using microscopic
probes such as neutron scattering but actually analyzed
in phenomenological or mesoscopic terms.*

Although a number of studies regarding the detailed
dynamics of model glassy solids at microscopic scales
have appeared,®® most of the published results concern
computer (Lennard-Jones) glasses, which by their very
nature lack any physical realization. On the other hand,
an approach based upon the concurrent use of inelastic
neutron scattering (INS), computer molecular-dynamics
(MD) simulations for the glass and liquid phases, as well
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as lattice dynamics (LD) calculations for the polycrys-
talline reference state has been successfully employed
for the assignment of the dynamic anomalies observed
by INS (Ref. 7) and calorimetric means® in real glasses
composed by small molecular units. The comparison be-
tween experiment and computer simulations enables one
on the one hand to assess the quality of the interparti-
cle, effective potential used in the calculation, and, on
the other hand it provides access to magnitudes hardly
amenable to experimental measurement. From compar-
ison between the LD results calculated for a polycrystal
with experimental and MD data, a correlation between
the excitations characteristic of the harmonic solid and
those observed in the glass phase can be established.
The aims of the present work are twofold. First, to
illustrate how such an approach can be used to ana-
lyze the finite-frequency features in the S(Q, E) dynamic
structure factor, and in particular to separate the low-
frequency contributions into those arising from individ-
ual chain (torsional) motions, and those originated from
interchain interactions. Such a distinction is indispens-
able since a proper account of the very often complicated
internal dynamics of the glass-forming entities appears as
a prerequisite before a fundamental understanding on the
universal origin of the low-frequency anomalies in glasses
of widely varying chemical composition can be achieved.
On the other hand, and up to the authors’ knowledge,
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this work constitutes the first attempt to study in some
detail the vibrational (i.e., short-time) dynamics of glassy
selenium at length and time scales compatible with INS
and computer simulations. For such a purpose, experi-
mental data which, by force, are measured under adverse
conditions (i.e., low resolution in energy transfers and
spanning a limited extent in wave vectors) are compared
with lattice and molecular-dynamics calculations carried
out using the same model potential for the polycrystalline
and glass phases, respectively. Because there is no avail-
able dynamical model of general validity applicable for
the analysis of the experimental spectra, our approach
follows two different routes, such as the analysis of the
spectra in conventional terms using damped harmonic
oscillator functions and a model-free approach based on
the frequency moments calculated by integration of the
measured intensities, and the results derived from both
are then compared.

Some previous results concerning the employed model
potential for a study of the liquid phase have already
been given,? as well as a preliminary brief account!® of
results for the glass, so that only the very relevant ex-
perimental and calculational details are given in the next
paragraphs.

II. EXPERIMENTAL AND COMPUTATIONAL
DETAILS

Although a number of INS experiments have been re-
ported in the literature,!! their main emphasis was the
measurement of the Z(F) generalized vibrational den-
sity of states using high resolution in energy transfers,
and therefore a very limited dynamic range at constant
momentum transfer was accessible, especially for Q val-
ues below the first diffraction peak. Our aim is thus to
provide some data regarding the inelastic intensities at
relatively low wave vectors, using higher incident ener-
gies than those previously employed, something which
obviously leads to low resolution in energy transfers.

The experiments were carried out using the DN1 triple-
axis spectrometer at the Silo€ reactor, CEN Grenoble
(France), and the experimental conditions are described
in Ref. 10. A sample of corrected spectra which have been
normalized to the static structure factor is shown in Fig.
1 on a logarithmic scale, used to avoid the truncation of
the elastic peak intensity.

The MD calculations were carried out under conditions
similar to those already reported.®® The simulation box
contained 32 chains of 20 atoms each and the interaction
potential corresponded to the one already referred.® No
account for three-fold defects was made because of the
difficulty of optimizing the parameters required to con-
struct a strong directional-bonding algorithm compatible
with what is known from first-principles simulations.!?
Relevant details concerning the validation of the model
potential are given in Ref. 10.

The intermediate scattering functions corresponding to
a chain of selenium atoms were calculated following
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where r; is the relative displacement of atom ith rela-
tive to the center of mass (c.m.) of the chain and Ng¢
the number of atoms per chain. The total atom-atom
function was calculated from
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FIG. 1. Corrected inelastic intensities corresponding to

the energy-loss side of the experimental spectra.
arithm is to base 10.

The log-



48 LOW-FREQUENCY EXCITATIONS IN GLASSY SELENIUM: A ... 151

where a; now stands for the position of an individual
atom and N is the total number of atoms in the simula-
tion box. The static, ¢t = 0 limit of this function leads to
the S(Q) structure factor whereas the persistent part of
it, taken at t = oo, gives S(Q,0). In order to alleviate the
truncation problems in the subsequent Fourier transfor-
mation into frequency space, the residual elastic intensity
[i.e., F(Q,t = 00)] was subtracted using for such a pur-
pose the values of the intermediate scattering functions
taken at 10 ps.13. On the other hand, as will be discussed
below, several functions related to the zero and infinite-
time limits of the intermediate scattering functions have
been calculated. In particular the functions h(Q) and
f(Q) defined as
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where Sinel(Q) represents the (energy-integrated) inelas-
tic intensity, are of experimental and theoretical rel-
evance within present-day kinetic theory approaches!4
since they provide detailed information about the wave-
vector dependence of an average Debye-Waller factor
(i-e., containing contributions arising from all the dynam-
ical processes), and can be contrasted with predictions
now available. In what follows the subscript ch will de-
note quantities that refer to an individual chain, whereas
the unsubscripted functions will refer to the total atom-
atom magnitudes. The velocity correlation functions cor-
responding to c.m., an individual chain, and the total
atomic function were also calculated.

Although a valence force field has been developed to
account for the detailed dynamics of trigonal selenium,!®
its transferability for the glass and liquid phases is ques-
tionable due to the fact that interchain bonding is sub-
stantially weaker in the disordered states.? In order to
J

test the reliability of the potential model used in this
work, the structure and thermodynamics of the glass and
trigonal polycrystalline phases were compared with ex-
perimental measurements. In particular the calculated
S(Q) static structure factor, the g(r) radial distribution
function for the glass, and the specific heat for both
glass and the polycrystal were compared with experi-
mental measurements,'® showing a good agreement for
the structural properties, and tolerable agreement for the
specific heat. For the polycrystal, a LD calculation was
carried out for a unit cell representative of trigonal se-
lenium. The methods used for the calculation which is
based upon the molecular Born—von Karman framework
as well for the orientational averaging and the compu-
tation of the neutron-scattering functions have been de-
scribed elsewhere.”

The dynamics of such a complicated solid can only be
analyzed in descriptive terms by means of average quanti-
ties such as mean frequencies and damping factors. Fur-
thermore, due to the low resolution of the experimental
measurements, a direct analysis of the measured inten-
sities in terms of some prespecified model function will
not lead to significant results unless a number of con-
straints are introduced to bound the model parameters.
To proceed, we have used the S(Q, F) dynamic structure
factors calculated from the MD simulation as a starting
point in order to investigate the minimum requirements
for such a model, so that it could be used afterwards for
the analysis of the experimental spectra.

For frequencies below 20 meV (~ 5 THz) and within
the momentum transfers 0.3 A=1 < Q < 2.0 A-1, a
model scattering law given in terms of a 6 function
of small amplitude to account for the residual elas-
tic intensity [i.e., due to the incomplete subtraction of
the F(Q,t = o0) pedestal] and two damped harmonic
oscillators!® well separated in frequency, was found to be
adequate to reproduce the inelastic intensity of the cal-
culated MD spectra. Such a model scattering law will
then read as

Imodel(Q, E) = exp[—2W(Q)][S(Q)S(E = 0) + S1(E1,T'1) + S2(F2,T'2)] ® R(E) , (5)
E? = (hw;)® +T7 , M

where the exponential contains an average Debye-Waller
factor, the two oscillator functions are implicitly assumed
to be energy and wave-vector dependent, R(E) accounts
for the finite resolution in energy transfers due to the time
truncation of the calculated F(Q,t) intermediate scat-
tering functions (= 10 ps), and the quantities specifying
the frequency and damping are implicitly assumed to be
wave-vector dependent. The two functions are specified
by the C;(Q) line-strength factor, the w; bare excitation
frequency, and the I'; damping factor. The term n(E)
represents a detailed balance factor, and the model is
then convoluted with the R(FE) resolution function which
accounts for the effect of truncation at finite times. An
additional oscillator function is required to account for

[
Q values above Q) [i.e., the momentum transfer corre-
sponding to the maximum of S(Q)], due to the increasing
weight of the high-frequency tails of the spectra, some-
thing which substantially complicates the obtainment of
reliable estimates for the parameters above this Q value.

Some of the calculated MD spectra as well as their
approximations in terms of the equations given above
are shown in Fig. 2, where it can be seen that such
a relatively simple approximation gives an adequate ac-
count of the inelastic intensities for the specified range of
frequencies. The most remarkable characteristics of the
MD spectra for the referred range of wave vectors are
the presence of a finite-frequency peak of relatively small
intensity located at about 2 meV and the strong, broad
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background of excitations which extends up to about 20
meV. The experimental spectra were also analyzed on
the same terms, and the relevant frequency and damping
parameters will be discussed below.

III. RESULTS

A. Generalized frequency distributions
and heat capacity

The Z(E) generalized vibrational density of states for
glassy selenium has been estimated from experimental
means by several authors!! by means of high-resolution
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FIG. 2. A comparison between S(Q, E) dynamic struc-
ture factors calculated from the MD simulation results (verti-
cal bars) and the fitted model using Egs. (5)—(7) (solid lines).

INS. Although the general shape of these curves agrees
in all cases some systematic differences remain regarding
the low-frequency tails.

Even if an accurate calculation of the generalized vi-
brational frequency distribution Z(E) cannot be reli-
ably accomplished with the present set of experimental
data, an estimate of Z(E) was obtained from the quan-
tities J;(Q, E) = (E?/Q?)S(Q, E), which were evaluated
from fits to the experimental spectra as described above,
and were subsequently corrected for the Debye-Waller
term, for which the value derived for the mean square
displacement from the simulation was taken, the struc-
ture factor and Bose factor, following the prescription of
Buchenau,!? and the result is compared with the simu-
lation results as well as with previous experimental data
in Fig. 3(a). Some systematic differences between the
low-frequency tail of Phillips et al.? and that calculated
from the MD and present experimental results are no-
ticeable. However, the relatively low-energy resolution of
the present experiment as well as possible inaccuracies
of the used potential at low frequencies hinder any more
detailed comparison. The most remarkable feature that
arises from such a decomposition of the Z(E) in terms of
the c.m. and total functions lies in the close resemblance
of the spectra calculated within the incoherent approxi-
mation from the c.m. component, with the inelastic fea-
ture observed in the experimental spectra measured in
higher-resolution experiments as it is illustrated in Fig.
3(a).

The shape of the total Z(E) function agrees in gen-
eral terms with those derived from experimental means,!!
the presence of a double peak structure in the bond-
stretching contour being one of the most noticeable dif-
ferences. It is difficult to perform a quantitative compar-
ison between experiment and calculation since resolution
effects at these relatively large energy transfers become
important in time-of-flight spectroscopy. In any case, it is
worth noting that both experiment and calculation show
approximately the same width for this spectral band.
The maximum of the higher energy peak on the other
hand matches the position of that reported by Gompf.!!

To provide an indication of the contributions arising
from different atomic motions to the total amplitude en-
tering the Debye-Waller factor, the integral over Z(E)
(see below) was evaluated using as upper limits the value
of 6 meV which bounds all the acoustic and the lower
lying optic modes, 10 meV which is the boundary of the
first prominent band, and 18 meV which marks the gap
edge. The values of the integral in percentage units of
the value calculated using the whole dynamic range were
91.5, 96.9, and 99.3, respectively. Such a result indi-
cates the small contribution of the stretching modes to
the mean squared displacement (about 0.7%) as well as
the rather moderate contribution of the bending modes
(a bit less than 5%), whereas acoustic and torsional vi-
brations account for up to 97% of the observed displace-
ment.

The fluctuations of the configurational energy were
monitored since the mean square value of this quan-
tity provides a route for the computation of fundamen-
tal thermodynamic functions, alternative to those based
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upon the frequency spectrum.!® The total heat capacity
is then expressed (in units of the gas constant R) as the
sum

Cv _ Nmol 1 2 72y ..
7=t | TidZZ(U 0%);; (8)

i3

where N and N, are the number of chains in the sim-
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FIG. 3. (a) The experimental Z(E) for glassy Se at the
same thermodynamic state from a higher-energy resolution
experiment (Ref. 2) is shown by the open lozenges. The solid
lozenges represent the estimate for Z(E) derived from the
present set of measurements. The calculated total function for
the glass is shown by the solid line, and the c.m. component
by the dashed line. The inset shows the resulting Z(E)/E?
function [i.e., S(Q, E) in the incoherent approximation], as
calculated from the c.m. function. (b) A comparison of the
experimental and calculated C(T)/T® functions. The thick
solid line corresponds to that calculated from the c.m. Z(FE)
function and that calculated from the total Z(E) is shown by
the dotted line. The experimental data from Refs. 19 and
27 for the glass are shown as filled circles with a solid line.
The two lines at the bottom (dashed and dot-dashed) are
experimental measurements for trigonal selenium (Ref. 19).

ulation box and the number of atoms per chain, respec-
tively, Trea = 0.5 and the subindexes run over the five
contributions to the total energy U and its average value
U inter- and intrachain van der Waals (vdW), bond tor-
sions, bond stretchings, and bond-angle bendings|, thus
leading to a sum of 25 contributions. Such an analysis of
the energy fluctuations yielded an array of coupling co-
efficients (i.e., contributions to the configurational heat
capacity from each one of the coordinates used to ex-
press the potential as well as from interactions between
them) which is shown in Table I. The diagonalization
of such an array thus provides some indications regard-
ing the principal components of the coupling coefficients
matrix. From the analysis of the eigenvalues and their
corresponding eigenvectors, the following qualifications
can be made.

(1) The five coordinates used to express the total po-
tential are strongly coupled. As an example, the coupling
coefficients (normalized to one) between bond bending
and bond stretching, or bond torsion and intrachain vdW
amount to —0.96 and —0.94, respectively. (2) The rela-
tive contribution of the interchain vdW to the total heat
capacity amounts to 41% at the temperature under con-
sideration. The coupling of this coordinate to the other
degrees of freedom is evenly distributed with coefficients
not exceeding, in absolute values, —0.29 or below —0.15.

(3) The relative weight of the interchain vdW contri-
bution can then be used as a scale factor so that the
total heat capacity as well as the c.m. contribution to
it can be evaluated from the corresponding Z(F) func-
tions. As shown in Fig. 3(b), both the total Z(F) and
the c.m. function give rise to C(T")/T3 curves, showing
a well-defined maximum at a temperature which is in
agreement with the experimental values.!® A noticeable
excess is clearly seen in Fig. 3(b) with respect to the
experimental value, which may be a consequence of the
inability of the model potential to deal with very low-
frequency excitations. On the other hand, and as can
easily be seen from the graph, the c.m. contribution to
the total C(T") becomes the relevant one at temperatures
below 10 K.

The value for the total configurational heat capacity
18.9 JK~1mol~! calculated in such a way compares fa-
vorably with the experimental measurement for this tem-
perature of 18.255 J K~ mol~1.1® On the other hand the
value estimated from integration of the Z(F) function
gives an estimate of 18.97 JK~!mol~! for this magni-
tude at T = 100 K, and such a small difference between
both values gives an indication of the importance of an-
harmonic effects at this thermodynamic state. As a mat-
ter of fact, from such agreement it seems clear that a
quasiharmonic approximation for the calculation of the
thermodynamic functions from the frequency spectrum
calculated for this temperature is entirely justified.

In summary, the total heat capacity as calculated from
the energy fluctuations or from integration of Z(E) at
T = 100 K for the glass is acceptably reproduced us-
ing the adopted model potential, and, on qualitative
grounds, the range of validity of such a prediction can
be extended down to a few degrees. It is not entirely
clear if the origin of the excess heat capacity at about 5
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TABLE I.

Calculated contributions from inter- (vdWinter) and intrachain (vdWintra) van der

Waals interactions, bond stretch (Str.), bending (Bend.), and torsional (Tors.) vibrations to the
total configurational heat capacity from the different terms entering the effective interparticle po-

tential. Values are given in R units.

Coord. vdWinter vdWintra Str. Bend. Tors.
vdWinter 0.9235 -0.1865 -0.1727 -0.1523 -0.1354
vdWintra 0.2123 -0.0261 0.0046 0.0025

Str. 0.6231 -0.1824 -0.0089

Bend. 0.5800 -0.0605

Tors. 0.2436

K is an artifact of the model potential or whether it arises
from some other effects such as system-size limitations.

B. Wave-vector-dependent response

1. Debye- Waller factors

The S(Q,0) and S(Q) strictly elastic and the total
structure factors as calculated from the experimental
spectra are shown in Fig. 4 and are in good agreement
with results obtained from diffraction means!® as well as
from those derived from high-resolution INS,? although
in the latter case both functions become identical be-
low 1 A=1 due to the limited dynamic range used. An
average Debye-Waller factor exp[—2W(Q)] is therefore
accessible from the ratio S(Q,0)/S(Q) of experimental
intensities or from its simulation counterpart cast in the
form of intermediate scattering functions. The quantities
Fan(Q,t = 0), Fop(Q,t = o0) as well as their correlates
for the F(Q,t) total atom-atom function are also shown
in Fig. 4. The former quantities contain all the rele-
vant information regarding the Debye-Waller factors for
an individual chain, Feh (Q, ¢ = 0) being a static structure
factor (molecular form factor) which is dominated by the
coherent response due to short-range correlations. The
corresponding structure factors for the total intermediate
scattering function are also given in the figure, and show
a well-defined maximum at Q values about that corre-
sponding to the maximum of the S(Q) static structure
factor.

As mentioned in the previous sections, the quantities
h(Q), f(Q) have been calculated for both cases using Egs.
(3) and (4) from the above referred data and the results
are shown in Fig. 5. The heh(Q) function shows, for
this range of momentum transfers, a smooth decaying
behavior which can be adequately approximated by a
parabolic law such as ke, (Q) = 1—aQ?, or by a Gaussian
hen(Q) = exp(—Q2a?) giving values for the free param-
eter of 0.0212(6) A2 and 0.0237(2) A2, respectively. On
the other hand, the h(Q) which corresponds to the to-
tal function shows two well-defined peaks at Q@ ~ 1.4
A-! and Q = 2 A-1, respectively. Some comments are
in order regarding these two functions. First of all, the
fact that the h,(Q) function follows an approximately
parabolic dependence with momentum transfers can be
rationalized as follows. At low-Q values the spectra are
dominated by correlations between atoms separated by

relatively large distances which cannot move in phase
due to the force exerted by atoms belonging to neighbor-
ing chains. As the distances being sampled are smaller
(i.e., larger momentum transfers), localized atomic mo-
tions become more evident, and their contributions are
increasingly important for large-Q values. Because of
the large number of atomic pairs which contribute to
this intensity and the fact that these quantities represent
energy-integrated magnitudes, any phase relationship be-
tween waves scattered by such pairs is washed out, and
therefore the inelastic intensity coming from individual
chain motions is reminiscent of that corresponding to an
average atom with an effective mass Meg.

The shape of the h.,(Q) curve closely resembles that of
a Lamb-Mossbauer factor for incoherent scattering from
a solid [i.e., hs(Q) = 1 — (1,Q)% + O(Q*)], or the cor-
responding quantity for a glass hs(Q) = exp(—Q?r2),
something which would allow the interpretation of the a
parameter given above as a mean square displacement.
If such an identification is carried out, a value not far
from the one reported in Refs. 4 and 20, ~ 0.025 A?
for T' = 100 K which corresponds to an estimation from
the experimental spectra, is found. Further support for
this interpretation comes from the fact that hcy(Q) ap-
proaches unity at low @, contrary to the total function
which is bounded below unity for all of the explored @
range. As can also be seen from the graph, the presence of
a double peak structure in the total h(Q) function is also
borne out from the experimental measurement where, on
the other hand, it shows a more marked character, and
further comments regarding this topic are deferred to the
discussion section.

The value calculated for the mean atomic displacement
can also be compared with that calculated from integra-
tion of the simulated Z(F) density of states since

hch(Q) ~1- (TSQ)2 ~1-— %Q2u2 ) (9)
Eme
u? n kT Z(BE)E-2dE , (10)
Meﬂ" 0

where Ena.x is a cutoff energy which for the present
computation was set to accommodate the whole spec-
tral range (= 40 meV). From such a comparison a value
for the effective mass Mg of 2.48 times the mass of a
selenium atom was derived.

It is obviously difficult to derive an accurate value for
the mean square displacements corresponding to the total
atomic function, since the oscillations in A(Q) which arise
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from interference effects will lead to the wave-vector-
dependent quantity r2(Q) = 6W(Q)/Q?. An average
over a region of momentum transfers in order to remove
the oscillatory behavior has been performed by Buchenau
et al.,%?% and the value quoted above, very close to the
one derived from an individual chain, was obtained.

2. Finite-frequency response

A set of spectra as calculated from the polycrystalline
average of S(Q, E) calculated from LD as well as their
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FIG. 4. The upper frame shows the limiting values for
the intermediate scattering functions for an individual chain
of selenium atoms. Open circles with a dashed line represent
the F(Q,t = 0) function and solid circles with solid line the
F(Q,t = 00) counterpart. The middle frame shows the corre-
sponding function for the total spectra. The same symbols are
used. The lower frame depicts the experimental data. Here
open circles stand for S(Q, 0) and filled circles show the total

5(Q).

MD counterparts for the glass are shown in Fig. 6.
The quantity plotted in such graphs corresponds to the
Ji(Q, E) longitudinal current correlation function in or-
der to circumvent the residual elastic scattering. The first
maxima of these functions w,,(Q) is frequently used as
an average frequency in order to describe the wave-vector
dependence of the vibrational collective dynamics.2! As
is clearly seen from the graph, both the crystal and glass
spectra show two well-defined frequency regions sepa-
rated by a gap. The assignment of the individual ex-
citation frequencies in the single-crystal case is now well
established! so that the interest of the present exercise
lies in the detailed (i.e., @-dependent) comparison of the
polycrystalline and glass spectra. At the lowest wave
vector where such a comparison is feasible, Q ~ 0.3 A~!,
the LD spectra is basically composed of the manifold of
acoustical peaks and some relatively small peaks arising
from the higher lying optic branches. According to the
currently accepted assignment, the excitations appearing
at frequencies below 6 meV either belong to the acous-
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tical branches or to some low-frequency optic modes, es-
pecially those along some symmetry directions ([¢(¢1],
[33¢], and [¢¢0] Ref. 1) some of which show phonon
frequencies as low as 3.35 meV [the point for (3,3,0)
at T=300 K]. Between 6 meV and the gap edge (=~ 16
meV), most of the intensity arises from excitations in-
volving internal modes of the selenium chains such as
bond torsions, bond bendings, and interactions between
them. The bond strectch and some of the modes related
to it are located within the 27 < E < 32 meV frequency
range, and show an intensity which becomes maximal
for Q values around the fundamental Bragg peak (= 1.8
A-1) as well as a negligible frequency dispersion. On the
other hand, although at this low-Q value the shape of
the glass spectra is clearly a remnant of the polycrystal,
the intensity ratio between the two more intense peaks is
far different from that characteristic of the crystal. The
difference in the overall shape of the spectra correspond-
ing to the two states becomes more pronounced as Q is
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FIG. 6. Ji(Q, E) longitudinal current correlation func-

tions as calculated from the LD (solid lines) for the polycrystal
and MD (filled lozenges and dashes) results for the glass. The
corresponding values of momentum transfers are given in the
insets.

increased up until that characteristic of an average Bril-
louin zone boundary in the crystal (= 0.9 A~1). Above
such a value, the shape of both sets of spectra becomes
closer again.

As mentioned above, the wn,(Q) frequencies can be
used to provide an approximate measure of the dispersion
behavior. For the polycrystal, the presence of a clear,
intense peak up to wave vectors about 1 A~! enables
one to plot such a quantity unambiguously. Beyond such
momentum transfers the appearance of a large number
of excitation peaks hinders the continuation to larger-Q
values. The situation is relatively easier in the glass case
since only the frequencies corresponding to the maxima of
the first broadband are taken into consideration. A plot
of such magnitudes as well as that corresponding to the
experimental measurement is shown in Fig. 7 alongside
with the hydrodynamic limits for the sound frequencies
as calculated from the c¢p Debye velocities . The latter
quantities, used to calculate the linear laws for the crys-
tal, were those given by Meissner!® (cp = 1727 ms~! for
the T = 0 K solid), and that corresponding to the glass
was taken from data given in Ref. 4 (cp = 1170 ms™! ).

The crystal data show a strikingly smooth behavior
up to 1 A~L. In the long-wavelength limit, the straight
line depicting the cpQ hydrodynamic sound and w,(Q)
for the polycrystal basically coincide up to wave vectors
about Q = 0.3 A-1, something which allows the iden-
tification of such a peak in the polycrystalline spectra
as arising from soundwave excitations. The phase and
group velocity dispersions, also shown in the graph, give
additional support to the assignment of such a peak. A
maximum of the phase velocity dispersion is clearly seen
in the glass (i.e., “positive dispersion” in hydrodynam-
ical terms) whereas the crystal data linearly extrapo-
lates to the hydrodynamic limit. The presence of such
maxima in the curve corresponding to the glass can be
easily explained if the increasing weight of the opticlike
modes as the wave vector is increased towards Q,/2 is
accounted for. It is also interesting to note the difference
between the momentum-transfer value corresponding to
zero group velocity in the polycrystal and glass which, in
the first case, coincides with the zone boundary, and may
serve to indicate the existence of a pseudozone boundary
in the glass in a dynamical sense.

On the other hand, the w,(Q) curve corresponding
to the MD data shows, for momentum transfers above
Q = 0.49 A1, excitation energies high above those cor-
responding to the hydrodynamic limit and at Q = 1 A-1
is shifted towards frequencies which are far higher than
what could, in principle, be expected, since both real and
simulated glasses behave elastically as softer bodies than
the crystal.'® However, from an inspection of the graph
showing the phase velocities for both states, it is clear
that, although both curves approach the hydrodynamic
limit correctly, the presence of optic-like excitations in
the glass at low-Q values is far more important than in
its crystalline correlate.

In order to describe the wave-vector-dependent fre-
quency distributions without recourse of any particular
model to represent the line shape, the first u,,(Q) reduced
frequency moments computed as frequency integrals over
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S(Q, E) were calculated in a previous work and compared
with the relevant hydrodynamic limits.!® Our aim here
is to provide a comparison between the frequency mo-
ments of the Scp(Q, F) dynamic structure factor associ-
ated with the single-chain dynamic response and those
calculated from the total atom-atom function. Such a
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the J;(Q, E) functions. The solid line with lozenges shows the
polycrystalline data and the dashed line with triangles the
MD glass. The open circles show the experimental points.
The hydrodynamic sound velocities are indicated by dots
(crystal) and dash-dots (glass). (b) Phase velocity dispersion
for LD and MD data. The same symbols as above are used.
The data at @ = 0 give the hydrodynamic values quoted in
the text. (c) Group velocity dispersion for LD and MD data.
Same symbols are used. The crystal data are approximated
by a straight line which leads to a value close to the hydro-
dynamic limit. The glass data are joined by a smooth curve
which is drawn as a guide to the eye.

comparison is shown in Fig. 8, where it can be seen how
the square root of the p2(Q) reduced second frequency
moments for the polycrystal approach the correct hydro-
dynamic limit up to relatively long wave vectors Q. =~ 0.4
A-1 whereas the MD and experimental points approach
the long-wavelength value at @ values near the lowest
reachable by INS and MD Q. < 0.3 A-1, and there-
fore, the system-size limitations in the MD case and the
kinematical restrictions in the experiment preclude any
definite conclusion about this topic. The agreement be-
tween the values for the p2(Q) reduced moments for the
experiment and MD results is rather remarkable if the
moderate resolution employed in the present experiment
is taken into account. The value of Q. can be used to
estimate the smallest wavelength for acoustic excitations
still being of extended (nonlocalized) nature. An esti-
mate can then be obtained from A ~ 27/Q, = 21 A, a
value which is comparable to those calculated as phonon
mean free paths within several frameworks.*

The interesting point to note regarding Fig. 8 is the
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quency integrals. The hydrodynamic sound velocity is shown
by the dashed-space line. The vertical bars and the dotted
line show the results for the polycrystal as calculated from the
LD computation. (b) The reduced p2,cn(Q) second frequency
moment for an individual chain of selenium atoms.
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close value of the p2(Q) energies with that corresponding
to the peak maxima of the low-frequency feature found
in the glass spectra using higher-energy resolution.* Fur-
thermore, the peak position and shape of such a char-
acteristic feature can be accounted for approximately if
the values of p%(Q) and p%(Q) are used to reconstruct
the line shape following the lines described in Ref. 22.
Apart from the differences in excitation energies when
compared with the curve of the total functions, some
qualifications can be made regarding the oscillations ex-
hibited by these single-chain quantities. First and fore-
most, no phase relationship exists with the total S(Q)
structure factor. The pp h(Q) curve shows a concave
curvature up to about Q@ = 1 A~1, then leading to a
shallow minimum up to about 1.5 A~!, and then a strong
increase in energies follows. In counterposition, the mo-
ments corresponding to the total function show a convex
increase in frequencies up to about Q,/2 and then, as
expected, a relative minimum at Q,. Secondly, both the
steep increase in energies above 1.5 A~ and the calcu-
lated Sinel(@) inelastic (integrated) intensities indicate
that above such momentum transfers the dynamics be-
comes increasingly dominated by intrachain motions. As
a matter of fact, the spectra for the total sample and a
single chain show no noticeable differences above Q =~ 3

To provide a comparison of the results commented on
above, which are cast in terms of the spectral moments
with those couched in terms of model parameters, the
wave-vector dependence of the E; excitation energies de-
rived from the analysis of the line shapes as well as the
I'; damping factors for the two oscillators used to rep-
resent the line shape are shown in Fig. 9, as well as
with the frequency wy, (Q) which corresponds to the max-
imum of the J;(Q, E) autocorrelation calculated from the
fitted functions. As can be seen from the graph, the fre-
quencies of the two oscillator functions are a relatively
well-separated exception made of the region of momen-
tum transfers located about @,. On the other hand,
due to both statistical inaccuracies and ill conditioning
of the fitting problem, no consistent dependence with the
wave vectors was found for Fq,T';, excitation energy, and
damping of the low-frequency peak in both MD and ex-
periment, and therefore only the E; values derived from
fits to the MD spectra are plotted, as indicated in the
figure. The w,,(Q) showing the maxima of the total
Ji(Q, E) function and the E; curves which correspond
to the excitation energies of the broad, more intense os-
cillator, can be nearly superimposed to that drawn for
the p2(Q) moment of the scattering law shown in Fig.
8. The experimental data also shown in the figure are in
tolerable agreement with the simulation up to Q = 1.2
A-1, if consideration is made of the moderate resolution .
The data point at Q = 1.5 A~ represents a particularly
difficult case since the frequencies of the two oscillators
become rather close.

A remarkable dependence with the wave vectors was
also found for the damping terms as exemplified in Fig.
9. Nearly a quadratic dependence with momentum-
transfers was found for @ values up to about 1 A~!
regarding the damping term characteristic of the broad

inelastic response. A deep minimum was also found for
both the damping and the wy bare frequency, and beyond
such momentum transfer the dominant contribution to
E, comes from the damping terms. The parabolic de-
pendence of the damping terms at low wave vectors as
well as the presence of a well-defined maximum was also
noticed in the analysis of the spectral response of an-
other glass,?24 although no consistent explanation for
this behaviour seems to be presently available.2®

The difficulty in analyzing the damping coefficients lies
in the fact that a substantial part of the broadening does
not arise from finite-lifetime effects (i.e., “homogeneous
broadening”) but has its origin on the continuum of fre-
quencies brought about by the topological disorder of
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the ' damping factors corresponding to the higher-energy
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the glass (i.e., “inhomogeneous broadening”). Up to the
present moment there seems to be no adequate means to
evaluate the latter effect.

In summary it seems clear that both approaches (i.e.,
in terms of spectral moments or from a model scatter-
ing law) to analyze the spectral functions lead to rather
similar results, something which, on the other hand, en-
ables the interpretation of the u3(Q) moments as physical
(average) frequencies without having recourse to any de-
tailed model function to represent the line shape. The
agreement between the frequencies shown by the wn,(Q)
curves and the E; excitation frequencies, far from being
fortuitous, is a consequence of the model used to repre-
sent the oscillator functions,'® which assigns a physical
meaning to the E; quantities but not to their bare coun-
terparts. In this latter respect it is worth emphasizing?!
that only the FE; frequencies are amenable of experi-
mental measurement under moderate or heavy damping
regimes.

IV. DISCUSSION AND CONCLUSIONS

From the analysis of the Debye-Waller factors corre-
sponding to an individual selenium chain as well as to
the total sample, from the reconstruction of the low-
frequency part of the spectra from the c.m. part of the
Z(E) vibrational density of states, its contribution to
the total heat capacity at low temperatures, and from
the wave-vector dependences of the inelastic intensities
and frequency moments, it seems clear that the dynami-
cal response characteristic of the glassy state of selenium
mostly arises from interchain interactions. The idea that
most of the thermal anomalies characteristic of its glassy
state were originated by a distinctive arrangement of the
interactions between neighboring chains was advanced by
Lucovsky,? after careful intercomparison of experimental
data from widely varying sources.

The value for the mean squared displacement derived
from the fo,(Q) function 7, ~ 0.02 A2 has been found to
be very close to that obtained from experimental means,
something which can indicate that most of the processes
which are relevant to account for the motional amplitudes
observed within the energy window characteristic of high-
resolution INS spectra arise from single-chain motions.
The small value for the associated Mg effective mass of
about 2.5 selenium atoms is also indicative of the rather
localized character of the motions which contribute to
this dynamical parameter. Most of the motional com-
ponents entering this amplitude arise from-excitations of
acoustic and low lying optic origin, and the contribution
of excitations below 2 meV (= 500 GHz, a boundary used
in Ref. 20 to derive a tentative scaling law) still represents
about 60% of the total amplitude.

Although the physical soundness of a model of glassy
selenium based upon relatively short chains can be put
into question from a macroscopic point of view, recent
results using chains of 40 atoms indicate that the most
noticeable effect of increasing the chain length concerns

the long-time properties of the high-temperature (liquid)
phases associated with long-range (diffusive) movements
as well as with the configurational statistics of a single
chain. Such a finding agrees with recent results on the
dynamic response of a Lennard-Jones chain,?? where it
was found that the thermodynamic limit was approached
by chains with 30-40 atoms.

The analysis in terms of either the spectral moments
or any other average frequency chosen for the purpose
has shown that the microscopic dynamics of glassy sele-
nium at time and length scales accessible to INS is ex-
tremely intricate due to the strong interactions between
all the degrees of freedom, and cannot be sensibly under-
stood in oversimple terms. As found for other molecular
glass,”23:26 the manifold of excitations of optical origin
becomes, within the equivalent first Brillouin zone, far
more important in the glass than in the polycrystal. As
a matter of fact, and for momentum transfers as low as
0.4 A1, such excitations will lead to a pullout of the av-
erage frequencies well above those characteristic of sound
propagation.

Some comments are in order regarding the redistri-
bution of spectral power in passing from the harmonic,
orientationally averaged crystal, to the glass. First and
foremost, the strong increase in “excess modes” in the
low-frequency tails of the glass spectra, a phenomenon
widely regarded as one of the fingerprints of the glassy
state, is accompanied by shifts to lower frequencies of
most of the peaks which are still identifiable in the glass
spectra. On the other hand, the high-frequency bond-
stretching band contour shows a complicated trend. The
two well-separated peaks seen in the polycrystal are still
visible in the glass spectra, although in this case the cen-
ter of gravity of such a band is displaced about 1 meV
towards higher energies, a fact which is also borne out
from the experimental data.l! Also, as illustrated in some
detail in the preceding section, below the zone boundary
the spectra of the glass show a rather intricate structure
over a wide extent in frequencies, in counterposition to
the crystal where a strong peak, signature of sound prop-
agation, is visible up to Q ~ 1 A~1,

As a final conclusion, what seems to be common for
glassy selenium and other vitreous materials studied fol-
lowing a similar approach,”238 is the fact that, disre-
garding the widely varying chemical complexity, the in-
ternal modes of the glass-forming entities, whether they
are simple molecular units or polymerlike atomic assem-
blies, are not the major contributors to the part of the fre-
quency spectrum responsible for the thermal anomalies,
since their manifestation can be accounted for, at least on
a semiquantitative basis, using the center-of-mass quan-
tities.
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