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Elementary excitations of the BCS model in the canonical ensemble
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We have found the elementary excitations of the exactly solvable BCS model for a fixed number of particles.
These turn out to have a peculiar dispersion relation, some of them with no counterpart in the Bogoliubov
picture, and unusual counting properties related to an old conjecture made by Gaudin. We give an algorithm to
count the number of excitations for each excited state and a graphical interpretation in terms of paths and
Young diagrams. For large systems the excitations are described by an effective Gaudin model, which accounts
for the finite-size corrections to BCS.
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I. INTRODUCTION

The paradigmatic model to study the superconduct
properties of metals1 and nuclei2 is the pairing model pro-
posed by Bardeen, Cooper, and Schrieffer. The ground s
~GS! and excitations of the BCS model are well known in t
grand canonical~g.c.! ensemble, and explain the behavior
systems with large numbers of particles. However, for sm
systems, such as nuclei or nanograins, one is forced to w
with a fixed number of particles, where the g.c. BCS wa
function, including its projected version, are not adequa
The problem is due to the strong pairing fluctuations, w
which a mean-field approach cannot deal properly. An al
native approach is provided by exact numerical methods
the density-matrix renormalization-group,3 but their com-
plexity somehow obscures the physics behind. Fortuna
enough the reduced BCS model, characterized by a un
pairing couplingg, is exactly solvable, as was shown b
Richardson and Sherman.4 This exact solution has been re
cently used in connection with superconducting nanogra
~see Ref. 6 for a review!.5

Most of the exact studies deal with the GS and the exc
states that are obtained by breaking Cooper pairs. Howe
one must also consider the promotion of pairs to higher
ergy levels~bosonic pair-hole excitations!. This paper fo-
cuses on the latter type of excitations since the former o
can be easily included into our formalism. We shall indica
the peculiar dynamics and the unusual counting proper
exhibited by the excitations of the exactly solvable BC
model, some of them with no analog in the standard pict
of Bogoliubov quasiparticles. These features account for
exact finite-size corrections to the thermodynamic limit, o
tained from the standard BCS treatment.

In Sec. II we introduce the superconducting system
scribed by Richardson and Gaudin models, and we pre
here our conjecture about what represents their elemen
excitations. Section III is devoted to classifying the excit
states according to what will be interpreted as elemen
excitations in Sec. IV. In this respect a diagramatic repres
tation of the excited states turns out to be very useful. T
thermodynamic limit of our theory is presented in Sec.
which confirms our conjecture about the elementary exc
tions. A comparison with the BCS theory is also present
0163-1829/2003/67~6!/064510~6!/$20.00 67 0645
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Finally, Sec. V contains our conclusions.

II. RICHARDSON AND GAUDIN MODELS

Let us consider a fermionic system withN single-particle
energy levels. The reduced BCS Hamiltonian decouples
levels which are singly occupied and one is left with tho
that are either empty,u0& ~hole!, or doubly occupied,bj

†u0&
~pair!, with an energy« j (bj

†5cj ,1
† cj ,2

† is a hard-core boson
operator that creates a pair of two time-reversal states!. We
shall suppose that the singly occupied levels have been
moved. Since the latter ones decouple, their effect can
considered easily by adding their free energy« j to the total
energy. The complete system will be treated elsewhere.
reduced BCS Hamiltonian reads

HBCS5(
j 51

N

« jbj
†bj2G (

j , j 851

N

bj
†bj 8 , ~1!

whereG is a dimensionful coupling constant. The standa
model employed to study nanograins is given by the cho
« j5d(2 j 2N21), where d5v/N is the single-particle
energy-level spacing andv/2 is the Debye energy.6 The cou-
pling G can be written asG5gd, whereg is dimensionless.
The value of the bulk BCS gap,DBCS, of the equally spaced
model is given byDBCS5D/2, whereD5v/sinh(1/g).

The eigenstates of Eq.~1! with M pairs are given by4

u$Em%m51
M &5 )

m51

M

Bm
† u0&, Bm

† 5(
j 51

N bj
†

« j2Em
, ~2!

where the parameters$Em%m51
M satisfy the Richardson equa

tions

1

G
5(

j 51

N
1

« j2En
2 (

mÞn

M
2

Em2En
, n51, . . . ,M . ~3!

The total energy of the state~2! readsE5(m51
M Em . The

number of solutions of Richardson Eqs.~3! is given by the
binomial coefficient,CM

N 5(M
N ), and coincides with the di-

mension of the Hilbert space,H M
N , of states withM pairs

distributed intoN different levels. Then it is natural to labe
©2003 The American Physical Society10-1
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Richardson states by a set of integersI 5$ j 1 , . . . ,j M% corre-
sponding to the value that the pair energiesEm take atg
50, i.e., some of the« j ’s.

The BCS model can be mapped into a spin system wh
at g→` has SU~2! symmetry. Based on this fact Gaudin7

made the conjecture that given a solution$Em(g)%m51
M of

Eqs. ~3!, and taking the limitg→`, a subset of them, say
$Ea(`)%a51

NG , remain finite and satisfy the equations

05(
j 51

N
1

« j2Ea
2 (

bÞa

NG 2

Eb2Ea
, a51, . . . ,NG , ~4!

while the remainingM2NG roots tend to infinity and satisfy
Eqs. ~3! with all « j ’s set to zero. The numberNG of finite
roots takes values from 0 toM. The number of solutions o
Eqs. ~4! is given bydNG

5CNG

N 2CNG21
N .7 Therefore in the

largeg limit the CM
N Richardson’s solutions would be class

fied in terms ofNG according to Table I. Consistency
guaranteed by the equationCM

N 5(NG50
MdNG

.
We show in this paper that Gaudin finite energies rep

sent the elementary excitations of the superconducting
tem in the canonical ensemble. Their peculiar dispersion
lations and the unusual counting properties will account
the finite-size corrections to the mean-field BCS treatmen
superconductivity.

This result is motivated by the excitation energy for lar
values of g, namely, Eexc[E2EGS;gvNG@12(NG
21)/N#, and the gapD;gv. Thus, in the largeN limit the
excitation energy goes asEexc;NGD, which allows us to
think of the state as a set ofNG elementary excitations con
tributing each with an energyD to the total energy.

TABLE I. Classification of roots in theg→` limit.

Number of solutions dM dM21 d1 d051

Em finite M M21 1 0
Em infinite 0 1 M21 M
06451
h

-
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In Sec. IV we extend this result for the whole range ofg.
In the meanwhile the next section is devoted to the proo
Gaudin’s conjecture given in Table I. We also obtain a f
mula which gives the number of finite Gaudin energiesNG
for a given Richardson configurationI, and therefore the
number of elementary excitations.

III. CLASSIFICATION OF EXCITED STATES

A. Simple examples

Let us first consider the simplest examples given by
excited states with one and two energies remaining fin
i.e., NG51 and 2. Representatives of these, together w
the GS, are shown in Fig. 1, which depicts the real part of
energies, and in Fig. 2, which shows the distribution of t
energies in the complex plane forg51.5 and a system with
M520 pairs at half filling, i.e.,N52M . As a general feature
we see that for smallg all parametersEm are real, and asg
grows some of them collapse and become compl
conjugate pairs, which share their real part~this corresponds
to two curves merging into a single one in Fig. 1!. Figure 2
shows how the energiesEm arrange themselves into an a
which opens up to infinity asg→`.

The state of Fig. 1~a! corresponds to the GS of the system
and it is labeled byI 05$1,2, . . . ,M %, which atg50 is iden-
tical to the Fermi state~FS!. As g→` all the roots become
complex and escape to infinity. According to Table I, this
the only state where this may happen, henceNG(I 0)50.

The lowest excited stateI 15$1, . . . ,M21, M11% is
shown in Fig. 1~b!. The last rootEM , which is equal to
«M11 at g50, stays finite asg→`, while the remaining
M21 roots go to infinity, thusNG(I 1)51. All the states
with NG51 can be obtained from the FS by~i! promoting
the nearest pair below the Fermi level~FL! into one of the
N2M empty levels above it, or~ii ! moving the nearest hole
above the FL into one of theM occupied levels below it. The
stateI 1 can be obtained in both ways. Hence the number
NG51 excited states isd15(N2M )1M21.

The state of Fig. 1~c!, I 25$1, . . . ,M22, M , M12%,
hasNG(I 2)52. All the states withNG52 can be obtained
FIG. 1. Real part ofEm for the equally spaced
model withM5N/2520 pairs andNG50,1, and
2 excitations.
0-2
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by the following three different ways from the FS:~i! mov-
ing the two pairs just below the FL into theN2M empty
levels (C2

N2M states!, ~ii ! moving the two holes just abov
the FL into theM occupied levels (C2

M states!, or ~iii ! mov-
ing one of theM21 pairs in the FS, except the closest to t
FL, into one of theN2M21 vacancies above the FL, ex
cept the closest to the FL@(N2M21)(M21) states#. The
state with two holes just below and two pairs just above
FL is generated by~i! and ~ii !, thus the number of states
the expected one,d25C2

N2M1C2
M1(N2M21)(M21)

21. This example shows that the value ofNG for a generic
state depends dramatically on the arrangement of holes
pairs around the FL.

B. NG„I … formula

We now turn to the evaluation ofNG(I ) for a general
state. One naively expects that this formula should be gi
by the sum of pairs,Np , and holes,Nh , above and below the
FL, respectively, i.e.,NG(I )5Np1Nh . In factNp5Nh since
every pair above the FL comes from a hole below it. Ho
ever this ansatz does not always work as we have alre
seen above. For example, according to this formula, the s
I 1 of Fig. 1~b! would have 2 instead ofNG51, while the
stateI 2 of Fig. 1~c! hasNG52, which is the correct value.

Let us introduce for convenience the occupation repres
tation of the statesI, where a pair, a hole, and the FL a
depicted asd,s, andu, respectively. In the cases discuss
above we obtain I 05d•••dddusss•••s, I 1
5d•••ddsudss•••s, and I 25d•••dsdusds

•••s.
We have found an algorithm to computeNG(I ). Given an

integer l >0, let us split I into three disjoint sets,I
5Al øBl øCl , whereAl contains the lowestM2l lev-
els, Bl the next 2l levels, andCl the remainingN2M
2l ones. Forl 50, the setB0 is empty, andA0 ~respec-
tively, C0) contains all the levels below~respectively, above!
the FL, while for l >1 the setBl contains the nearestl
levels above and below the FL. As an example, let us cho
a state of the formI 35d •••

p dssddddusdds •••
h s.
06451
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For l 52 the partition of I 3 is given by
$d •••

p dssdd%$ddusd%$ds •••
h s%.

Let us define the number of pairs and holes for each
i.e., Np/h

X (X5Al ,Bl ,Cl ). The algorithm givingNG(I ) is

NG~ I !5minl 50, . . . ,2Np
NG~ I ,l !,

NG~ I ,l ![Nh
Al 1min~Nh

Bl ,Np
Bl !1Np

Cl . ~5!

Applying this formula to I 3 one gets $NG(I 3 ,l )% l 50
4

5$4,5,4,3,4% and thus,NG(I 3)53. The value ofl I , which
minimizesNG(I ,l ), is given in this case by 3@in generall I
is not equal toNG(I )]. The result of this formula is bounded
Np<NG<2Np , and therefore any state with a finiteNp
would contain a finite number of Gaudin energies. The u
correlated counting formula proposed earlier coincides w
the casel I50, since NG(I ,0)5Np1Nh ~notice that Nh

5Nh
A0 andNp5Np

C0).
The physical mechanism underlying Eq.~5! is the collec-

tive behavior of the holes and pairs that occupy thel I clos-
est levels to the FL. In a certain sense,l I measures the rang
of correlation involved in the creation of the elementary e
citations out of an initial pair-hole configuration. Howeve
this correlation can be lifted introducing a shifted Fermi lev
FL(l I) defined by moving the FL an amount ofl I levels
downwards~respectively, upwards! wheneverNp

Bl is lower

or equal~respectively, greater! than Nh
Bl . This new Fermi

level defines a new Fermi state out of which the excited s
with NG finite energies is obtained by the creation of unc
related pairs above and holes below theFL(l I). This con-
struction provides a pathway to the g.c. formulation as d
cussed later.

The formula presented here allows us to prove Gaud
conjecture by looking for all the states with a givenNG , and
finding out that their number corresponds todNG

as stated in

Table I, the same way we already did with those withNG
51 and 2.
FIG. 2. Position of theM520 pairs of the
states of Fig. 1 atg51.5. The arcsG I 1

~19 pairs!
andG I 2

~18 pairs! are a slight modification of the
GS arcG I 0

~20 pairs!.
0-3
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C. Young diagrams representation

The correlated behavior of the excitations is made m
explicit by a pictorial representation of the states. The ide
to associate to every setI a pathg I with N links on the
square latticeZ 2, starting at the origin (0,0). This is
achieved by associating a horizontal link directed to
right, to every holes, and a vertical link directed upwards
to every paird. The map starts from the lowest-energy lev
and ends at the highest one. For example, the path assoc
to the Fermi stateI 05d •••

Mdus •••
N2Ms is a polygonal line

joining the points (0,0)→(0,M )→(N2M ,M ). If I describes
a state withM pairs andN energy levels, then the pathg I
ends at the point (N2M ,M ). The number of these sort o
paths isCM

N , which is precisely the dimension of the Hilbe
spaceH M

N .8

In Fig. 3~a! we depict the occupation and path repres
tations of the stateI 3 which yieldsNG53, in agreement with
the numerical results shown in Fig. 3~b!. Moreover, Fig. 3~a!
illustrates the fact that any stateI gives rise to a Young dia
gram ~YD! YI , whose boundary is formed by the link
which belong either tog I or to g I 0

, but not to both. The YD

of the Fermi state is by construction empty, i.e.,YI 0
5 O” .

These YD’s capture the basic properties of the excitatio
First of all,NG(I ), given by Eq.~5!, coincides with the num-
ber of squares on the longest southwest-northeast~SW-NE!
diagonal onYI @see Fig. 3~a!#. This fact provides a geometri
cal meaning toNG(I ) and leads to a combinatorial proof o
Gaudin’s conjecture, which can be stated as follows:dNG

is

the number of YD’s,YI , associated to the pathsg I , which
have NG squares on their longest SW-NE diagonal. T
proof of this conjecture uses the methods of Ref. 8.9 This
result serves to classify the excitations in terms of YD’s. F
example, the states withNG51 and 2 discussed above co
respond to the YD’s shown in Fig. 4.

Other properties of these diagrams are~i! the pair-hole
transformation of the states induces a transposition of t
associated YD’s,~ii ! the main northwest-southeast diagon
on a YD coincides with the FL@see Fig. 3~a!#, and ~iii ! the

FIG. 3. ~a! The path and Young diagram ofI 3. ~b! Real part of
Em for I 3. For g large enough there is a real root~1! and a complex
root ~2!.
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number of boxes ofYI is the excitation energy ofI ~in units
of 2d) at g50 for the equally spaced model.

IV. THERMODYNAMIC LIMIT

As we explained in the previous section, by increasingg,
M2NG of the energiesEm become complex and arrang
themselves into an arc which escapes to infinity for largeg,
while the remainingNG stay finite with their positions barely
modified@see Figs. 1~b!,1~c! and 2#. Following the procedure
presented in Refs. 7 and 10–12 we take the largeN limit
keepingM /N, g, andNG finite. In this limit the arc formed
by the energies in the complex plane becomes dense,
allows for a continuous formulation. In particular, the G
corresponds to an arcG I 0

in the complex energy plane

which in theg→` limit goes to infinity.
Excited states contain finite energies in addition to the a

A given finite rootEa can be either real or complex. In th
former case we shall call it a 1-string. In the latter caseEa* is
also a root, which together withEa forms a 2-string@an
example of such states can be seen in Fig. 3~b!#. There are
also 3-string formed by one real root and two complex on
having approximately the same real part, and so on. In g
eral $Ea%a51

NG is a combination of strings with severa
lengths. The remainingM2NG roots condense into an ar
G I , which is a slight perturbation of the GS arcG I 0

. In Fig.

2 we depictG I 0
andG I for the two excited statesI 1 and I 2

shown in Figs. 1~b! and 1~c!.
Taking into account these considerations, and using

methods of Refs. 7 and 11, one can show in the largeN limit
that the excitation energy of a Richardson stateI is given by

Eexc5 (
a51

NG

A~Ea2«0!21D2, ~6!

where«0 is twice the chemical potential, and the energiesEa
satisfy the modified Gaudin equations

05(
j 51

N
1

R~« j !~« j2Ea!
2 (

bÞa

NG 2

R~Eb!~Eb2Ea!
, ~7!

with R(E)5A(E2«0)21D2. As g→` one hasD;gv and
Eqs.~7! become Eqs.~4!.

The excitation energy given by Eq.~6! fits quite well the
excitation energies of our prototype example (N540, M
520), as shown in Fig. 5. This also exhibits the linear b
havior of the excitation energy forg→`, i.e.,Eexc;NGD as
stated in Sec. II, and in full agreement with the largeg be-
havior of Eq.~6!. Thus we can extend our conjecture to t
whole range ofg. Namely, any excited state is composed
NG elementary excitations associated to the finite Gau

FIG. 4. YD’s corresponding toNG51 and 2.
0-4
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energies. The Hilbert space spanned by these excitations
therefore a dimensiondNG

5( N
NG)2( N

NG21). Hence, it is rea-
sonable to call this new type of excitations Gaudin pairs
gaudinos.

In order to compare our results with the BCS stand
solution let’s consider the excitation energy given by areal
Cooper pairin the Bogoliubov approach, which is given b

A« j
21D2 ~notice thatD[2DBCS), and spans a Hilbert spac

of dimension (N
NG). The standard Bogoliubov quasipartic

with an energy1
2 A« j

21D2 would have to be compared wit
excitations involving broken Cooper pairs. SinceEa in Eq.
~6! lies between two energy levels, with« j 112« j52d
;1/N @e.g., in Fig. 1~b! E20(`)50 with «20,E20,«21],
Ea5« j1O(1/N), and dNG

5( NG

N )@12NG /(N2NG11)#.

Therefore, our theory is consistent withinO(1/N) correc-
tions, as is well known from the existing relation between
canonical and a grand canonical ensemble formulation
statistical physics. It is important to notice how the Bogol
bov excitations are uncorrelated with respect to the B
ground state. We already pointed out that the correla
present in our formulation is lifted by choosing a shift
Fermi levelFL(l I). This Fermi level is within a distance

FIG. 5. Excitation energiesEexc5E2EGS<14d for M520
pairs at half filling. There are 4451312615 states correspondin
to NG51, 2, and 3, respectively. The particle-hole symmetry
duces these numbers to 255 711513.
06451
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O(1/N) from the original one. The selection of a new Ferm
level leads to a new Fermi sea~with a different number of
particles!, allowing for a grand canonical formulation in
natural way.

In summary, ourgaudinoswill yield the same results as
the BCS theory in the extremeN5` limit, and will account
for the exact corrections to the bulk results for the finite-s
superconducting grains for all the physical observables
thermodynamic properties.

V. CONCLUSIONS

We have shown in this paper that the elementary exc
tions of the exactly solvable BCS model in the canoni
ensemble can be explained by the Gaudin model and hav
counterpart in the Bogoliubov picture of quasiparticles. Th
peculiar dispersion relation and the unexpected coun
properties, which are due to the correlated behavior of p
and holes around the Fermi level, provide the exact fin
size corrections to the BCS bulk results, valid for large s
tems in the g.c. ensemble. These excitations, together
those obtained by breaking Cooper pairs, supply the co
plete spectrum of the canonical BCS model. A formula
compute the number of elementary excitations for any giv
state was also proposed.

We explained how the description in terms of gaudin
agrees with the Bogoliubov picture in the thermodynam
limit to leading order inN. In the case of broken pairs, whic
was not presented here, the mechanism is identical. It i
interest to study how the phase of the superconducting o
parameter emerges from this fixed number of particles
mulation. It will be intimately related to the possibility o
choosing a shifted Fermi level in the largeN limit ~which
looses the correlation of the excitation!, allowing the intro-
duction of ground states with different number of pairs.

Although we used as an example a system of equ
spaced levels, the results are more general, and apply to
distribution of levels. This assertion is based on numeri
calculations considering broken Cooper pairs. In this c
blocked levels are removed, and we are left with a no
equally spaced spectrum, obtaining again the same gen
results. In the case of nonconstant pairing we also expec
qualitative picture presented here to hold.
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JOSÉMARÍA ROMÁN, GERMÁN SIERRA, AND JORGE DUKELSKY PHYSICAL REVIEW B67, 064510 ~2003!
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