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Elementary excitations of the BCS model in the canonical ensemble
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We have found the elementary excitations of the exactly solvable BCS model for a fixed number of particles.
These turn out to have a peculiar dispersion relation, some of them with no counterpart in the Bogoliubov
picture, and unusual counting properties related to an old conjecture made by Gaudin. We give an algorithm to
count the number of excitations for each excited state and a graphical interpretation in terms of paths and
Young diagrams. For large systems the excitations are described by an effective Gaudin model, which accounts
for the finite-size corrections to BCS.
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I. INTRODUCTION Finally, Sec. V contains our conclusions.
The paradigmatic model to study the superconducting Il. RICHARDSON AND GAUDIN MODELS

properties of metatsand nucléi is the pairing model pro- ] o ) i
posed by Bardeen, Cooper, and Schrieffer. The ground state L&t us consider a fermionic system withsingle-particle
(GS) and excitations of the BCS model are well known in the€N€rgy levels. The reduced BCS Hamiltonian decouples the
grand canonicalg.c) ensemble, and explain the behavior of levels whlf:h are singly occupied and one is Ieft WIErh those
systems with large numbers of particles. However, for smalfhat are either empty0) (hole), or doubly occupiedb;|0)
systems, such as nuclei or nanograins, one is forced to worl@ain, with an energys; (b/=c/ . ¢/ _ is a hard-core boson
with a fixed number of particles, where the g.c. BCS waveoperator that creates a pair of two time-reversal stafe
function, including its projected version, are not adequateshall suppose that the singly occupied levels have been re-
The problem is due to the strong pairing fluctuations, withmoved. Since the latter ones decouple, their effect can be
which a mean-field approach cannot deal properly. An alterconsidered easily by adding their free eneegyto the total
native approach is provided by exact numerical methods, agnergy. The complete system will be treated elsewhere. The
the density-matrix renormalization-grodpbut their com- reduced BCS Hamiltonian reads
plexity somehow obscures the physics behind. Fortunately
enough the reduced BCS model, characterized by a unique N t
pairing couplingg, is exactly solvable, as was shown by Hecs= 21 ejbjbj—G E bjb;, @
Richardson and ShermAriThis exact solution has been re- : b=t
cently used in connection with superconducting nanograingshereG is a dimensionful coupling constant. The standard
(see Ref. 6 for a review model employed to study nanograins is given by the choice
Most of the exact studies deal with the GS and the excited;=d(2j —N—1), where d=w/N is the single-particle
states that are obtained by breaking Cooper pairs. Howevesnergy-level spacing and/2 is the Debye enerdyThe cou-
one must also consider the promotion of pairs to higher enpling G can be written a&=gd, whereg is dimensionless.
ergy levels(bosonic pair-hole excitationsThis paper fo-  The value of the bulk BCS gapygcs, of the equally spaced
cuses on the latter type of excitations since the former onegodel is given byAgcs=A/2, whereA = w/sinh(14).
can be easily included into our formalism. We shall indicate  The eigenstates of E@l) with M pairs are given b
the peculiar dynamics and the unusual counting properties
exhibited by the excitations of the exactly solvable BCS M N T
model, some of them with no analog in the standard picture |{Eu};'\f=1>: H BL|O), BIL:Z L (2
of Bogoliubov quasiparticles. These features account for the p=1 F1emEy
f;ﬁggf;?g; StIhZ: ;3::3;?3”5&2 i?:airrl]eémf)dynamm limit, ob where the parametef& M}l",f'zl satisfy the Richardson equa-
) . tions
In Sec. Il we introduce the superconducting system de-
scribed by Richardson and Gaudin models, and we present

N N

M
here our conjecture about what represents their elementary iZE 1 -> 2 y=1,...M. (3
excitations. Section Ill is devoted to classifying the excited G =is-E, [F E,~E/S o

states according to what will be interpreted as elementar\{_ "
excitations in Sec. IV. In this respect a diagramatic represenlhe total energy of the state?) readsE=X_,E,. The
tation of the excited states turns out to be very useful. Thélumber of solutions of Richardson Ed8) is given by the
thermodynamic limit of our theory is presented in Sec. IV, binomial coefficient,Cl= (), and coincides with the di-
which confirms our conjecture about the elementary excitamension of the Hilbert spacé{ ), of states withM pairs
tions. A comparison with the BCS theory is also presenteddistributed intoN different levels. Then it is natural to label
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TABLE |. Classification of roots in thg— o limit.

Number of solutions  dy, dy_1 d, do=1
E,, finite M M-1 1 0
E,, infinite 0 1 M—-1 M

Richardson states by a set of integers{j 4, . .. . ju}

corre-

sponding to the value that the pair energigs take atg

=0, i.e., some of the;’s.

In Sec. IV we extend this result for the whole rangegof
In the meanwhile the next section is devoted to the proof of
Gaudin’s conjecture given in Table |I. We also obtain a for-
mula which gives the number of finite Gaudin enerdigs
for a given Richardson configuration and therefore the
number of elementary excitations.

Ill. CLASSIFICATION OF EXCITED STATES

A. Simple examples

The BCS model can be mapped into a spin system which Let us first consider the simplest examples given by the
at g—o has SU2) symmetry. Based on this fact Gauflin excited states with one and two energies remaining finite,

made the conjecture that given a soluti{ﬁ‘aM(g)}l"j’:1 of

Egs. (3), and taking the limitg—o, a subset of them, say,

{Ew(oo)}NG remain finite and satisfy the equations

a=1’
1 Ne 2
Sj_Ea B+ a EB_Ea

pzd

N
0:2 ,azl,...,G,
j=1

while the remainindVl — Ng roots tend to infinity and satisfy

(4)

Egs. (3) with all &;’s set to zero. The numbeNs of finite

roots takes values from O td. The number of solutions of

Egs. (4) is given bydy =C\_—CN_-1." Therefore in the

largeg limit the Cm Richardson’s solutions would be classi- tical to the Eermi statéFS). As g— all the roots become
fied in terms ofNg according to Table I. Consistency is complex and escape to infinity. According to Table I, this is

guaranteed by the equati@}; ==y —o"dy,-

i.e., Ng=1 and 2. Representatives of these, together with
the GS, are shown in Fig. 1, which depicts the real part of the
energies, and in Fig. 2, which shows the distribution of the
energies in the complex plane fge=1.5 and a system with
M =20 pairs at half filling, i.e.N=2M. As a general feature
we see that for smalj all parameters,, are real, and ag
grows some of them collapse and become complex-
conjugate pairs, which share their real p@nis corresponds
to two curves merging into a single one in Fig. Eigure 2
shows how the energids, arrange themselves into an arc
which opens up to infinity ag—o°.

The state of Fig. (B) corresponds to the GS of the system,
and itis labeled byy,={1,2, ... M}, which atg=0 is iden-

the only state where this may happen, heNggl)=0.

We show in this paper that Gaudin finite energies repre- The lowest excited staté;={1,... M—1, M+1} is
sent the elementary excitations of the superconducting syshown in Fig. 1b). The last rootE,,, which is equal to
tem in the canonical ensemble. Their peculiar dispersion resy,.1 at g=0, stays finite ag—o, while the remaining
lations and the unusual counting properties will account folM —1 roots go to infinity, thusNg(l1)=1. All the states
the finite-size corrections to the mean-field BCS treatment ofvith Ng=1 can be obtained from the FS iy promoting

superconductivity.

the nearest pair below the Fermi le&lL) into one of the

This result is motivated by the excitation energy for largeN—M empty levels above it, aiii) moving the nearest hole
values of g, namely, Eq,=E—Egs~gwNg[1—(Ng
—1)/N], and the gap\ ~gw. Thus, in the largé limit the
excitation energy goes ds.,.~NgA, which allows us to

think of the state as a set df; elementary excitations con-

tributing each with an energi to the total energy.

Ground State (a) 1 excitation (b)

above the FL into one of thiel occupied levels below it. The
statel ; can be obtained in both ways. Hence the number of
Ng=1 excited states id;=(N-M)+M—1.

The state of Fig. &), 1,={1,... M=2, M, M+2},
hasNg(l,)=2. All the states withNg=2 can be obtained

2 excitations (c)

ReE /d

il

FIG. 1. Real part oE, for the equally spaced
model withM =N/2=20 pairs andN;=0,1, and
2 excitations.
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by the following three different ways from the F&) mov-
ing the two pairs just below the FL into tHé—M empty

levels (€)M states, (i) moving the two holes just above

the FL into theM occupied levels ((:2" state$, or (iii) mov-

ing one of theM — 1 pairs in the FS, except the closest to the
FL, into one of theN—M —1 vacancies above the FL, ex-
cept the closest to the HUN—M —1)(M —1) state$ The
state with two holes just below and two pairs just above the
FL is generated byi) and (ii), thus the number of states is
the expected oned,=C)Y M+CY+(N-M—-1)(M-1)

—1. This example shows that the valueN§ for a generic
state depends dramatically on the arrangement of holes ampplying this formula to I1; one gets{NG(|3,/)}‘}:O

pairs around the FL.

We now turn to the evaluation dfig(1) for a general

B. Ng(1) formula

For the partition of 15 is
(0000000000 {00"0}.
Let us define the number of pairs and holes for each set,

i.e., NYy(X=A,,B,,C,). The algorithm givingNg(l) is

Na(1,/)=N +min(N;

PHYSICAL REVIEW B57, 064510(2003

given by

NG('):min/:o,...,2NpNG(|/),

B/ ,NE/)+N§/. (5)

={4,5,4,3,4 and thusNg(l3)=3. The value of/|, which
minimizesNg(1,/), is given in this case by Bn general/,
is not equal tdNg(1)]. The result of this formula is bounded,

Np<Ng=<2N
would contain a finite number of Gaudin energies. The un-

and therefore any state with a finife,

state. One naively expects that this formula should be givegorrelated counting formula proposed earlier coincides with
by the sum of pairs\,,, and holesN;,, above and below the  the case/,=0, since Ng(1,00=N,+Nj; (notice thatNj,

FL, respectively, i.e Ng(1) =N,+ Ny . In factN,=Nj, since
every pair above the FL comes from a hole below it. How-

statel, of Fig. 1(c) hasNg=2, which is the correct value.

A C
=N,% andN,= Npo).

of correlation involved in the creation of the elementary ex-
citations out of an initial pair-hole configuration. However,

Let us introduce for convenience the occupation represenypis correlation can be lifted introducing a shifted Fermi level

tation of the state$, where a pair, a hole, and the FL are
depicted a®,0, and|, respectively. In the cases discussed
we obtain 1,-@---0@®OO0O---O, I,
=0 - - 000|000---0, and 1,=0--- 000|000

above

NG

We have found an algorithm to computig(1). Given an
integer /=0, let us splitl into three disjoint sets)
=A,UB,UC,, whereA, contains the lowesM — /" lev-
els, B, the next 27 levels, andC, the remainingN—M

—/ ones. For/=0, the setB, is empty, andA, (respec-

tively, Cy) contains all the levels belogespectively, above
the FL, while for/=1 the setB, contains the nearesf

FL(/)) defined by moving the FL an amount gf levels
downwards(respectively, upwarGSNheneverN';’/ is lower

or equal(respectively, greatgrthan NE/. This new Fermi
level defines a new Fermi state out of which the excited state
with Ng finite energies is obtained by the creation of uncor-
related pairs above and holes below fle(/,). This con-
struction provides a pathway to the g.c. formulation as dis-
cussed later.

The formula presented here allows us to prove Gaudin’s
conjecture by looking for all the states with a givdg, and
finding out that their number correspondsdt',q;G as stated in

levels above and below the FL. As an example, let us choos€able |, the same way we already did with those whthg

a state of the form ;=@ €00 0000|0000 "O.

60

=1 and 2.

T I
> Ground State

1
> Ground State

O 1 excitation O 2 excitations g
> o
5 ° > 0
B >0
B >0
B >0
>o
PO
o) o]
R
9 >O
9 >0
9 > O
1 0 > g .
B > 0
>
L | L | L | L | L
-40 20 0-60 -40 20
Re Eu /d Re Eu /d
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FIG. 2. Position of theM =20 pairs of the
states of Fig. 1 aj=1.5. The arcd’ (19 pairg
andI';, (18 pairg are a slight modification of the
GS arcl“|D (20 pairs.
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FIG. 4. YD’s corresponding thlg=1 and 2.
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number of boxes of, is the excitation energy df (in units
of 2d) at g=0 for the equally spaced model.

IV. THERMODYNAMIC LIMIT

As we explained in the previous section, by increasing
M —Ng of the energiess,, become complex and arrange
themselves into an arc which escapes to infinity for lagyge
while the remainindNg stay finite with their positions barely
FIG. 3. (&) The path and Young diagram 6f. (b) Real part of  modified[see Figs. (b),1(c) and 2. Following the procedure
E, for I5. Forg large enough there is a real rdd$ and a complex  presented in Refs. 7 and 10-12 we take the |a¥gkmit
root (2). keepingM/N, g, andNg finite. In this limit the arc formed
by the energies in the complex plane becomes dense, and
C. Young diagrams representation allows for a continuous formulation. In particular, the GS

The correlated behavior of the excitations is made moré&orresponds to an art, in the complex energy plane,
explicit by a pictorial representation of the states. The idea isvhich in theg—ce limit goes to infinity.
to associate to every séta pathy, with N links on the Excited states contain finite energies in addition to the arc.
square latticeZ?, starting at the origin (0,0). This is A given finite rootE, can be either real or complex. In the
achieved by associating a horizontal link directed to theformer case we shall call it a 1-string. In the latter cB3eis
right, to every holeO, and a vertical link directed upwards, also a root, which together witk, forms a 2-string[an
to every pair®. The map starts from the lowest-energy level example of such states can be seen in Fif)]3There are
and ends at the highest one. For example, the path associataldo 3-string formed by one real root and two complex ones,
to the Fermi statd,=® "@®|ON"MO is a polygonal line having approximately the same real part, and so on. In gen-
joining the points (0,0)- (0,M)—(N—M,M). If | describes eral {Ea}gi1 is a combination of strings with several
a state withM pairs andN energy levels, then the paty  |engths. The remaininl — Ng roots condense into an arc
ends at tne pointN—M,M). The number of these sort of T, , which is a slight perturbation of the GS drg . In Fig.
paths |sC J which is precisely the dimension of the Hilbert 5 |\ o dep|ctF| andT, for the two excited statelsl andl,

spaceH
shown in F|gs tb) and Xc).
In F|gf i(a) we depr:ctr;[he %cc'\lljpatgon and path represhen Taking into account these considerations, and using the
tations of the state; which yieldsNg In agreement With 6164 of Refs. 7 and 11, one can show in the latdjenit

Fhe humerical results shown in F'.g('tﬁ' Moreover, Fig. Ba} that the excitation energy of a Richardson staegiven by
illustrates the fact that any stalteyives rise to a Young dia-

gram (YD) Y,, whose boundary is formed by the links Ng
which belong either toy, or to Yig: but not to both. The YD Eexc= z V(E,—g0)°+A2, (6)
of the Fermi state is by construction empty, i.‘é,b = Q. a=1

These YD’s capture the basic properties of the excitationswhereg is twice the chemical potential, and the enerdigs

First of all, Ng(1), given by Eq.(5), coincides with the num- satisfy the modified Gaudin equations

ber of squares on the longest southwest-nortiSHW&INE)

diagonal onY, [see Fig. 8)]. This fact provides a geometri- N 2

cal mfaa’ming t.d\lG(I) anq leads to a combinatorial prgpf of Z m_ﬁm m,

Gaudin's conjecture, which can be stated as follogyg; is

the number of YD's)Y,, associated to the pathg, which  with R(E)= V(E—¢&0)?+A?. As g—» one hasA ~gw and

have Ng squares on their longest SW-NE diagonal. TheEgs.(7) become Eqs(4).

proof of this conjecture uses the methods of Ref. This The excitation energy given by E¢p) fits quite well the

result serves to classify the excitations in terms of YD's. Forexcitation energies of our prototype exampl=40, M

example, the states witNg=1 and 2 discussed above cor- =20), as shown in Fig. 5. This also exhibits the linear be-

respond to the YD’s shown in Fig. 4. havior of the excitation energy f@r— =, i.e.,Eq,c~NgA as
Other properties of these diagrams drethe pair-hole stated in Sec. Il, and in full agreement with the lagybe-

transformation of the states induces a transposition of theinavior of Eq.(6). Thus we can extend our conjecture to the

associated YD's(ii) the main northwest-southeast diagonalwhole range ofy. Namely, any excited state is composed of

on a YD coincides with the FLsee Fig. 83)], and(iii) the = Ng elementary excitations associated to the finite Gaudin

Ng

)
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63 ' I ' ' O(1/N) from the original one. The selection of a new Fermi
eal-] 1 excitation level leads to a new Fermi séwith a different number of
60 =| — 2 excitations particles, allowing for a grand canonical formulation in a
s¢ |~ — 3 excitations R natural way.
o \\\\\ In summary, ougaudinoswill yield the same results as
prys \\\\‘ the BCS theory in the extremé=c limit, and will account
wul \\\\\ for the exact (_:orrectipns to the bulk resqlts for the finite-size
" b ‘\.\\\\ superconductl_ng grains for all the physical observables and
~ 3L .‘.'{i\\ thermodynamic properties.
Snf &
Lﬂ 2 V. CONCLUSIONS
taln We have shown in this paper that the elementary excita-
201 tions of the exactly solvable BCS model in the canonical
161~ ensemble can be explained by the Gaudin model and have no
12 counterpart in the Bogoliubov picture of quasiparticles. Their
8 e peculiar dispersion relation and the unexpected counting
Ay properties, which are due to the correlated behavior of pairs
0 : 0'5 : '1 : s and holes around the Fermi level, provide the exact finite-
g size corrections to the BCS bulk results, valid for large sys-

tems in the g.c. ensemble. These excitations, together with
FIG. 5. Excitation energie€,,.=E—Egs<14d for M=20  those obtained by breaking Cooper pairs, supply the com-
pairs at half filling. There are 4413+26+5 states corresponding plete spectrum of the canonical BCS model. A formula to
to Ng=1, 2, and 3, respectively. The particle-hole symmetry re-compute the number of elementary excitations for any given
duces these numbers to 257+15+3. state was also proposed.
We explained how the description in terms of gaudinos
energies. The Hilbert space spanned by these excitations h grees W'th the Bogohubov picture in the therm"dy”?‘m'c
. . _ /NG Ng—1 . imit to leading order inN. In the case of broken pairs, which
therefore a dlmensmdNG—(N )—(y° 7). Hence, itis rea- was not presented here, the mechanism is identical. It is of
sonable to call this new type of excitations Gaudin pairs Ofinterest to study how the phase of the superconducting order
gaudinos arameter emerges from this fixed number of particles for-
In order to compare our results with the BCS standardmylation. It will be intimately related to the possibility of
solution let's consider the excitation energy given byeal  choosing a shifted Fermi level in the lardelimit (which
Cooper pairin the Bogoliubov approach, which is given by |goses the correlation of the excitatjprallowing the intro-
\/8J2+ A? (notice thatA=2Ac9, and spans a Hilbert space duction of ground states with different number of pairs.
of dimension (\°). The standard Bogoliubov quasiparticle ~ Although we used as an example a system of equally

with an energy%\/;szr_Az would have to be compared with spaced levels, the results are more general, and apply to any

excitations involving broken Cooper pairs. Sirnge in E distribution of levels. This assertion is based on numerical
. 9 Per pairs. & 9 calculations considering broken Cooper pairs. In this case
(6) lies between two energy levels, with;,;—&;=2d

S . blocked levels are removed, and we are left with a non-
EliN [eg"l},r\‘l Fig. fjb)dEZO_(OOR,_OlW'lt\Ih ‘72’3]< E’\f0<812]]’ equally spaced spectrum, obtaining again the same general
«=&jTO(IN), an NG_(NG)[ ~Ng/(N=Ng+1)]. results. In the case of nonconstant pairing we also expect the
Therefore, our theory is consistent with@(1/N) correc- qualitative picture presented here to hold.

tions, as is well known from the existing relation between a
canonical and a grand canonical ensemble formulation in
statistical physics. It is important to notice how the Bogoliu-

bov excitations are uncorrelated with respect to the BCS We thank R. W. Richardson, C. Essebag, A. Di Lorenzo,
ground state. We already pointed out that the correlatio®\. Mastellone, L. Amico and A. Berkovich for discussions.

present in our formulation is lifted by choosing a shifted This work has been supported by Grant No. BFM2000-1320-
Fermi level FL(/). This Fermi level is within a distance C02-01/02.

ACKNOWLEDGMENTS

13. Bardeen, L.N. Cooper, and J.R. Schrieffer, Phys. R€@ 4R.W. Richardson, Phys. Le®, 277(1963; R.W. Richardson and

1175(1957. N. Sherman, Nucl. Phy&2, 221 (1964).
2A. Bhor, B. Mottelson, and D. Pines, Phys. R&¥0, 936(1958. 5G. Sierra, J. Dukelsky, G.G. Dussel, J. von Delft, and F. Braun,
3J. Dukelsky and G. Sierra, Phys. Rev. L&8, 172(1999; Phys. Phys. Rev. B61, 11 890(2000.

Rev. B61, 12 302(2000. 6J. von Delft and D.C. Ralph, Phys. Reép5, 61 (2001).

064510-5



JOSEMARIA ROMAN, GERMAN SIERRA, AND JORGE DUKELSKY PHYSICAL REVIEW B57, 064510(2003

M. Gaudin,Moddes Exactament Relus(Les Hlitions de Phy- based on counting RSOS paths.
sique, France, 1995 10R.W. Richardson, J. Math. Phy&8, 1802(1977.

8F. M. Goodman, P. de la Harpe, and V. F. R. Jor@exeter ''J.M. Roma, G. Sierra, J. Dukelsky, Nucl. Phys. 634, 483
Graphs and Towers of AlgebraS$pringer-Verlag, New York, (2002.
1989. 12| ' Amico, A. Di Lorenzo, A. Mastellone, A. Osterloh, and R.

9We thank A. Berkovich for providing us with an alternative proof ~ Raimondi, Ann. Phys(N.Y.) 299, 228 (2002.

064510-6



