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ABSTRACT 

The use of Ca-based sorbents in circulating fluidized beds (CFB) allows the in-situ desulfurization in 

oxy-fuel combustion processes. The sulfation process involves important changes in the sorbent 

morphology, which could vary depending on the operating conditions and be different to those 

observed in conventional air combustion. This work analyzes the morphological variations observed 

during limestone and dolomite sulfation at typical oxy-fuel combustion conditions (high CO2 

concentration, higher temperatures than in air combustion) in CFB combustors (long reaction times). 

Sulfated samples prepared in a thermogravimetric analyzer were analyzed by Scanning Electron 

Microscope (SEM). The space limitations due to the higher molar volume of CaSO4 compared to 

CaO in the external surface of the particles make that the CaSO4 product layer trend to grow outwards 

to form a honeycomb-shaped structure. This structure appeared for limestone at both calcining and 

non-calcining conditions. A strong effect of the CaSO4 sintering phenomenon was observed at 

temperatures above 950 ºC. Moreover, the honeycomb structure was never observed working with 

dolomite in spite of the high sulfation conversions reached with this sorbent. 
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1. INTRODUCTION 

Oxy-fuel combustion is a carbon capture technological option which consists of burning the fuel with 

a mix of pure oxygen and a CO2-rich recycled flue gas. In this way, the flue gas leaving the 

combustor is mainly composed of CO2 and H2O and thus a highly CO2 concentrated stream can be 

obtained after steam condensation in order to be subsequently transported and stored.   

There are two types of boilers to burn coal in oxy-fuel mode: Pulverized Coal (PC) and Fluidized Bed 

(FB) combustors [1]. In oxy-fuel combustion, SO2 is a pollutant gas to take into consideration before 

CO2 transport and storage. In the process of SO2 removing, an additional unit is needed in PC boilers. 

However, in FB combustors the desulfurization process may be directly performed inside the boiler 

by supplying a Ca-based sorbent, this aspect being a relevant advantage compared to PC. The 

limestone, mainly composed of CaCO3, is currently one of the most used Ca-based sorbent in entire 

world to perform the desulfurization process due to its low cost and its high availability.  

According to the equilibrium diagram of CaCO3 calcination reaction (R1) [2], which is represented in 

Fig. 1, the temperature and CO2 partial pressure are important operating variables to define the 

behavior of the limestone. In conventional air combustion conditions, the CO2 concentration 

generated from coal combustion is relatively low (about 15 vol.%) and thus the limestone sulfation is 

always performed in calcining conditions (R2) [3,4]. However, in oxy-fuel combustion conditions, 

the CO2 concentration existing in the boiler is much higher, ranging from 65 to 90 vol.%, and 

therefore the limestone may operate in calcining (R2) or non-calcining conditions (R3) [5, 6]. 

 CaCO3      CaO  +  CO2 (R1) 

 CaO  +  SO2  +  ½ O2     CaSO4 (R2) 

 CaCO3  +  SO2  +  ½ O2     CaSO4  +  CO2 (R3) 
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One of the limiting characteristic of the limestone as Ca-based sorbent is its level of sulfation which 

seldom reaches full conversion. This means it is not possible to make use of the whole particle since 

the blockage of the outer pores occurs as CaSO4 is forming. It must be considered that the molar 

volume of CaSO4 is higher than that of the initial reactant, that is, CaCO3 or CaO. 

In previous studies on sulfation of Ca-based sorbents performed by the research group at oxy-fuel 

conditions in a thermogravimetric analyzer (TGA) [7] and in a batch FB reactor [8], it has been 

observed that the highest sulfation conversions are achieved in calcining conditions and the sulfation 

reaction is carried out in two steps, the former being faster than the latter. The first one is controlled 

by the diffusion of the reactant gas through the porous system of the particle until the blockage of the 

external pores is produced, and the second one by the diffusion of the reactant gas through the 

product layer according to the shrinking core model [9]. Several researchers [10, 11] found that the 

residual activity of the limestone, that is, the second reaction step, plays an important role in the 

sulfation process at long reaction times which are typical of the circulating fluidized bed combustors 

(CFBC). Therefore, the study of the evolution of the product layer formed during the sulfation 

process could be a key aspect to have an insight into the sulfation process.  

On the other hand, at oxy-fuel operating conditions, an optimum temperature with respect to sulfur 

retention was found to be about 900-925 ºC corresponding to calcining conditions [12]. Operating 

temperatures above 925 ºC led to a decrease in the sulfur retention values.  This fact suggests that the 

limestone particles undergo a loss of reactivity due to the sintering phenomena associated with the 

reactant solid [13], CaO or CaCO3, or the product layer, CaSO4. Anthony and Granatstein [14] 

reported another explanation based on the possibility of CaSO4 decomposition at high temperatures, 

leading to a release of SO2 and lower sulfur retention values. Those results were corroborated by de 

las Obras-Loscertales et al., (2014) during the operation in a continuous oxy-fuel bubbling FB 

combustor.  

Most of the research studies about morphological properties of sulfated Ca-based sorbents have been 

carried out under conventional combustion conditions [11, 15, 16]. However, as a consequence of the 
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very different conditions (regarding gas composition and temperature) existing in the oxy-fuel boiler, 

different morphological properties in the sorbents could be expected. 

The main novelty of this work is focused on studying the morphological variations of the Ca-based 

sorbents during sulfation at oxy-fuel combustion conditions; especially the evolution with time of the 

external product layer of CaSO4 at different operating conditions. For this purpose, sulfated sorbent 

samples obtained in a TGA were analyzed by the Scanning Electronic Microscope (SEM) technique.  

 

2. EXPERIMENTAL SECTION 

2.1. Materials 

The materials used as calcium sorbent for the SEM analysis were two Spanish Ca-based sorbents, one 

limestone and one dolomite, in a narrow particle size interval between 0.1 and 0.2 mm. The sorbents 

were dry. The limestone used is mainly composed of CaCO3, whereas the dolomite is characterized 

by presenting a Ca/Mg molar ratio close to one (Ca/Mg = 1.1).  

Since Ca-based sorbents can be used for the sulfur retention in calcining or non-calcining conditions, 

it is essential to know the main physical properties of raw and calcined sorbent. Table 1 shows the 

chemical composition and the physical properties of the sorbents used. Chemical composition was 

determined by inductively coupled plasma (ICP) analysis. Apparent density and porosity were 

determined by Helium pycnometry and mercury intrusion, respectively.  As can be seen, these 

properties undergo great changes depending on whether the sorbent is raw, semi-calcined (dolomite 

case) or calcined. These variations are related to the different molar volume of the compounds 

(MgCO3 or MgO and CaCO3 or CaO). In all the cases, raw sorbents presented a high crystallization 

level which involves low porosity. During the calcination stage the sorbents develop a high porosity 

because the CaO molar volume is lower than that of CaCO3. Later, the porosity decreased during 

sulfation process because the CaSO4 presented a higher molar volume than the CaO. 

 

2.2. Characterization methodology 
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The sulfated sorbent samples were prepared in a TGA, Setaram TGC-85 type, described elsewhere 

[7]. The sample holder was a wire mesh platinum basket (8 mm diameter, 2 mm height). The reacting 

gas mixture containing SO2, CO2, O2 and N2, was controlled by specific electronic mass-flow 

controllers and it was introduced at the bottom of the reaction tube. In calcining conditions, the 

sorbents underwent two stages, calcination and sulfation, whereas in non-calcining conditions the 

sulfation was carried out over the raw sorbent.  For each run, 30 mg of sample was put into the basket 

and rapidly introduced into the TGA reactor at the desired temperature and gas composition 

(N2+CO2+O2). SO2 was introduced after weight stabilization of calcined or non-calcined sample.  The 

total gas flow was 10 lN/h to assure that neither external mass transfer nor inter-particle diffusion 

were affecting the sulfation reaction rate. The interval of temperature ranged from 800 to 975 °C, the 

CO2 concentration from 15 to 80 vol.%, and the O2 concentration from 4 to 40 vol.%. The SO2 

concentration was kept constant at 3000 vppm in all tests.  

The sulfation conversion of the sorbents along time in both calcining (Xs,cal) and non-calcining 

conditions (Xs,non-cal) was calculated from the sample mass variation registered by the TGA as follow: 
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being W(t) the mass of the sample at each time, WCaO the initial mass of CaO, WCaCO3  the initial mass 

of CaCO3, and WCaSO4 the mass of the sample assuming total conversion to CaSO4. 

The sulfated samples were kept in a desiccator to avoid hydration before analysis.  

To analyse the internal section of the particles, particles were embedded in epoxy resin, cured 

overnight, cut and polished before SEM characterization. The morphology of the sorbents was 

analysed in a Scanning Electron Microscope (SEM) ISI- DS – 130 coupled to an ultra-thin window 

PGT Prism detector for energy dispersive X-ray (EDX). 
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3. RESULTS AND DISCUSSION 

The effect of temperature (from 800 to 975 ºC), CO2 concentration (from 15 to 80 vol.%), and 

reaction times (15 min to 24 hours) on the sulfation process were analysed in a TGA to cover the 

possible conditions existing in a oxy-fuel FB combustor [17]. To follow the evolution with time of 

the CaSO4 product layer, samples sulphated at different reaction times were obtained.  

 

3.1. Effect of reaction time on product layer 

The mean residence time of solids in CFBCs is an intrinsic variable of this type of boilers which can 

range up to 10-20 hours for particles just above 200 m [18]. In addition, it has been demonstrated 

that the residual activity of the sorbent after blocking the outer pores during the sulfation process may 

be significant [7, 10, 11]. Therefore, it is expected that an increased residence time of the solids leads 

to higher sulfur retention values. 

To get an insight into the evolution of the CaSO4 product layer with respect to the residence time of 

the solids in the combustor, sulfated samples at different reaction times were prepared in the TGA 

and analyzed by SEM technique. These samples correspond to the points represented in the sulfation 

conversion curves showed in Fig. 2 for limestone and dolomite under calcining and non-calcining 

conditions.  Fig.s 3 and 4 illustrate the evolution of the external and internal surface of sulfated 

particles of Granicarb limestone at different reaction times, both in calcining and non-calcining 

conditions, respectively. 

Fig. 3A shows how the structure of the limestone is being closed during the first step of the sulfation 

reaction and therefore for short reaction times, 15 minutes, the product layer of CaSO4 is not well 

defined because the external pores are not completely blocked. Subsequently in next picture (Fig. 3B) 

it can be seen that the CaSO4 product layer has plugged the external pores and has completely 

covered the outer part of the particle indicating that the second reaction step has already started. This 

second step is characterized by producing a decrease in the sorbent reactivity whose sulfation pattern 

corresponds to the Shrinking Core Model (SCM) [9]. Likewise, the change of the mechanism of 
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reaction, between first and second step, can be graphically identified with the change in the slope of 

the sulfation curve obtained in TGA tests (see Fig. 2).  Subsequently, as the sulfation reaction is 

proceeding, a continuous increase in the thickness of the CaSO4 product layer and in the grain size of 

CaSO4 were observed (Fig. 3C).  So, for long reaction times, the thickness of the product layer might 

reach values near the radio of the limestone particle as it is shown in Fig. 3D. In addition, in this 

picture, two different structures of CaSO4 product layer were observed.  

The first one, corresponding to the inner part, was composed of small CaSO4 crystals. The second 

one, corresponding to the outer part, was composed of CaSO4 crystals with honeycomb-shaped 

structure. The space limitations as a consequence of the higher molar volume of CaSO4 compared to 

CaO in the external surface of the particles make that the CaSO4 product layer trend to grow outwards 

to form this honeycomb-shaped structure. Moreover, making a comparison between CaO and CaSO4 

grains, a significant increase in the grain size is observed during the sulfation stage not only due to 

the different molar volume but also to the agglomeration or coalescence of several grains.  

In non-calcining conditions (see Fig. 4), the CaCO3 grains are not well-distinguished in the inner part 

of the particle and exhibited a more compact appearance. However, some similarities with respect to 

the calcining conditions were observed, i.e. the sulfation pattern coincided with the SCM and an 

external honeycomb-shaped CaSO4 product layer was developed. It should be remarked that this 

structure is formed at shorter reaction times as a consequence of the higher space limitations in the 

external layer of the limestone particles. 

Hajaligol et al. [19] and Snow et al. [20] reported that the CO2 released outside from direct sulfation 

reaction was capable of creating preferential ways which provided higher porosity and high sulfation 

conversion. Nevertheless, based on the SEM images taken in this work, negligible differences in the 

CaSO4 product layer between calcining and non-calcining conditions were detected. 

Regarding unreacted core at calcining conditions, previous studies found that CaO sintering produced 

important variations in sorbent structure [21]. This phenomenon affects sorbent reactivity especially 

in those processes where the time scales of sorbent decomposition and reaction are similar, e.g., the 
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calcination–sulfation in furnace sorbent injection processes (particle sizes below 80 m and short 

reaction times, below minutes) [22]. In non-calcining conditions, de Diego et al. [23] observed that 

CaCO3 sintering affected reaction rate during sulfidation at typical gasification conditions and 

particle sizes used in FB, but no relevant changes were observed in the morphological analysis of the 

particles. In a similar way, the morphological analysis of the unreacted core carried out in this work 

revealed negligible variations in the internal structure of the sorbent during long sulfation times 

despite their possible effect on reactivity.  

In addition, the morphological changes suffered by dolomite in the product layer were masked due to 

the existence of MgO which provide an extra porosity to the particle (MgO behaves as inert solid 

during the sulfation process) (see Fig. 5). Previous studies demonstrated that dolomites are able to 

reach high sulfation conversions, near 1 with respect to Ca content, both in calcining and non-

calcining conditions during oxyfuel combustion in fluidized beds [24], as observed in Fig. 3. The no 

space limitation as a consequence of the extra porosity avoided the honeycomb-shaped structure 

formation at any operating condition, even at high sulfation conversion. This characteristic was also 

maintained at semi-calcining conditions (CaCO3-MgO).  

 

3.2. Effect of temperature on the product layer 

As stated above, temperature is an important variable in the sulfation process because depending on 

the CO2 partial pressure used, the limestone will be sulfated under calcining or non-calcining 

conditions. This variable will highly affect the sulfation level reached by the sorbent. In addition, 

temperature may have a direct influence on morphological and structural properties of the sorbent. 

To analyze the influence of the sintering phenomenon in the CaSO4 product layer, several samples 

sulfated at different temperatures at long reaction times (24 hours) were studied. The SEM images of 

the external surface are shown in Fig. 6. Considering the high sulfation level of the particles, 

negligible differences for samples sulfated at temperatures below 900 ºC and typical honeycomb-

shape structure at the external layer were detected. This structure undergoes a slight change from 900 
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to 950 ºC but the most relevant change was observed in the sulfated sorbent at 975 ºC.  Some 

researchers [25-27] found that high temperatures led to the sintering phenomenon of the sorbents 

decreasing their sulfation capacity. Therefore, this effect seems to be one of those responsible for 

decreasing the sorbent sulfation conversion at temperatures above 900 ºC obtained in TGA [7]. 

However, Anthony and Granatstein, [14] and de las Obras-Loscertales et al. [24] reported that the 

existence of reducing conditions in localized parts of the bed are capable of producing the reverse 

sulfation reaction at high temperatures during operation in FB combustors. This phenomenon together 

with the sorbent sintering could be responsible for the optimum temperature found during the sulfur 

retention in oxy-fuel FB combustors, 900-925 ºC (see Fig. 6).  

Finally, it must be considered that the morphology of the calcium sulfate layer and the conversion 

degree can be modified by attrition phenomena [28, 29] and the presence of fuel-ashes [14] under real 

FB combustion conditions. 

 

3.3. Effect of CO2 concentration on the product layer.  

Oxy-fuel combustion is based on burning the fuel with a mix of oxygen and a CO2-rich recirculated 

flue gas stream in order to control the operating temperature in the combustor. Therefore, the CO2 

concentration is a key factor to be considered in the process when comparing with conventional air 

combustion process. As it was stated, Ca-based sorbent may operate under calcining or non-calcining 

conditions. Nevertheless, there is no an agreement with respect to the effect of CO2 concentration on 

sulfation reaction. Some researchers found that the sulfation conversion was higher under non-

calcining than under calcining conditions [19, 20]. They argued that the CaSO4 product layer formed 

under non-calcining conditions was more porous than in calcining conditions due to the CO2 flow 

released during the direct sulfation reaction (R3). However, Hu et al. [30] disagreed with this 

assumption since they consider that porosity is unlikely to be created from a diffusional flow of CO2. 

Likewise, other authors [31-33] have observed that high CO2 partial pressures reduce the sulfation 

reaction rate under certain operating conditions. 
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To analyze the influence of the CO2 partial pressure on the CaSO4 layer formed around the particles, 

SEM photographs of  highly sulfated limestone at different CO2 concentrations (15, 65 and 80 vol.%) 

were studied, which corresponded to both non-calcining and calcining conditions. As can be seen in 

Fig. 7, the outer surface of the particles exhibits similar structure and is not affected by the 

concentration of CO2 at each specific condition, calcining or non-calcining. These results 

corroborated previous studies carried out by the research group [7, 8] where it was found that the 

main effect of CO2 concentration on the sulfation process was associated with the fact of defining 

calcining or non-calcining conditions. An increase in CO2 concentration shifted the temperature of 

CaCO3 decomposition to higher values. However, once calcining or non-calcining conditions were 

reached, the effect of CO2 could be considered negligible. 

 

4. CONCLUSIONS 

Morphological characterization of two Ca-based sorbents, one limestone and one dolomite, during the 

sulfation process was carried out at conditions kind of oxy-fuel CFB combustion. A TGA was 

employed to obtain the sulfated samples. The sorbent structure and the evolution of CaSO4 product 

layer were analyzed by SEM-EDX technique. 

Two different structures of CaSO4 product layer were observed during limestone sulfation. The first 

one, corresponding to the inner part of particles, was composed of small CaSO4 crystals. In contrast, 

the space limitations as a consequence of the higher molar volume of CaSO4 compared to CaO in the 

external surface of the particles make that the CaSO4 product layer trend to grow outwards to form a 

honeycomb-shaped structure. This structure was observed both in calcining and non-calcining 

conditions. 

The honeycomb-shaped structure was never found during dolomite sulfation because the extra 

porosity developed during MgCO3 calcination lead to the lack of space limitations. In this case, high 

sulfation conversions were reached in semi-calcining (CaCO3-MgO) and calcining (MgO.CaO) 

conditions. 
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The morphological changes in the sulfated particles were analyzed in the whole range of temperatures 

from 850 to 975 ºC. The honeycomb-shaped structure was observed at all temperatures, except to 975 

ºC, as a consequence of the severe sintering effect observed at values above 950 ºC.  

Eventually, the external surface of limestone particles was not affected by the CO2 concentration in 

both calcining and non-calcining conditions. 
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TABLES AND FIGURES 

 

Table 1. Chemical analysis and physical properties of the sorbents. 

 Limestone Dolomite 

 Granicarb Sierra Arcos 

Composition (% wt)   

CaCO3 97.1 52.5 

MgCO3 0.2 40.5 

Na2O 1.1 <0.1 

SiO2 <0.1 3.8 

Al2O3 <0.1 1.7 

Fe2O3 <0.1 0.6 

Apparent density (kg/m3)   

Raw (CaCO3) 2573 2512 

Semi-calcined (CaCO3·MgO)*  1912 

Calcined (CaO)** 1578 1454 

Porosity (%)   

Raw (CaCO3) 3.7 9.5 

Semi-calcined (CaCO3·MgO)*  30.6 

Calcined (CaO)** 49.0 51.7 

 

* Calcined in CO2 atmosphere at 850 ºC during 10 minutes.  

** Calcined in N2 atmosphere at 900 ºC during 10 minutes 
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Fig. 1. Thermodynamic equilibrium curve of CaCO3 calcination 
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Fig. 2. Sulfation conversion curves in TGA. Symbols represent sulfated samples used for SEM 

characterization.  calcining and  non-calcining conditions.  SO2=3000 vppm. dp=0.1-0.2 mm. 
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External surface Internal surface CaSO4 product layer 

  

  

  

  

Fig. 3. SEM images of external and internal surface of Granicarb limestone in calcining 

conditions at different reaction times. 900 ºC, 60% CO2, 3000 ppm SO2, dp= 0.1-0.2 mm. 

  

A) 15 min  

B) 2 hours  

C) 10 hours  

D) 24 hours  
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External surface Internal surface CaSO4 product layer 

   

   

   

Fig. 4. SEM images of the external and internal surface of Granicarb limestone in non-

calcining conditions at different reaction times. 850 ºC, 80% CO2, 3000 ppm SO2, dp= 

0.1-0.2 mm. 
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Direct sulfation Indirect sulfation 
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Fig. 5. SEM images of external CaSO4 product layer of Sierra de Arcos dolomite at different reaction

times. 60% CO2, 3000 ppm SO2, dp= 0.1-0.2 mm. Direct sulfation (800ºC) and indirect sulfation (900

ºC).  
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Fig. 6. SEM images of external surface of Granicarb limestone sulfated at different 

temperatures for 24 hours. 60% CO2, 3000 ppm SO2, dp= 0.1-0.2 mm. 
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Fig. 7. SEM images of the external surface of Granicarb sulfated limestone for 24 hours at 

different CO2 concentrations. 850 ºC, 3000 ppm SO2, dp= 0.1-0.2 mm. 
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