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Competition between Anderson localization and leakage of surface-plasmon polaritons
on randomly rough periodic metal surfaces
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The competition between strong localization and radiative damping is studied for surface-plasmon polaritons
propagating along a finite, randomly rough metallic surface that is periodic on average, by means of both
numerical simulations and perturbation-theoretic calculations. Our results show that localization is the pre-
dominant contribution to the exponential decay of the transmission. In addition, it is found that the localization
length is larger for a frequency in an allowed band of the surface-plasmon polariton dispersion relation for the
underlying periodic structure than it is for a frequency in the vicinity of a gap. No significant leakage inhibition
is observed near the band ed§®0163-182807)03728-4

In recent years, the study of the strong localization ofsurface profile functiorf(x;), which is assumed to be non-
electromagnetic waves in one-dimensional random systenwero only in the interval-L/2<x;<L/2, is a single-valued
has attracted a great deal of attentfofiln particular, sev- function ofx, that is random but periodic on average. In the
eral works have been devoted to the characterization of weakresent work we model this rough surface by the use of a
and strong localization of surface plasmon polaritt®BP’s  local random impedance boundary conditfbiBC) on the
on randomly rough metal surfacgs-* It is well known that ~ planexz=0,
any amount of disorder leads to strong localization in one-
dimensional systems. However, in calculations of the —H5 (X1, %3] ®)]x.—0
Anderson localization length of a surface wave propagating*3 $
along a randomly rough surface it is important to estimate its o
attenuation length caused by leakage. If this length is long =— —[—e(w)]*1’2[1+s(x1)]H2>(x1,x3|w)|X3:0, (D)
compared with the decay length of the transmissivity, one ¢
can be confident that the latter is an accurate estimate of thehereH, (x;,X3|w) is the single nonzero component of the
localization length of the surface wave. In this connection, taotal magnetic field in the vacuum regiag>0. The imped-
our knowledge, none of the theoretical works reported thusnce functions(x,) is the sum of a finite periodic function
far on the SPP localizatidrt* has addressed in a rigorous sp(x;) and a zero-mean stationary Gaussian random process
guantitative manner the question of SPP leakage. It is ousr(Xy),
purpose to study in this paper the interplay between SPP
localization and leakage; we will describe the frequency- S(X1) =[Sp(X1) +Sr(Xq) Jthf(xy, L), @
dependent length scales of the localization and radiativgvhere the function th#; L) =2cosH(BL/4)/[ coshBL/2) +
damping processes Hyw) andl,,4(w), respectively. Fur- coshB(x;)] with 8=100/L cuts off s(x;) for |x;|>L/2 in a
thermore, in addition to the random nature of the corrugatiosmooth fashion. For the functiorsp(x;) we choose
that produces the constructive interference of multiply scatsy(x,)=sycos(2mx,/d), while sg(X;) is characterized by
tered SPP leading to localization, a strong periodic COMPO¢sy(X1)Sr(X])) = Ezexp(—|x1—x1|2/a2), where 52=<s§(x1)).
nent is superimposed. This allows us to study the predictiorrhe connection between the impedance funcgpxy) and
by Johrt according to which localization should be eased orthe surface profile functionz(x;) has been established
strengthened for frequencies near a band edge of the undeggcently!’
lying periodic structure, owing to Bragg scattermtf:'® The magnetic fieldH3 (x,,xs| @) consists of the sum of
Moreover, the behavior of the radiative damping at the banghe field of an incoming SPP and a scattered field
edge can be analyzed in light of the work predicting inhibi-
tion of leakage when the frequency lies at a band édge.  H3 (x;,X3| @) = exlik(w)X; — Bo( ®)X3]

The physical system we consider consists of a vacuum in dq
the regionx;>{(x;) and a metal in the regioR3</(X4). * . .
The rr?etal 3is c(halr)acterized by the free—e%ect?on (dizla)lectric +J,wﬁR(q’w)equqxlﬂaO(q’w)X3]’
function e(w)=1—w§/w2, where w,, is the plasma fre-

guency of the conduction electrons. Thus no Ohmic losses &)
occur in the system. The electromagnetic field in ipipo-  where k(w)=(w/c)[1—e Yw)]*? Bo(w)=(w/
larized, with the plane of incidence thg-x; plane. The c)[—e(w)] Y3 and ao(q, ) =[(w?/c?) — g%
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R ag(d,w)]1>0 and Infag(q,w)]>0. When Eq.(3) is
substituted into the boundary conditi@h), we obtain for the

integral equation satisfied by the scattering amplitude

R(q,w)
R(d, @)= Bo(®)Go(q,®)S[q—k(w) ]+ Bo( @) Go(q, w)
© dp.
Xfﬁwﬂs(q—p)R(p,w), (4)

where

Go(a,0)=ie(w)/{e(w) ag(q,w) +i(w/c)[ — e(w)]H2
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is the Green’s function for a SPP on the unperturbed surface

[s(x;)=0] and s(Q) the Fourier transform o§(x,). The

integral equatiori4) was solved numerically by converting it

FIG. 1. Average of the logarithm of the transmission coefficient
as a function of the number of perioblg=L/d for a finite, periodic
on average, random metal grating with=392.5 nm, s;=3,

into a matrix equation by the use of a quadrature scheme. ,_ 45> s=02 and\.=157.1 nm. Solid curvey/cG=0.3; long-
1 ey P . . Jy

For x,>L/2, the magnetic fiel_d in the vacuum region yashed curvew/cG=0.4; dashed curvey/cG=0.46. The dash-
x3>0, evaluated on the surface, is found to have the form gotted curve representsTirfor a pure sinusoidal gratings& 0) for

H5 (x,0l0) =exd ik(w)Xx,]+ 1 (w)

L

(5a)

=t(w)exgik(w)x], x> (5b)

Ey
where the SPP reflection and transmission amplitudes

andt(w) are given by

N)=iGy (—k(w),0)R(—k(w),0)C(—k(w),0),
(6a)

t(w)=1+iG, '(k(w),0)R(K(w),0)CK(w),w). (6b)

In Egs. (6) C(+k(w),w)=wl/c[—e(w)]'?k(w), as ob-
tained from

C(q,0)={e(w)ay(q,0) —i(w/c)
[— e(w)]Y22ie(w)k(w).

The corresponding SPP reflection and transmission coeff

cients areR(w)=|r(w)|? and T(w)=|t(w)|?, respectively.

a frequency in the gap/cG=0.46.

the zeros of the determinant arising in the homogeneous
problem with the use of the IBC. For a peride- 392.5 nm,
Sp=3, and a plasma wavelengi},=157.1 nm, our results
reveal that a gap opens up for 0<d/cG<0.4945, where
G=2/d; we will be concerned in what follows with the
influence of the frequency when approaching the edge of the
lower band atw, /cG=0.45. To establish the accuracy and
efficiency of the numerical calculations, we have studied the
SPP scattering from a finite sinusoidal grating consisting of
an integer numbeNy of periodsd. Our results, not shown
here, satisfy the energy conservation condition
R+ T+ S=1 within a 0.01% error and agree with those ob-
tained in Refs. 14 and 16 for similar geometries.

Let us now turn to the random surface impedance that is
periodic on averagécf. Eq. (2)]. For each realization of
s(x;), whose random component is generated numeriéally,
R, T, andS are calculated in the manner described above.
The mean values of the quantities of physical interest are
then obtained by averaging them over the ensemble of real-
izations ofs(x;). The quantity of interest in the present cal-
culations is the self-averaging quantityT), regarded as a
function of the length. of the random segment of the metal

Part of the energy in the incident SPP is converted into volSurface and of the frequenay of the incident SPP. This is

ume electromagnetic waves in the vacuum, propagatin

Qecause in a one-dimensional random system this quantity is

away from the surface. The total scattered power, normalize§XPected to decay exponentially with increasingwith a

by the power in the incident SPP, is given by

Bo(w)

2 10} § 2
S(w)—f_v/z dasm 2|(((J{))CO 05

R( 2siné’S , w)
c
()

decay length that is identified as the localization length of the
corresponding wave in the system. In Fig. 1 the length de-
pendence of (InT) is shown for three frequencies

w/cG=0.3, 0.4, and 0.46. In all three cases, a linear depen-
dence with negative slope is found, manifesting an exponen-
tially decaying behavior of the transmission channel. Note

The integrand represents the fraction of the energy of théhat for the frequencyw/cG=0.46, in the gap of the SPP
incident SPP that is scattered into an angular region of widtldispersion relation for the infinite sinusoidal grating, the

d 6 about the scattering anglg,.

transmission is larger in the presence of roughness than it is

Since we are interested in studying the localization andor a pure sinusoidal gratin@ncluded in Fig. 1 for the sake
radiative damping of SPP on a random surface impedancef comparisoh, in agreement with Ref. 19. It should also be
that is periodic on average, with special emphasis on theointed out that the randomness, despite its being small com-
importance of the underlying periodic structure, it is necespared to the periodicity strengtts{/5=15), results in the
sary to determine the SPP dispersion relation for an infinitéransmission being exponentially decaying even for frequen-
sinusoidal grating. This is done by numerically looking for cies lying in the band of the pure periodic grating. But there
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is yet another possible mechanism besides localization re- TABLE I. Results forlt(w) (from numerical simulationsand
sponsible for such behavior: radiative damping. By assumingdyad(w) (from perturbation-theoretic calculationsalong with the
that both lead to a frequency-dependent exponential decay ¢sicalization length (w) obtained from them, for different frequen-
the SPP transmission coefficient scaled by the localizatiofies. The parameters ade=392.5 nm,s,=3, a=d/2, §=0.2, and
length | (w) and the radiative damping length,4(w), re-  Ap=157.1 nm.

spectively, one can write the Lyapunov exponkyfiw) as’

wlcG I+(w)/d I ag(@)/d I(w)/d

L
INTyoc— ——  with I7%(w)=1"%w)+| (). (8 0.3 392 712 L2
(InT) l+(w) (@) (@) +lrad(@)- (8) 0.4 28+1 606 29+1
0.46 211 974 211

Since the results shown in Fig. 1 provide information about
[+(w), one needs to know eithéfw) orl,,4(w) in order to

determine which mechanism is the dominant one in this par- . Lo . .
ticular situation. for the underlying periodic structure, in agreement with simi-

By means of energy conservation argumeéfts,,y(w) Ia}r behaviors predqc_ted and observed in different physical
could be inferred from the numerical results for the totaiSituations:**In addition, the results of Ref. 14 for a slightly
scattered powefS) as a function of the surface length since different metal surface glsq point_in that direction, although
(S)=L/l,44. Unfortunately, our numerical results for the (he absence of a quantitative estimate gf(w) makes the
mean scattered intensity, not shown here, are strongly afftérpretation therein more complicated.

fected by the large radiation losses owing to edge-diffraction With respect to the behavior ¢f,q(w), it has been ar-
effects(up to 90% of the total incoming SPP poweFhus, gued that leakage should either vanish or substantially de-

even though the relative error remains indeed low, the factr€ase at the band edge frequef‘l_@his is not observed in
that this strong contribution has to be subtracted fi@h  ©U" numerical simulation calculations f¢8), nor is it ob-

makes it unfeasible to discern the real behaviot $f as a served in Ref. 14. Nevertheless, as pointed out above, there
function of the grating length. exist strong radiation losses produced at the edges of the

To elude these edge effects, we have developed an an%r-‘ite gratings, which might exhibit a very weak frequency
lytical calculation based on the two-potential formalism déPendence, thus hindering the observation of such leakage

through a perturbative treatment of the random componen{f‘hibition' Our perturbative calculations, which do not ac-
the periodic component being treated exal®iyEhis pro- count for those edge effects, do not reveal any significant

vides an independent calculation ¢8) through terms of decrgase in th.e leakage for frequencies near the pand edge.
second order irs and leads to the result It is also of interest to study the surface magnetic field for

given realizations ofs(x;). This is shown in Fig. 2 for

2B4(w) 8 Ng=50 and two frequenciess/cG=0.4 (solid curve and
r’a},(w): WZ 2 2 2 Sm—n.m’ —n’ w_/cG=0.46 (dashed cu_rv)e We o_bserve_ for both frequen-
monom on cies that the surface field, leaving aside some strong en-
wlc dq hancements close to the left edge of the grating, decays very
f Eao(q,w)an(q,w)F:;,n,(q,w) rapidly with increasing length upon entering in the grating,
Tt as expected. However, there exists for the lower frequency in
xg(|g—k(w)+(m—n)GJ), 9)
where 37 ' ' '
L (a)
Fmn(0, @)= Bo(©)Gom(d,®){Sno+ 3S0Bo( @) 5 | ]
X[Gp(k(0),0)+Gp _1(K(),0)]} =
[Gmn(0,w) is the reduced Green’s function for SPP on a = 1 4
periodically  corrugated  surfatd.  The function
9(|Q|) = Vmaexp(—Q%?4) is the power spectrum of the V\A
random surface roughness. The radiative damping oL MY § VAV (AT VIS A
lengths thus obtained arel,,¢(w/cG=0.3)=712A, 3 >
[ ag(w/cG=0.4)=606d, and |, ,4(w/cG=0.46)=974d. ’;l of
These values are one order of magnitude larger than those ol & s L
l+(w) calculated by fitting the(InT) curves in Fig. 1 to I S S
straight lines. This manifests that radiative damping is neg- -30 -20 -10 0
ligible within the length scale we are dealing with in this Xlld
work, so that strong localization of SPP is the physical
mechanism giving rise to the linear decay(6fT) shown in FIG. 2. (a) Square modulus of the total surface magnetic field

Fig. 1. The values of(w) for the three frequencies studied for a single realization of a random, periodic on average, metal
here are presented in Table I. It is evident that the localizagrating with d=392.5 nm,s,=3, Ny=50, a=d/2, §=0.2, and

tion length becomes shorter as the frequency of the incomingp:157,1 nm. Solid curve, w/cG=0.4; dashed curve,
SPP approaches the band edge of the SPP dispersion relatiorcG=0.46.(b) The surface impedance profile is also included.
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Fig. 2 a small region inside the random grating, sufficientlyand the total decay length(w) (through numerical simula-

far from the edges, where the field appears to be enhancetion calculationy the localization length(w) has been ob-
This suggests that a localized state has been excited by th&ined. In all the cases studied here, it has been shown that
incident SPP. The fact that there is no correlation betweecalization predominates over leakage. The localization
the surface impedance profile and the shape of the squargmgth is larger for frequencies in the band than it is for a
modulus of the magnetic field within that region supportsfrequency in the vicinity of the gap. We have found no evi-
this suggestion. In addition, the disappearance of such locayjence of leakage inhibition at the band edges, contrary to the
ized state upon changing the frequency, which in turn modipregiction in Ref. 4. It should be emphasized that, to our
fies the phase coherence conditions responsible for it, agreggowledge, these are the first rigorous calculations up to now
with our previous argument. Similar surface fl_eld_locallzedthat explicitly and quantitatively address the issue of leakage
states have been_ encountered for other realizations of_ s surface electromagnetic waves, thereby allowing us to
random surface impedance. Furthermore, these localizgdccyrately obtain the localization length. Finally, our results
states seem to be similar in nature to those obtained througy; the surface magnetic field for given realizations of the

incident light excitation in Refs. 5 and 13. _ random surface impedance suggest the existence of localized
In summary, by means of a theoretical formulation thatgiates.

describes in a rigorous manner the scattering of a surface

plasmon polariton propagating along a planar vacuum-metal This work was supported in part by U.S. ARO Grant No.
interface by a one-dimensional obstacle modeled through aBAAH 0-96-1-0187 and by both the Spanish DGICYT Grant
impedance boundary condition, the angular spectrum of th&lo. PB93-0973-C02-02 and CSIC. It was also supported by
scattered electromagnetic field in the vacuum half-spacéhe University of California, Irvine, through an allocation of
above the metal surface can be calculated. By calculatingomputer time. J.A.S.-G. acknowledges a travel grant from
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