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Competition between Anderson localization and leakage of surface-plasmon polaritons
on randomly rough periodic metal surfaces
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The competition between strong localization and radiative damping is studied for surface-plasmon polaritons
propagating along a finite, randomly rough metallic surface that is periodic on average, by means of both
numerical simulations and perturbation-theoretic calculations. Our results show that localization is the pre-
dominant contribution to the exponential decay of the transmission. In addition, it is found that the localization
length is larger for a frequency in an allowed band of the surface-plasmon polariton dispersion relation for the
underlying periodic structure than it is for a frequency in the vicinity of a gap. No significant leakage inhibition
is observed near the band edge.@S0163-1829~97!03728-4#
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In recent years, the study of the strong localization
electromagnetic waves in one-dimensional random syst
has attracted a great deal of attention.1–4 In particular, sev-
eral works have been devoted to the characterization of w
and strong localization of surface plasmon polaritons~SPP’s!
on randomly rough metal surfaces.5–14 It is well known that
any amount of disorder leads to strong localization in o
dimensional systems.3 However, in calculations of the
Anderson localization length of a surface wave propaga
along a randomly rough surface it is important to estimate
attenuation length caused by leakage. If this length is lo
compared with the decay length of the transmissivity, o
can be confident that the latter is an accurate estimate o
localization length of the surface wave. In this connection
our knowledge, none of the theoretical works reported t
far on the SPP localization5,14 has addressed in a rigorou
quantitative manner the question of SPP leakage. It is
purpose to study in this paper the interplay between S
localization and leakage; we will describe the frequen
dependent length scales of the localization and radia
damping processes byl (v) and l rad(v), respectively. Fur-
thermore, in addition to the random nature of the corrugat
that produces the constructive interference of multiply sc
tered SPP leading to localization, a strong periodic com
nent is superimposed. This allows us to study the predic
by John1 according to which localization should be eased
strengthened for frequencies near a band edge of the un
lying periodic structure, owing to Bragg scattering.5,14,15

Moreover, the behavior of the radiative damping at the ba
edge can be analyzed in light of the work predicting inhi
tion of leakage when the frequency lies at a band edge.4

The physical system we consider consists of a vacuum
the regionx3.z(x1) and a metal in the regionx3,z(x1).
The metal is characterized by the free-electron dielec
function e(v)512vp

2/v2, where vp is the plasma fre-
quency of the conduction electrons. Thus no Ohmic los
occur in the system. The electromagnetic field in it isp po-
larized, with the plane of incidence thex1-x3 plane. The
560163-1829/97/56~3!/1103~4!/$10.00
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surface profile functionz(x1), which is assumed to be non
zero only in the interval2L/2,x1,L/2, is a single-valued
function ofx1 that is random but periodic on average. In t
present work we model this rough surface by the use o
local random impedance boundary condition16 ~IBC! on the
planex350,

]

]x3
H2

.~x1 ,x3uv!ux350

52
v

c
@2e~v!#21/2@11s~x1!#H2

.~x1 ,x3uv!ux350 , ~1!

whereH2
.(x1 ,x3uv) is the single nonzero component of th

total magnetic field in the vacuum regionx3.0. The imped-
ance functions(x1) is the sum of a finite periodic function
sP(x1) and a zero-mean stationary Gaussian random pro
sR(x1),

s~x1!5@sP~x1!1sR~x1!#thf~x1 ,L !, ~2!

where the function thf(x1 ,L)52cosh2(bL/4)/@cosh(bL/2) 1
coshb(x1)] with b5100/L cuts off s(x1) for ux1u.L/2 in a
smooth fashion. For the functionsP(x1) we choose
sP(x1)5s0cos(2px1 /d), while sR(x1) is characterized by
^sR(x1)sR(x18)&5d2exp(2ux12x18u

2/a2), whered25^sR
2(x1)&.

The connection between the impedance functions(x1) and
the surface profile functionz(x1) has been establishe
recently.17

The magnetic fieldH2
.(x1 ,x3uv) consists of the sum o

the field of an incoming SPP and a scattered field

H2
.~x1 ,x3uv!5exp@ ik~v!x12b0~v!x3#

1E
2`

` dq

2p
R~q,v!exp@ iqx11 ia0~q,v!x3#,

~3!

where k(v)5(v/c)@12e21(v)#1/2, b0(v)5(v/
c)@2e(v)#21/2, and a0(q,v)5@(v2/c2)2q2#1/2;
1103 © 1997 The American Physical Society
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1104 56BRIEF REPORTS
Re@a0(q,v)#.0 and Im@a0(q,v)#.0. When Eq. ~3! is
substituted into the boundary condition~1!, we obtain for the
integral equation satisfied by the scattering amplitu
R(q,v)

R~q,v!5b0~v!G0~q,v!ŝ@q2k~v!#1b0~v!G0~q,v!

3E
2`

` dp

2p
ŝ~q2p!R~p,v!, ~4!

where

G0~q,v!5 i e~v!/$e~v!a0~q,v!1 i ~v/c!@2e~v!#1/2%

is the Green’s function for a SPP on the unperturbed sur

@s(x1)[0# and ŝ(Q) the Fourier transform ofs(x1). The
integral equation~4! was solved numerically by converting
into a matrix equation by the use of a quadrature schem

For x1@L/2, the magnetic field in the vacuum regio
x3.0, evaluated on the surface, is found to have the for

H2
.~x1,0uv!5exp@ ik~v!x1#1r ~v!

3exp@2 ik~v!x1#, x1!2
L

2

5t~v!exp@ ik~v!x1#, x1@
L

2
, ~5b!

~5a!

where the SPP reflection and transmission amplitudesr (v)
and t(v) are given by

r ~v!5 iG0
21
„2k~v!,v…R„2k~v!,v…C„2k~v!,v…,

~6a!

t~v!511 iG0
21
„k~v!,v…R„k~v!,v…C„k~v!,v…. ~6b!

In Eqs. ~6! C„6k(v),v…5v/c@2e(v)#1/2k(v), as ob-
tained from

C~q,v!5$e~v!a0~q,v!2 i ~v/c!

@2e~v!#1/2%/2i e~v!k~v!.

The corresponding SPP reflection and transmission co
cients areR(v)5ur (v)u2 andT(v)5ut(v)u2, respectively.
Part of the energy in the incident SPP is converted into v
ume electromagnetic waves in the vacuum, propaga
away from the surface. The total scattered power, normal
by the power in the incident SPP, is given by

S~v!5E
2p/2

p/2

dus
v2

2pc2
b0~v!

2k~v!
cos2usURS v

c
sinus ,v D U2.

~7!

The integrand represents the fraction of the energy of
incident SPP that is scattered into an angular region of w
dus about the scattering angleus .

Since we are interested in studying the localization a
radiative damping of SPP on a random surface impeda
that is periodic on average, with special emphasis on
importance of the underlying periodic structure, it is nec
sary to determine the SPP dispersion relation for an infi
sinusoidal grating. This is done by numerically looking f
e

ce

fi-

l-
g
d

e
th

d
ce
e
-
e

the zeros of the determinant arising in the homogene
problem with the use of the IBC. For a periodd5392.5 nm,
s053, and a plasma wavelengthlp5157.1 nm, our results
reveal that a gap opens up for 0.45,v/cG,0.4945, where
G52p/d; we will be concerned in what follows with the
influence of the frequency when approaching the edge of
lower band atvL /cG50.45. To establish the accuracy an
efficiency of the numerical calculations, we have studied
SPP scattering from a finite sinusoidal grating consisting
an integer numberNd of periodsd. Our results, not shown
here, satisfy the energy conservation conditi
R1T1S51 within a 0.01% error and agree with those o
tained in Refs. 14 and 16 for similar geometries.

Let us now turn to the random surface impedance tha
periodic on average@cf. Eq. ~2!#. For each realization of
s(x1), whose random component is generated numerica9

R, T, andS are calculated in the manner described abo
The mean values of the quantities of physical interest
then obtained by averaging them over the ensemble of r
izations ofs(x1). The quantity of interest in the present ca
culations is the self-averaging quantity^ lnT&, regarded as a
function of the lengthL of the random segment of the met
surface and of the frequencyv of the incident SPP. This is
because in a one-dimensional random system this quanti
expected to decay exponentially with increasingL, with a
decay length that is identified as the localization length of
corresponding wave in the system. In Fig. 1 the length
pendence of ^ lnT& is shown for three frequencie
v/cG50.3, 0.4, and 0.46. In all three cases, a linear dep
dence with negative slope is found, manifesting an expon
tially decaying behavior of the transmission channel. N
that for the frequencyv/cG50.46, in the gap of the SPP
dispersion relation for the infinite sinusoidal grating, t
transmission is larger in the presence of roughness than
for a pure sinusoidal grating~included in Fig. 1 for the sake
of comparison!, in agreement with Ref. 19. It should also b
pointed out that the randomness, despite its being small c
pared to the periodicity strength (s0 /d515), results in the
transmission being exponentially decaying even for frequ
cies lying in the band of the pure periodic grating. But the

FIG. 1. Average of the logarithm of the transmission coefficie
as a function of the number of periodsNd5L/d for a finite, periodic
on average, random metal grating withd5392.5 nm, s053,
a5d/2, d50.2, andlp5157.1 nm. Solid curve,v/cG50.3; long-
dashed curve,v/cG50.4; dashed curve,v/cG50.46. The dash-
dotted curve represents lnT for a pure sinusoidal grating (d50) for
a frequency in the gapv/cG50.46.
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is yet another possible mechanism besides localization
sponsible for such behavior: radiative damping. By assum
that both lead to a frequency-dependent exponential deca
the SPP transmission coefficient scaled by the localiza
length l (v) and the radiative damping lengthl rad(v), re-
spectively, one can write the Lyapunov exponentl T(v) as

3

^ lnT&}2
L

l T~v!
with l T

21~v!5 l21~v!1 l rad
21 ~v!. ~8!

Since the results shown in Fig. 1 provide information ab
l T(v), one needs to know eitherl (v) or l rad(v) in order to
determine which mechanism is the dominant one in this p
ticular situation.

By means of energy conservation arguments,20 l rad(v)
could be inferred from the numerical results for the to
scattered power̂S& as a function of the surface length sin
^S&5L/ l rad . Unfortunately, our numerical results for th
mean scattered intensity, not shown here, are strongly
fected by the large radiation losses owing to edge-diffract
effects~up to 90% of the total incoming SPP power!. Thus,
even though the relative error remains indeed low, the
that this strong contribution has to be subtracted from^S&
makes it unfeasible to discern the real behavior of^S& as a
function of the grating length.

To elude these edge effects, we have developed an
lytical calculation based on the two-potential formalis
through a perturbative treatment of the random compon
the periodic component being treated exactly:18 This pro-
vides an independent calculation of^S& through terms of
second order ind and leads to the result

l rad
21 ~v!5

2b0~v!d2

k~v! (
m

(
n

(
m8

(
n8

dm2n,m82n8

3E
2v/c

v/c dq

2p
a0~q,v!Fmn~q,v!Fm8n8

* ~q,v!

3g„uq2k~v!1~m2n!Gu…, ~9!

where

Fmn~q,v!5b0~v!G0,m~q,v!$dn01
1
2s0b0~v!

3@Gn,1„k~v!,v…1Gn,21„k~v!,v…#%

@Gm,n(q,v) is the reduced Green’s function for SPP on
periodically corrugated surface21#. The function
g(uQu)5Apaexp(2Q2a2/4) is the power spectrum of th
random surface roughness. The radiative damp
lengths thus obtained are l rad(v/cG50.3)5712d,
l rad(v/cG50.4)5606d, and l rad(v/cG50.46)5974d.
These values are one order of magnitude larger than thos
l T(v) calculated by fitting thê lnT& curves in Fig. 1 to
straight lines. This manifests that radiative damping is n
ligible within the length scale we are dealing with in th
work, so that strong localization of SPP is the physi
mechanism giving rise to the linear decay of^ lnT& shown in
Fig. 1. The values ofl (v) for the three frequencies studie
here are presented in Table I. It is evident that the local
tion length becomes shorter as the frequency of the incom
SPP approaches the band edge of the SPP dispersion re
e-
g
of
n

t

r-

l

f-
n

ct

a-

t,

g

of

-

l

-
g
tion

for the underlying periodic structure, in agreement with sim
lar behaviors predicted and observed in different phys
situations.1,15 In addition, the results of Ref. 14 for a slightl
different metal surface also point in that direction, althou
the absence of a quantitative estimate ofl rad(v) makes the
interpretation therein more complicated.

With respect to the behavior ofl rad(v), it has been ar-
gued that leakage should either vanish or substantially
crease at the band edge frequency.4 This is not observed in
our numerical simulation calculations for^S&, nor is it ob-
served in Ref. 14. Nevertheless, as pointed out above, t
exist strong radiation losses produced at the edges of
finite gratings, which might exhibit a very weak frequen
dependence, thus hindering the observation of such leak
inhibition. Our perturbative calculations, which do not a
count for those edge effects, do not reveal any signific
decrease in the leakage for frequencies near the band e

It is also of interest to study the surface magnetic field
given realizations ofs(x1). This is shown in Fig. 2 for
Nd550 and two frequencies:v/cG50.4 ~solid curve! and
v/cG50.46 ~dashed curve!. We observe for both frequen
cies that the surface field, leaving aside some strong
hancements close to the left edge of the grating, decays
rapidly with increasing length upon entering in the gratin
as expected. However, there exists for the lower frequenc

TABLE I. Results forl T(v) ~from numerical simulations! and
l rad(v) ~from perturbation-theoretic calculations!, along with the
localization lengthl (v) obtained from them, for different frequen
cies. The parameters ared5392.5 nm,s053, a5d/2, d50.2, and
lp5157.1 nm.

v/cG lT(v)/d lrad(v)/d l(v)/d

0.3 3962 712 4162
0.4 2861 606 2961
0.46 2161 974 2161

FIG. 2. ~a! Square modulus of the total surface magnetic fie
for a single realization of a random, periodic on average, m
grating with d5392.5 nm,s053, Nd550, a5d/2, d50.2, and
lp5157.1 nm. Solid curve, v/cG50.4; dashed curve
v/cG50.46. ~b! The surface impedance profile is also included



tly
ce

ee
a
rts
c
d
re
ed
t
iz
u

a
fa
et

th
ac
tin

that
ion
r a
vi-
the
ur
ow
age
to
lts
he
lized

o.
nt
by
f
om

1106 56BRIEF REPORTS
Fig. 2 a small region inside the random grating, sufficien
far from the edges, where the field appears to be enhan
This suggests that a localized state has been excited by
incident SPP. The fact that there is no correlation betw
the surface impedance profile and the shape of the squ
modulus of the magnetic field within that region suppo
this suggestion. In addition, the disappearance of such lo
ized state upon changing the frequency, which in turn mo
fies the phase coherence conditions responsible for it, ag
with our previous argument. Similar surface field localiz
states have been encountered for other realizations of
random surface impedance. Furthermore, these local
states seem to be similar in nature to those obtained thro
incident light excitation in Refs. 5 and 13.

In summary, by means of a theoretical formulation th
describes in a rigorous manner the scattering of a sur
plasmon polariton propagating along a planar vacuum-m
interface by a one-dimensional obstacle modeled through
impedance boundary condition, the angular spectrum of
scattered electromagnetic field in the vacuum half-sp
above the metal surface can be calculated. By calcula
the leakage lengthl rad(v) ~through perturbation theory!
ev
d.
the
n
re-

al-
i-
es

he
ed
gh

t
ce
al
an
e
e
g

and the total decay lengthl T(v) ~through numerical simula-
tion calculations!, the localization lengthl (v) has been ob-
tained. In all the cases studied here, it has been shown
localization predominates over leakage. The localizat
length is larger for frequencies in the band than it is fo
frequency in the vicinity of the gap. We have found no e
dence of leakage inhibition at the band edges, contrary to
prediction in Ref. 4. It should be emphasized that, to o
knowledge, these are the first rigorous calculations up to n
that explicitly and quantitatively address the issue of leak
of surface electromagnetic waves, thereby allowing us
jaccurately obtain the localization length. Finally, our resu
for the surface magnetic field for given realizations of t
random surface impedance suggest the existence of loca
states.
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