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Charge instabilities near a Van Hove singularity

J. Gonza´lez
Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Cientı´ficas, Serrano 123, 28006 Madrid, Spain

~Received 11 August 2000; published 9 January 2001!

The charge instabilities of electron systems in the square lattice are analyzed near the Van Hove singularity
by means of a Wilsonian renormalization group approach. We show that the method preserves the spin
rotational invariance at all scales, allowing a rigorous determination of spin and charge instabilities of thet
2t8 Hubbard model. Regarding the latter, repulsive interactions fall into two different universality classes.
One of them has nonsingular response functions in the charge sector, while the other is characterized by the
splitting of the Van Hove singularity. At the level of marginal perturbations, the Hubbard model turns out to
be at the boundary between the two universality classes, while extended models with nearest-neighbor repul-
sive interactions belong to the latter class. In the case of open systems allowed to exchange particles with a
reservoir, we show the existence of a range of fillings forbidden above and below the Van Hove singularity.
This has the property of attracting the Fermi level in the mentioned range, as the system reaches its lowest
energy when the Fermi energy is at the singularity.
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I. INTRODUCTION

The effect of a Van Hove singularity near the Fermi s
face of the CuO layers has been invoked recurrently to
derstand the unconventional properties of the highTc
materials.1,2 There have been several weak-coupling analy
of two-dimensional~2D! models of the Van Hove singular
ity, which have shown in particular that thet2t8 Hubbard
model may have a phase ofd-wave superconductivity.3–6

The main problem that faces this proposal is that, altho
the system is likely to develop strong antiferromagnetic
superconducting correlations, the effective interactions g
large at low energies, so that it is not possible to disc
rigorously the ground state of the model. A related iss
concerns the fact that the superconducting correlations
enhanced like log2 «, when the electron degrees of freedo
are integrated out down to energy« near the Fermi surface
Recently, some understanding of the system has been
tained by the use of refined renormalization group~RG!
methods.7–10 The analysis of the low-energy dynamics b
comes then quite subtle, as the Fermi energy has prove
be a dynamical quantity susceptible itself
renormalization.11,12

The main purpose of this paper is to study the dynam
of the Fermi surface near a Van Hove singularity. Actua
the possible relevance of the strong correlations in the
tem could be objected by the need of a very fine adjustm
of the Fermi energy at the singularity. We will show, how
ever, that when the system is allowed to exchange parti
with a reservoir it finds energetically more favorable to ha
the levels filled up to the position of the singularity. Th
leads to a natural pinning mechanism of the Fermi level o
a certain range of fillings.13,4

There is another effect that may be important, at fix
number of particles. It has been shown by Halboth a
Metzner that thet2t8 Hubbard model at the Van Hove fill
ing should have an instability in its Fermi line leading to
spontaneous breakdown of the point group symmetry.14 We
will reproduce this effect in the form of a splitting of th
0163-1829/2001/63~4!/045114~11!/$15.00 63 0451
-
-

s

h
r
w
n
e
re

at-

to

s
,
s-
nt

es
e

r

d
d

levels of the two inequivalent saddle points of the 2D ba
as a result of the renormalized interactions between elect
in the two hot spots. In general, we will show that the R
flows in the charge sector allow to distinguish two differe
universality classes for 2D electron systems near a Van H
singularity. In one of them, the response functions do
show any instability under charge perturbations, while in
other the stable charge distribution is attained after the s
ting of the Van Hove singularity. We will see, for instanc
that extended Hubbard models with nearest-neighbor re
sive interactions belong to the latter universality class a
that, for appropriate values of the couplings, the splitti
becomes a sensible effect before the onset of any othe
stability of the system.

Our starting point will be a 2D model of electrons in th
square lattice with nearest-neighbor hoppingt and next-
nearest-neighbor hoppingt8. RG methods are most conve
nient for the description of the low-energy behavior of t
interactions near the Van Hove singularity. In the RG a
proach, high-energy and low-energy electron modes
separated by an energy cutoffL, that is sent progressively
towards the Fermi line as high-energy modes are integra
out in the RG process.15,16 When the Fermi level is at the
Van Hove singularity, as shown in Fig. 1, most part of t
low-energy states close to the Fermi line is concentra
around the saddle points at (p,0) and (0,p), as these fea-
tures are at the origin of the divergent density of stat
Therefore, in building up the low-energy effective theory w
may focus on two patches around the pointsA andB, where
the dispersion relation can be approximated by

«A,B~k!'7~ t72t8!kx
2a26~ t62t8!ky

2a2 ~1!

a being the lattice constant. From the RG point of view, t
rest of modes far from the saddle points are irrelevant in
continuum limita→0.

In fact, the effective action for the low-energy modes r
stricted to the regionu«a(k)u<L can be written in the form
©2001 The American Physical Society14-1
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S5E dv d2k(
a,s

@vaa,s
1 ~k,v!aa,s~k,v!

2«a~k!aa,s
1 ~k,v!aa,s~k,v!#2UE dv d2kr↑~k,v!

3r↓~2k,2v!, ~2!

whereaa,s(aa,s
1 ) are electron annihilation~creation! opera-

tors (s labels the spin! and r↑ ,r↓ are the electron densit
operators. Under a change in the cutoffL→sL, with a cor-
responding scaling of the frequencyv→sv and the mo-
mentak→s1/2k, one can check that the effective action r
mains scale invariant after an appropriate sc
transformation of the electron modes,aa,s→s23/2aa,s .4

In writing the effective action~2! we have taken a loca
density–density interaction, like that of the Hubbard mod
A most important point, however, is that in the process
renormalization other effective interactions may be genera
as well, as long as they are compatible with the symmet
of the model. This issue will be reviewed in Sec. II, endi
up with the proof that our Wilsonian RG scheme preser
the spin rotational invariance. Section III will be devoted
study the stability of the different distributions of the char
between the two hot spots, taking into account the beha
of the renormalized interactions. The stability of the locati
of the Fermi level around the Van Hove singularity will b
discussed in Sec. IV, when the system is placed in con
with a charge reservoir. Finally, Sec. V will be devoted
conclusions and to comment on possible experimental r
izations of our results.

II. WILSONIAN RENORMALIZATION GROUP

The Wilsonian RG approach, that has been recently
plied to the investigation of many-body electron systems,15,16

provides a very efficient way of extracting the effective i
teractions of the low-energy theory. It represents an alte
tive to dealing with any kind of diagrammatic approximatio
built from the effective action~2!, which has to suffer from
severe infrared divergences. It is well known that the diff

FIG. 1. Contour energy map for thet2t8 Hubbard model abou
the Van Hove filling.
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ent susceptibilities of the model show logarithmic depe
dences on the cutoffL. In the case of the particle–hol
susceptibilityxph(p) and the particle–particle susceptibilit
xpp(p) at small momentump, and the particle–hole suscep
tibility xph(q) at q'Q[(p,p), we have17

xph~p!'
c

2p2t
logU L

«~p!
U, ~3!

xpp~p!'
c

4p2t
log2U L

«~p!
U, ~4!

xph~p1Q!'
c8

2p2t
logU L

ta2p2U , ~5!

where c[1/A124(t8/t)2 and c8[ log@(1
1A124(t8/t)2)/(2t8/t)#.

When performing a RG calculation in the field theo
approach, one computes the variation of the couplings un
scale transformations by taking the derivatives of the ab
objects with respect to the cutoff. The feasibility of the R
method comes from the fact that, in general, the derivati
of the divergent diagrams do not depend themselves on
cutoff, what leads to the notion of scaling. In the prese
case, however, the derivative of the particle–particle susc
tibility produces a contribution of the form loguL/«(p)u. This
leads to an ill-defined computational procedure, as the a
ment of the logarithm requires an externalad hocparameter
for its definition. Otherwise stated, operators which rece
contributions from particle–particle diagrams display,
general, cutoff dependences multiplied by a nonlocal, inf
red divergent function of the external momenta.11 This is the
fundamental problem when one tries to apply the RG p
gram to the model of the Van Hove singularity, which,
present, seems to find a solution only by promoting
Fermi energy to a renormalized, scale-depend
variable.11,12

Opposite to the field theory RG approach, the Wilson
RG approach provides a better computational framework
deal with the above problem, as it makes a clear distinct
of the operators which are renormalized in the particl
particle channel. The idea is to find the low-energy effect
theory by identifying the operators that scale appropriately
the cutoff is sent to zero. This task is accomplished by p
forming a progressive integration of high-energy modes
ing in two thin shells of widthdL, at distanceL in energy
below and above the Fermi surface. In this process one ke
only operators which remain scale invariant, or which
ceive corrections at most of orderdL, as the rest of the
contributions vanish in the limitL→0.15

Let us concentrate on the region around one of the sa
points, in which the two thin slices of widthdL look as
shown in Fig. 2. The modes in the two slices build up t
intermediate states in the corrections by particle–hole
particle–particle diagrams to the vertex functions of t
theory. Focusing on the four-point function, we observe t
such corrections are linear indL only in a reduced numbe
4-2
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CHARGE INSTABILITIES NEAR A VAN HOVE SINGULARITY PHYSICAL REVIEW B 63 045114
of instances. Actually, contributions of orderdL/L arise for
the same kinematics which do not make irrelevant the fo
point function in Fermi liquid theory.15 They amount to three
different possibilities, which are represented graphically
Fig. 3.

The BCS channel, that we denote byV, opens up when
the momenta of the incoming particles add up to zero. At
one-loop level, for instance, it receives a contribution fro
the particle–particle diagram in Fig. 4. It is clear that, f
each internal line with momentumk in the slice of width
dL, the opposite momentum2k is also found among the
high-energy states integrated over, so that the diagram
order ;dL. A similar argument shows that, when the su
of the momenta of the incoming particles is not zero, the
of available intermediate states is reduced to the intersec
of two slices, displaced with respect to each other, and
phase space to build the diagram becomes of order;(dL)2.
Thus, in the Wilsonian RG approach the particle–parti
diagram only renormalizes the vertex function for the prec
kinematics of the BCS channel, while it produces irrelev
contributions for other choices of the external momenta.15

The forward-scattering channelF is singled out in the
vertex function when the momentum transfer along one
the fermion lines vanishes in the diagram. Technically,
may distinguish it from the exchange channelE, which arises
when the momentum transfer between two lines conne
by the interaction vanishes. It is clear anyhow that, when
incoming and outgoing particles have all the same spin,
respective channelsF i andEi contribute with opposite sign
to the same scattering amplitudes. It can be checked tha
the corrections can be written in terms of the combinat
F i2Ei , so thatEi can be redefined away by introducing th
coupling F̃ i5F i2Ei .

FIG. 3. Different channels that undergo renormalization in
Wilsonian approach.

FIG. 2. Plot of the slices with high-energy states integrated
the renormalization group process.
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For incoming and outgoing particles with the same sp
all the diagrams shown in Fig. 5, with internal momenta
the slices of widthdL integrated over, produce a correctio
of order ;dL to the F̃ i coupling. Similarly, diagrams~a!
and ~b! in Fig. 5 are responsible for a renormalization
order;dL of theF' coupling. This is a consequence of th
fact that, for no matter how small momentum transfer, o
can always build particle–hole excitations in the asympto
region where two slices approach the Fermi line, as obser
in Fig. 2.

On the other hand, when the vanishing momentum tra
fer takes place from one particle to another with differe
spin, we may still think of it as a different channel, that w
call the E' exchange channel.18 In that case, a number o
intermediate particle–hole excitations of order;dL can be
counted from the diagram in Fig. 6, which is the only o
that renormalizes theE' channel.

It can be appreciated from the diagrams in Figs. 5 an
that the renormalization of theF channel only depends o
the F̃ i andF' couplings, as well as onlyE' couplings enter
in the diagrams renormalizing theE' channel. On the othe
hand, the analysis of the instabilities of the model can
carried out in parallel, by using either set of couplings,
gether with theV couplings. This is due to the fact that theF
couplings feed the correlations of thez projection of the spin
operators, while theE' couplings drive the correlations fo

e

FIG. 4. Particle–particle diagram renormalizing the BCS ch
nel at the one-loop level.

FIG. 5. Particle–hole diagrams renormalizing theF channel at
the one-loop level.

n
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J. GONZÁLEZ PHYSICAL REVIEW B 63 045114
thex andy components. The flow equations for theF and the
E' couplings have been studied in Refs. 12 and 7, resp
tively. It can be shown that the different phases that o
obtains for the model~ferromagnetism, antiferromagnetism
superconductivity! do not depend on the use of one set
equations or the other. This relies on the key assumptio
spin rotational invariance of our RG scheme, that we turn
check next.

It is possible to show that the response functions that m
sure the spin correlations for thex, y, andz components of
the spin are numerically equal, at each point of the RG flo
with a suitable choice of the bare couplings of the model.
deal in particular with the response functions at zero mom
tum, which measure the correlations of the operators

Si5(
k

(
a5A,B

aa,s
1 ~k!sss8

i aa,s8~k!, i 5x,y,z. ~6!

The following analysis can be also applied with comple
similarity to the response functions at finite wave vectorQ
[(p,p).

Scaling equations for the response functions can be
rived in the same fashion as for the renormalizable o
dimensional models.19 The first-order contributions to the re
sponse functionRz(v) for theSz operator are given in Fig. 7
We introduce here a distinction between the interacti
F intra andEintra for currents in the same saddle point and t
interactionsF inter and Einter between currents at differen
saddle points. After taking the derivative with respect to
cutoff and imposing the self-consistency of the diagramm
expansion, we obtain

]Rz

]L
52

2c

p2t

1

L

1
c

p2t
~ F̃ intrai2F intra'1F̃ interi2F inter'!

1

L
Rz , ~7!

where we have used the redefinitionF̃ i[F i2Ei .

FIG. 6. Particle–hole diagram renormalizing theE' channel at
the one-loop level.
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Similar scaling equations can be obtained for the respo
functions for the other projections of the spin,Rx andRy . In
both cases, we have the first-order contribution shown in F
8. The scaling equation forRx , for instance, reads

]Rx

]L
52

2c

p2t

1

L
2

c

p2t
~Eintra'1Einter'!

1

L
Rx . ~8!

From inspection of Eqs.~7! and ~8!, it turns out thatRx ,
Ry , and Rz are identical as long as the constraintsF intra'

2F̃ intrai5Eintra' and F inter'2F̃ interi5Einter' are fulfilled at

FIG. 7. First-order contributions to the correlator of theSz op-
erator.

FIG. 8. First-order contribution to the correlators of theSx and
Sy operators.
4-4
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CHARGE INSTABILITIES NEAR A VAN HOVE SINGULARITY PHYSICAL REVIEW B 63 045114
all the points of the RG flow. It can be easily seen that this
in fact the case provided that the initial values of the co
plings satisfy both conditions.

The RG flow equations for the interactions in the forwa
scattering channel can be obtained from Ref. 12. For
combinationsF intra'2F̃ intrai andF inter'2F̃ interi , they read

L
]~F intra'2F̃ intrai!

]L

52
1

2p2t
c@~F intra'2F̃ intrai!

21~F inter'2F̃ interi!
2#, ~9!

L
]~F inter'2F̃ interi!

]L

52
1

p2t
c~F intra'2F̃ intrai!~F inter'2F̃ interi!. ~10!

The RG equations in the exchange channel can be ta
from Ref. 7. ForEintra' andEinter' they have the form20

L
]Eintra'

]L
52

1

2p2t
c~Eintra'

2 1Einter'
2 !, ~11!

L
]Einter'

]L
52

1

p2t
c~Eintra'Einter'!. ~12!

It becomes manifest that, ifF intra'2F̃ intrai5Eintra' and
F inter'2F̃ interi5Einter' at the upper value of the cutoff, th
two constraints are satisfied at any lower scale. Let us rem
that this choice of initial conditions is actually quite reaso
able, as it is what one would make by taking the bare val
of the Hubbard interaction. We conclude that the spin ro
tional invariance of the model is preserved within our R
scheme, what is a rather remarkable result given the n
trivial flow of the RG equations. By taking the initial cond
tions F intra'2F̃ intrai.0 and F inter'2F̃ interi.0, we observe
that these combinations flow to strong coupling at low en
gies. In general, this kind of behavior leads to instabilities
the spin sector of the model, which have been studied
several authors.3,7–9

We have moreover the complementary flow equations

L
]~F intra'1F̃ intrai!

]L

5
1

2p2t
c@~F intra'1F̃ intrai!

21~F inter'1F̃ interi!
2#, ~13!

L
]~F inter'1F̃ interi!

]L
5

1

p2t
c~F intra'1F̃ intrai!~F inter'1F̃ interi!.

~14!

We assume that the bare couplings are such thatF intra'

1F̃ intrai.0 andF inter'1F̃ interi.0. Under these conditions
04511
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the flow may be attracted to two different regions, whi
characterize respective universality classes. When the in
couplings satisfyF intra'1F̃ intrai.F inter'1F̃ interi , both com-
binations are renormalized to zero at low energies. The c
plete set of RG equations has then the asymptotic solu
F̃ intrai'2F intra' and F̃ interi'2F inter' . Otherwise, when
F intra'1F̃ intra i,F inter'1F̃ interi at the initial stage, the flow
for these combinations of couplings becomes unstable
shown in Fig. 9. The corresponding universality class
characterized by the asymptotic behaviorF intra'1F̃ intrai

'2(F inter'1F̃ interi). This leads to important consequenc
in the charge sector, as we will see in what follows.

III. CHARGE DYNAMICS BETWEEN HOT SPOTS

The couplingsF intra'1F̃ intrai andF inter'1F̃ interi drive the
interactions in the charge sector. They control the way
which the chemical potential is renormalized in the mod
The chemical potentialm is introduced to fix the Fermi en
ergy, but it gets corrections due to the charge present in
system. At the one-loop level, these corrections come fr
the diagrams in Fig. 10. The inspection of the kinematics
these diagrams shows that the charge in the system inte
through the combination of the couplingsF intra'1F intrai
2Eintrai andF inter'1F interi2Einteri . These are actually wha
we have calledF intra'1F̃ intrai and F inter'1F̃ interi , respec-
tively. The sum of all these couplings renormalizes to ze
in either of the two universality classes mentioned at the
of Sec. II. This means that, when the system is considere
isolation, its compressibility cannot be very different fro
that of the noninteracting model.

When the model falls in the universality class with th
unstable flow F intra'1F̃ intrai'2(F inter'1F̃ interi), a mis-
match in the filling levels of the two hot spotsA andB may
arise. This has been anticipated by Halboth and Metzner
RG study of thet2t8 Hubbard model, in the form of a

FIG. 9. Flow of the renormalized interactions in the (F̃ intrai

1F intra' ,F̃ interi1F inter') plane.
4-5
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J. GONZÁLEZ PHYSICAL REVIEW B 63 045114
Pomeranchuk instability of the Fermi line.14 The same kind
of effect can be obtained in our model as an instability in
response functionRAB to perturbations in the difference o
charge densitiesnA andnB at the two patchesA andB.

A scaling equation for the dynamic correlatorRAB(v) of
the operatornA2nB can be derived with the same techniq
applied in Sec. II to the spin response functions. We ob
an expression of the form

]RAB

]L
52

2c

p2t

1

L

1
c

p2t
~F intra'1F̃ intrai2F inter'2F̃ interi!

1

L
RAB . ~15!

From this equation, it can be checked thatRAB develops a
divergence at a finite value of the frequency whenever
bare couplings satisfyF intra'1F̃ intrai2F inter'2F̃ interi,0.
This is the signal that, when the Fermi level is nominally
the Van Hove singularity, an excess of charge develop
one of the hot spots over the other.

The precise nature of this instability can be clarified
performing a self-consistent solution of the Schwinge
Dyson equation

G215G0
212S ~16!

in our model with the two hot spots. The Fermi energy«F in
the full electron Green functionG is determined from the
balance between the chemical potentialm in the free electron
Green functionG0 and the corrections to it introduced by th
electron self-energy. These corrections come at the one-
level from the diagrams in Fig. 10, which depend in turn
the charge present in the system. Self-consistency is atta
when the chemical potential after such renormalizat
matches the highest occupied level.

To study the interaction between the charge in the two
spots, we model each of them by a singular density of st
of the form

FIG. 10. Diagrams contributing to the electron self-energy at
one-loop level.
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n~«!52
1

L
log~ u«u/L!, 2L,«,L. ~17!

Furthermore, for the same nominal chemical potentialm of
the system, we introduce two independent Fermi levels«A
and «B for the respective hot spots. The Schwinger–Dys
equation referred to these two variables splits then in t
equations of the form

«A5m2E
2L

«A
d«@F intra'~«!1F̃ intrai~«!#n~«!

2E
2L

«B
d«@F inter'~«!1F̃ interi~«!#n~«!, ~18!

«B5m2E
2L

«B
d«@F intra'~«!1F̃ intrai~«!#n~«!

2E
2L

«A
d«@F inter'~«!1F̃ interi~«!#n~«!, ~19!

where we have introduced renormalized vertices in place
the four-point interactions in Fig. 10. We remark that«A and
«B are measured in the reference frames in which the dep
dence of the density of states is fixed by Eq.~17!. Thus, the
fact that«A and«B may be nominally different after renor
malization is just a consequence of that convention. T
physical picture is however the opposite, namely that
one-particle levels are shifted to higher energy by a differ
amount in each of the two hot spots, up to a point in wh
the respective Fermi levels reach the common chemical
tential.

It can be checked that, in the phase with the stable fl
F intra'1F̃ intrai.F inter'1F̃ interi , Eqs.~18! and ~19! only ad-
mit a single solution with«A5«B . However, for couplings
falling in the universality class with the unstable flow, t
gether with that solution we find another which has differe
filling levels for the two hot spots. A plot of the filling level
versus the total charge in the system is represented in
11, for the particular bare valuesF intra'5L, F inter'52L.
We have found that the solution with«AÞ«B turns out to
have always the lowest energy. The physical interpretatio
these results is that, due to the mismatch in the repuls
interaction, the one-particle levels are shifted upwards w
higher strength in one of the hot spots than in the other
that the common Fermi energy becomes placed below on
the saddle points and above the other. The lowest-ene
solution describes therefore the splitting of the Van Ho
singularity, in correspondence with the spontaneous bre
down of the tetragonal symmetry found by Halboth a
Metzner.

If one were to take the nominal couplings of the Hubba
model as the bare interactions in the RG approach,
would lead to the initial conditionF intra'5F inter'5U, with
the rest ofF couplings equal to zero. Thus, the Hubba
model is placed right at the boundary between the region
unstable flow and the phase in which theF intra'1F̃ intrai and
F inter'1F̃ interi couplings are renormalized to zero. Th
slightest perturbation by any irrelevant operator may dr

e

4-6
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CHARGE INSTABILITIES NEAR A VAN HOVE SINGULARITY PHYSICAL REVIEW B 63 045114
the system to either of the two phases, and the work of H
both and Metzner14 shows indeed that the Hubbard model
particular falls in the universality class with the charge ins
bility.

However, the splitting of the Van Hove singularity is n
a universal feature of 2D electron systems. There may e
models that lead instead to the initial conditionF intra'

1F̃ intrai.F inter'1F̃ interi . According to Eqs.~13!, ~14!, and
~15!, these models only have a weak, nonsingular respons
any charge perturbation, and they do not show therefore
splitting of the Van Hove singularity. In general, wheth
one universality class or the other is realized depends on
particular details of the microscopic model. For an extend
Hubbard model with nearest-neighbor interactionV, for in-
stance, the assignment of bare couplings made from
nominal interactions in the model givesF intra';U14V,
F inter';U14V, F̃ interi;8V. In this case, the coupling driv
ing the charge instability becomesF inter'1F̃ interi2F intra'

2F̃ intrai;8V. It turns out that the model with extended a
tractive interactionV,0 fulfills the above condition for a
nonsingular response. On the other hand, the model
extended repulsive interactionV.0 falls in the universality
class with the charge instability. The tendency to the splitt
of the Van Hove singularity is more pronounced in this ca
as the strength of the repulsive interactionV is increased.

We have to bear in mind, though, that the energies
which the response to a charge perturbation becomes
stable may be below the scale at which other instabili

FIG. 11. Filling levels in the two hot spots versus total chargeN.
Middle curve: solution with even distribution of the charge. Upp
and lower curves: uneven filling levels of the solution correspo
ing to the splitting of the Van Hove singularity.
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open up in thet2t8 model. From Eq.~15!, the charge insta-
bility arises at the point in which the renormalized coupli
F inter'1F̃ interi2F intra'2F̃ intrai diverges. This happens at
frequency

v'L exp„22p2t/$c@F inter'~L!1F̃ interi~L!

2F intra'~L!2F̃ intrai~L!#%…. ~20!

Whenc.c8, the response functions at vanishing mome
tum dominate over those for perturbations with finite wa
vectorQ[(p,p).7 Taking the expressions ofc andc8 given
after Eqs.~3!–~5!, this corresponds to values oft8 above
'0.276t.21 In this region of the phase diagram, a strong
stability leading to ferromagnetism should also be presen
it has been shown in Ref. 22. The mismatch between
densities of spin up and spin down electrons is driven by
couplingF intra'2F̃ intra i1F inter'2F̃ interi . From Eqs.~9! and
~10! it is seen that the response leading to ferromagnet
becomes singular at the scale

vFM'L exp$2p2t/~cU!%. ~21!

Comparing with Eq.~20!, we conclude that the splitting o
the Van Hove singularity takes place prior to any other
stability in the extended Hubbard model forc.c8 and 4V
.U. For valuesV,U/4 the comparison is more uncerta
since, as we have pointed out before, the effect of irrelev
operators cannot be dismissed in that regime, specially in
limit t8→0.5t,c→`. It is therefore likely a tight competition
between the ferromagnetic and the charge instability for s
small values ofV.

For c8.c, the tendency towards a spin-density-wave
stability prevails over any other instability in the spin sect
In this regime, backscattering and Umklapp interactions
come stronger as the nesting conditiont850 is approached.
Besides, the scaling equation governing the spin-dens
wave instability has the same structure that Eqs.~7! and~8!,
but with the coefficientc8 instead ofc.7 The scale at which
the response leading to the spin-density-wave becomes
gular is

vSDW'L exp$2p2t/~c8U !%. ~22!

Then, we observe that the formation of the spin-dens
wave takes place before the onset of the charge instability
4cV,c8U, while the latter prevails in the opposite case.

Coming back to the particular case of the Hubbard mo
with purely on-site interaction, the charge instability is de
nitely excluded in favor of other instabilities for small value
of t8 below '0.276t. This is also the region of the phas
diagram in whichd-wave superconductivity is likely to oc
cur, due to the Kohn–Luttinger mechanism.4,5 From inspec-
tion of Eqs.~20! and ~22! it is clear that, ast8→0 andc8
→`, the energy scale of the formation of the spin-densi
wave becomes much higher than the scale at which the s
ting of the Van Hove singularity takes place. Only for valu
of t8 above'0.276t there is a close competition between t
spin and the charge instabilities, which requires to be
solved a more precise analysis than that carried out in te
of the marginal perturbations.
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IV. CHARGE DYNAMICS IN CONTACT WITH CHARGE
RESERVOIR

We have seen that a universal feature of our Wilson
RG scheme is that the coupling to the total charge of
system is renormalized to zero when the Fermi level
proaches the Van Hove singularity. This is just a con
quence of the strong screening processes that arise due
divergent density of states. That property does not have
sensible effect for a closed system with constant numbe
particles, since the Fermi energy can only be a monoton
function of the total charge. However, if the system is
stead at fixed chemical potential, important effects may
derived from the mentioned result. The description at fix
chemical potential has to do with the situation in which t
system is in contact with a charge reservoir, that has a m
larger content of particles and is less susceptible to chan
in its Fermi energy. This may be also the relevant situat
for the physics of the high-Tc materials, regarding the inter
action of the CuO layers with the rest of the perovskite str
ture.

When the system does not have a fixed number of p
ticles, the Fermi energy displays a nontrivial dynamics wh
tends to pin it to the Van Hove singularity.13,4 In the RG
framework it has been shown that the Fermi energy, take
a running parameter dependent on the high-energy cu
has a stable fixed-point very close in energy to the Van H
singularity.4 From the physical point of view, this leads t
the important consequence that a certain range of filli
should be forbidden above and below the singularity. T
prediction is that, for nominal values of the chemical pote
tial in that range, the Fermi energy is led to the fixed-poin
the singularity. Only for lower or higher values of the chem
cal potential away from the region of attraction one m
recover the regular evolution of the Fermi energy upon fi
ing.

The pinning mechanism can be best understood by s
ing the Schwinger–Dyson equation for the model in cont
with a system with large but constant density of states. T
latter has then a Fermi energy much less sensitive to cha
in the total number of particles, what amounts in practice
imposing the condition of fixed chemical potential in the p
of the system with the Van Hove singularity. As in the pr
ceding section, the Schwinger–Dyson equation written
the Fermi energy expresses how the filling level for each
the systems is renormalized by the shift of the one-part
levels to higher energies due to the repulsive interaction.
self-consistent dependence of this effect on the charge
the strength of the renormalized interactions leads to the
conventional dynamics of the Fermi level near the Van Ho
singularity.

We model the system with the Van Hove singularity
taking the density of states

n(1)~«!52
1

L
log~ u«u/L!, 2L,«,L. ~23!

For the system with large but constant density of states,
take a dependence of the form
04511
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n(2)~«!5
a

L
, 2bL,«. ~24!

We assume that, in the first system, the coupling to
total charge,F̃ intrai1F intra'1F̃ interi1F inter' , is renormalized
near the singularity according to Eqs.~13! and ~14!. On the
other hand, the interaction between particles in the cha
reservoir is scale independent and we suppose that it ca
parametrized by a constant couplingF0 in the forward-
scattering channel.

As in the preceding section, we introduce a comm
chemical potentialm for the two systems, which enforces th
condition of thermodynamic equilibrium between them. T
Schwinger–Dyson equation gives rise to the following p
of nonlinear equations for the respective filling levels«F1
and«F2 of the two systems

«F15m2E
2L

«F1
d« F~«!n(1)~«!2gfwdE

2bL

«F2
d« n(2)~«!,

~25!

«F25m2F0E
2bL

«F2
d« n(2)~«!2gfwdE

2L

«F1
d« n(1)~«!,

~26!

where F[F̃ intrai1F intra'1F̃ interi1F inter' and we have in-
troduced a coupling constantgfwd that parametrizes the re
pulsion exerted on one of the systems by the charge pre
in the other.

We stress once more that, in the above equations,«F1 and
«F2 are measured in the reference frames in which the
pendencesn(1)(«) and n(2)(«) are fixed by Eqs.~23! and
~24!. As remarked in the preceding section, the physical p
ture is however that the one-particle levels are renormali
to higher energy by a different amount in each of the s
tems, so that both Fermi levels match at the end the comm
chemical potential.

The coupled set of equations~25! and ~26! gives rise to
nontrivial physical effects, as a consequence of the non
earities introduced by the divergent density of statesn(1)(«)
and the renormalization ofF(«) close to the Van Hove sin
gularity. It is interesting, for instance, to solve for the loc
tion of «F1 and«F2 in terms of the total chargeN in the two
systems, given by

N5E
2L

«F1
d« n(1)~«!1E

2bL

«F2
d« n(2)~«!. ~27!

The most remarkable effect is that there is not a one-to-
correspondence betweenN and the respective filling levels
«F1 and«F2. The different branches of the solution are re
resented in Fig. 12 for the particular valuesF(L)5F0
54L, c/p250.2, andgfwd53L. The parameterb has been
chosen equal to 3.0, anda has been set equal to 4.0, accor
ing to the idea of having a large density of states in
second of the systems.

At low values ofN, the filling of the first system with the
Van Hove singularity proceeds in a regular way, with a m
notonous increase of«F1. There is a point, however, abov
which two other locations of«F1 become possible, closer t
4-8
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the singularity in the density of states at«50. In these in-
stances, the corresponding filling level«F2 in the second
system suffers a decrease with respect to the expected v
It is interesting to discern what of the possible solutions
most favorable energetically. We have plotted in Fig. 13
values of the total energyE versus the total chargeN. We see
that the filling level closer to the Van Hove singularity giv
always the lowest-energy configuration of the system.

The result that turns out to be valid under very gene
conditions is the existence of a certain range of filling lev
that are forbidden above and below the Van Hove singu
ity. This is in agreement with previous analyses of the p
ning of the Fermi level of electrons near a Van Ho
singularity.13,4 The present study of the Schwinger–Dys
equation helps to clarify the mechanism involved in that
fect. It happens that, for certain values of the chargeN, this
finds more favorable to fill the Fermi sea up to the Van Ho
singularity, at the expense of the charge in the other sys
In general, there is a critical valueNc1(Nc2) of the total
charge in which the filling level«F1 jumps discontinuously
from the regular evolution upon adding~removing! particles
to a position much closer to the Van Hove singularity. Th
is in correspondence with the onset of attraction to the sta
fixed-point found in the RG framework.

A last remark regarding the plot in Fig. 13 is that th
abrupt change in the lowest energy of the system
Nc1(Nc2) leads to phase separation for values ofN below
~above! that critical value. It is clear, for instance, that for
certain range aboveNc2 the whole system lowers its energ

FIG. 12. Self-consistent solutions for the respective filling lev
«F1 and«F2 in the system with the Van Hove singularity and in th
charge reservoir.
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by splitting in two phases, one with a higher value of t
charge density and the other with the density correspond
approximately toNc2.23 This reflects in another fashion tha
special stability is conferred to the system when the Fe
level is at the Van Hove singularity.

V. CONCLUSIONS

In this paper we have adopted a Wilsonian RG appro
to discern the charge instabilities of 2D electron systems
the Van Hove filling. This kind of differential method o
renormalization was implemented in Ref. 15 to discu
Fermi liquid theory in the context of the universality class
of interacting fermion systems. When applied to the syst
of electrons near the Van Hove singularity, we have seen
the method leads to a rigorous analysis of the instabilities
the spin and charge sectors.

It is well known that the main problem of dealing with th
singular density of states in the RG framework is that it giv
rise to harmful log2 L divergences in the particle–particl
diagrams. These divergences cannot be removed by
methods in a standard fashion, as they actually point at
appearance of nonlocal operators that are infrared diver
in the limit of vanishing momentum at the singularity. In th
differential RG approach, however, a careful analysis of
kinematics shows that, at least at the one-loop level, the
vergences of the particle–particle diagrams only affect
BCS channel.15 The forward-scattering channel is only a
fected by conventional logL divergences. These are at th

s
FIG. 13. Total energy of the solutions shown in Fig. 12 vers

total chargeN.
4-9
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J. GONZÁLEZ PHYSICAL REVIEW B 63 045114
origin of potential instabilities in the correlators for the de
sity of spin and charge, that can be now properly underst
in the differential RG scheme.

An important property of our RG approach is that it a
lows to preserve the spin rotational invariance at all the st
of the RG process. In fact, of all the flows that we ha
described in the space of couplings, there is only a v
reduced number of combinations that realize the mentio
invariance. This shows how stringent the Wilsonian a
proach can be by enforcing symmetry constraints to de
mine the low-energy effective theory.

Starting with bare repulsive interactions in the forwa
and exchange channels, we have seen that there are onl
asymptotic low-energy behaviors consistent with the SU~2!

spin invariance. One of them corresponds to the lineF̃ i
5F' , for all the forward-scattering couplings, andE'50,
for all the exchange couplings. Under these conditions,
theF couplings are renormalized to zero at low energies,
it is clear from Eqs.~7! and ~8! that all the spin projections
have equal dynamical correlations at all points of the flo
The other possibility corresponds to the choiceF'2F̃ i
5E' for all the couplings. In this case, these flow to a stro
coupling regime with singular response functions in the s
sector. As discussed above, thet2t8 Hubbard model has a
low-energy behavior that falls within the latter class.

Turning to the charge instabilities, we have seen that
interaction between the electrons at the two inequiva
saddle points of the square lattice leads to two different u
versality classes for 2D electron systems near a Van H
singularity. One of them corresponds to the RG flows bel
the bisector of the first quadrant in Fig. 9, for whichF̃ intrai

1F intra'.F̃ interi1F inter' . In this class, both combination
of couplings are renormalized to zero at low energies,
response function in the charge sector displays singular
havior, and the instabilities may arise in the spin sector.

The other universality class corresponds to the unsta
flows with F̃ intrai1F intra',F̃ interi1F inter' , which lead to a
singular response in the charge sector. We have shown
this phase is characterized on physical grounds by the s
ting of the levels of the two inequivalent saddle points. T
kind of instability has been found recently in a numerical R
study of thet2t8 Hubbard model.14 A naive assignment o
the bare couplings of the model givesF intra'5F inter'5U and
F̃ intrai5F̃ interi50, placing it right at the boundary betwee
the two universality classes. However, the boundary is
itself stable and the effect of any irrelevant perturbation m
break the balance in favor of either side. The findings of R
14 show that this is indeed the case and that the Hubb
model has to belong to the universality class with the cha
instability. In any event, our analysis makes clear that
singular response in the charge sector may develop be
any instability in the spin sector only for values oft8 above
'0.276t. In that range, there is a competition with the fe
romagnetic instability that is also known to open up in t
model at the Van Hove filling.22

A feature common to both universality classes is that
coupling to the total charge, F̃ intrai1F intra'1F̃ interi
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1F inter' , vanishes in the low-energy limit. As a cons
quence of this fact we have seen that, for an open system
is allowed to exchange particles with a charge reserv
there is a certain range of fillings forbidden above and be
the Van Hove singularity. This has the property of attracti
the Fermi level for the corresponding values of the to
charge in the mentioned range, as the system reaches th
lowest energy when the Fermi energy is at the singularit

The mechanism of pinning to the Van Hove singular
could be relevant to explain some of the properties of
hole-doped copper-oxide superconductors. Angle-resol
photoemission experiments,24 as well as quantum Monte
Carlo computations for thet2J and Hubbard models,25 have
shown very flat portions of the quasiparticle dispersion at
boundary of the Brillouin zone. In different compounds, t
Fermi level has been estimated to be very close to sa
points of the band. These observations have been conte
by the fact that the evidence for quasiparticles does not
pear quite clear, given the broad peak of the spectral we
near the Fermi energy. However, the reduction in the qu
particle weight is another of the consequences which der
from the interaction of electrons near a Van Hove singul
ity. It has been shown that the electron wave function
strongly renormalized in these circumstances.11 Although the
quasiparticle description does not lose its validity, there i
strong attenuation of the quasiparticle pole as the Van H
singularity is approached, and the normal state of the sys
adheres to the so-called marginal Fermi liquid behavior.26

The greater stability attained when the Fermi level a
proaches the Van Hove singularity could have experime
signatures in other systems that are essentially t
dimensional and may exchange particles with the envir
ment. Interfaces like Sn/Ge~111! have been much studie
recently, as they show a remarkable phase transition with
formation of a surface charge-density-wave in the lo
temperature phase.27 Photoemission experiments have show
the appearance of a very flat conduction band,28 which is
found at an energy sensibly smaller than predicted by c
ventional band calculations. An important property is that
system remains metallic across the transition, what ma
plausible the description by means of weak coupling R
methods. It has been proposed actually that the main feat
of the interface, including the loss of spectral weight belo
the transition and the formation of the charge-density-wa
structure, can be explained by the effect of pinning at a V
Hove singularity that is present in the conduction band of
2D system.29

We remark finally that the stability of the Van Hove fil
ing may result in the effect of phase separation over a w
range of nominal filling levels above and below the V
Hove singularity.23 This effect has to be realized when th
system is in contact with a sufficiently large reservoir, as
have shown in the paper. A most important question wo
be to ascertain, from the experimental point of view, to wh
extent the perovskite structure of the high-Tc materials may
lead to the pinning mechanism we have proposed,
whether the phase separation associated with it may
some relation to that observed in the form of stripes in
underdoped cuprates.
4-10
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