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Charge instabilities near a Van Hove singularity
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The charge instabilities of electron systems in the square lattice are analyzed near the Van Hove singularity
by means of a Wilsonian renormalization group approach. We show that the method preserves the spin
rotational invariance at all scales, allowing a rigorous determination of spin and charge instabilities of the
—t' Hubbard model. Regarding the latter, repulsive interactions fall into two different universality classes.
One of them has nonsingular response functions in the charge sector, while the other is characterized by the
splitting of the Van Hove singularity. At the level of marginal perturbations, the Hubbard model turns out to
be at the boundary between the two universality classes, while extended models with nearest-neighbor repul-
sive interactions belong to the latter class. In the case of open systems allowed to exchange particles with a
reservoir, we show the existence of a range of fillings forbidden above and below the Van Hove singularity.
This has the property of attracting the Fermi level in the mentioned range, as the system reaches its lowest
energy when the Fermi energy is at the singularity.
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I. INTRODUCTION levels of the two inequivalent saddle points of the 2D band,
as a result of the renormalized interactions between electrons
The effect of a Van Hove singularity near the Fermi sur-in the two hot spots. In general, we will show that the RG
face of the CuO layers has been invoked recurrently to unflows in the charge sector allow to distinguish two different
derstand the unconventional properties of the Hhigh- universality classes for 2D electron systems near a Van Hove
materials-? There have been several weak-coupling analysesingularity. In one of them, the response functions do not
of two-dimensional2D) models of the Van Hove singular- show any instability under charge perturbations, while in the
ity, which have shown in particular that the-t’ Hubbard  other the stable charge distribution is attained after the split-
model may have a phase dfwave superconductivity:®  ting of the Van Hove singularity. We will see, for instance,
The main problem that faces this proposal is that, althougihat extended Hubbard models with nearest-neighbor repul-
the system is likely to develop strong antiferromagnetic orsive interactions belong to the latter universality class and
superconducting correlations, the effective interactions grovihat, for appropriate values of the couplings, the splitting
large at low energies, so that it is not possible to discerdecomes a sensible effect before the onset of any other in-
rigorously the ground state of the model. A related issuestability of the system.
concerns the fact that the superconducting correlations are Our starting point will be a 2D model of electrons in the
enhanced like lote, when the electron degrees of freedomsquare lattice with nearest-neighbor hoppihgnd next-
are integrated out down to energynear the Fermi surface. nearest-neighbor hoppintg. RG methods are most conve-
Recently, some understanding of the system has been dtient for the description of the low-energy behavior of the
tained by the use of refined renormalization gro@®G)  interactions near the Van Hove singularity. In the RG ap-
methods.™1° The analysis of the low-energy dynamics be-Pproach, high-energy and low-energy electron modes are

comes then quite subtle, as the Fermi energy has proven &¢parated by an energy cutoff, that is sent progressively
be a dynamical quantity susceptible itself of towards the Fermi line as high-energy modes are integrated

renormalization->12 out in the RG process:*® When the Fermi level is at the

The main purpose of this paper is to study the dynamic®/an Hove singularity, as shown in Fig. 1, most part of the
of the Fermi surface near a Van Hove singularity. Actually,low-energy states close to the Fermi line is concentrated
the possible relevance of the strong correlations in the sysaround the saddle points atr(0) and (Or), as these fea-
tem could be objected by the need of a very fine adjustmeritires are at the origin of the divergent density of states.
of the Fermi energy at the singularity. We will show, how- Therefore, in building up the low-energy effective theory we
ever, that when the system is allowed to exchange particle®ay focus on two patches around the poiAtandB, where
with a reservoir it finds energetically more favorable to havethe dispersion relation can be approximated by
the levels filled up to the position of the singularity. This
leads to a natural pinning mechanism of the Fermi level over
a certain range of filling$>*

There is another effect that may be important, at fixed
number of particles. It has been shown by Halboth anda being the lattice constant. From the RG point of view, the
Metzner that the —t’ Hubbard model at the Van Hove fill- rest of modes far from the saddle points are irrelevant in the
ing should have an instability in its Fermi line leading to a continuum limita—0.
spontaneous breakdown of the point group symmétiye In fact, the effective action for the low-energy modes re-
will reproduce this effect in the form of a splitting of the stricted to the regiofe ,(k)|<A can be written in the form

eap(k)~F (tF2t")kZa?= (t=2t")kja? 1)
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B ent susceptibilities of the model show logarithmic depen-
dences on the cutoff\. In the case of the particle—hole
susceptibility x,,(p) and the particle—particle susceptibility
Xpp(P) at small momentunp, and the particle—hole suscep-
tibility x,r(0) atg~Q=(,m), we havé’
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FIG. 1. Contour energy map for the-t’ Hubbard model about 2w

the Van Hove filling.
g where c=11-4(t'/t)? and c¢'=log[(1

+J1-4" )32t 11)].
s:f dw dzkz [waZ K w)a, ,(K,w) When performing a RG calculation in the field theory
@ ’ ’ approach, one computes the variation of the couplings under
scale transformations by taking the derivatives of the above
—eq(k)a; o(k,w)aa,a(k:w)]—uf dw d?kp;(K,w) objects with respect to the cutoff. The feasibility of the RG
' method comes from the fact that, in general, the derivatives
Xp(—k,— o), ) of the divergent diagrams do not depend themselves on the
cutoff, what leads to the notion of scaling. In the present
Whereaa,(,(a;g) are electron annihilatiofcreation opera- case, however, the derivative of the particle—particle suscep-
tors (o labels the spinandp;,p, are the electron density tibility produces a contribution of the form lo§/e(p)|. This
operators. Under a change in the cutaff-sA, with a cor-  leads to an ill-defined computational procedure, as the argu-
responding scaling of the frequeney—sw and the mo- ment of the logarithm requires an exteraa hocparameter
mentak— s%, one can check that the effective action re-for its definition. Otherwise stated, operators which receive
mains scale invariant after an appropriate scalecontributions from particle—particle diagrams display, in
transformation of the electron modes, ,—s *?a, ,.* general, cutoff dependences multiplied by a nonlocal, infra-
In writing the effective actior(2) we have taken a local red divergent function of the external momehtahis is the
density—density interaction, like that of the Hubbard modelfundamental problem when one tries to apply the RG pro-
A most important point, however, is that in the process ofgram to the model of the Van Hove singularity, which, at
renormalization other effective interactions may be generategiresent, seems to find a solution only by promoting the
as well, as long as they are compatible with the symmetrie§ermi  energy to a renormalized, scale-dependent
of the model. This issue will be reviewed in Sec. I, endingvariable™*?
up with the proof that our Wilsonian RG scheme preserves Opposite to the field theory RG approach, the Wilsonian
the spin rotational invariance. Section IIl will be devoted to RG approach provides a better computational framework to
study the stability of the different distributions of the chargedeal with the above problem, as it makes a clear distinction
between the two hot spots, taking into account the behaviodf the operators which are renormalized in the particle—
of the renormalized interactions. The stability of the locationparticle channel. The idea is to find the low-energy effective
of the Fermi level around the Van Hove singularity will be theory by identifying the operators that scale appropriately as
discussed in Sec. IV, when the system is placed in contadhe cutoff is sent to zero. This task is accomplished by per-
with a charge reservoir. Finally, Sec. V will be devoted toforming a progressive integration of high-energy modes liv-
conclusions and to comment on possible experimental realng in two thin shells of widthdA, at distance\ in energy

ta2p?

izations of our results. below and above the Fermi surface. In this process one keeps
only operators which remain scale invariant, or which re-
Il. WILSONIAN RENORMALIZATION GROUP ceive corrections at most of ordefA, as the rest of the

contributions vanish in the limiA —0.°

The Wilsonian RG approach, that has been recently ap- Let us concentrate on the region around one of the saddle
plied to the investigation of many-body electron systém$, points, in which the two thin slices of widtdA look as
provides a very efficient way of extracting the effective in- shown in Fig. 2. The modes in the two slices build up the
teractions of the low-energy theory. It represents an alternantermediate states in the corrections by particle—hole and
tive to dealing with any kind of diagrammatic approximation particle—particle diagrams to the vertex functions of the
built from the effective actiori2), which has to suffer from theory. Focusing on the four-point function, we observe that
severe infrared divergences. It is well known that the differ-such corrections are linear thA only in a reduced number
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FIG. 2. Plot of the slices with high-energy states integrated in
the renormalization group process. P -p

of instances. Actually, contributions of ordéA/A arise for FIG. 4. Particle—particle diagram renormalizing the BCS chan-
the same kinematics which do not make irrelevant the fournel at the one-loop level.

point function in Fermi liquid theory> They amount to three

different possibilities, which are represented graphically in  For incoming and outgoing particles with the same spin,

Fig. 3. all the diagrams shown in Fig. 5, with internal momenta in

The BCS channel, that we denote Wy opens up when the gjices of widthdA integrated over, produce a correction
the momenta of the incoming particles add up to zero. At the

one-loop level, for instance, it receives a contribution fromOf order ~dA 10 theﬁ” coupling. Similarly, diagramsz)
P - . P . and (b) in Fig. 5 are responsible for a renormalization of
the particle—particle diagram in Fig. 4. It is clear that, for

each internal line with momenturk in the slice of width order—dA of theF, coupling. This is a consequence of the
. . fact that, for no matter how small momentum transfer, one
dA, the opposite momentum k is also found among the

high-enerav states intearated over. so that the diaaram is cgn always build particle—hole excitations in the asymptotic
9 gy states 9 ’ 9 ? gion where two slices approach the Fermi line, as observed
order~dA. A similar argument shows that, when the sum,

. ; . : in Fig. 2.

of the momenta of the incoming particles is not zero, the set On the other hand, when the vanishing momentum trans-
of available intermediate states is reduced to the intersectiol%r takes place from’one particle to another with different
OLtWO Sl'ces'td'ép!%ctehd V(\j'!th reSngt to eacr} oth:*r/,\aznd th‘gpin, we may still think of it as a different channel, that we
phase space fo bulld the diagram becomes o Ofd ) _call the E, exchange channéf.In that case, a number of
T_hus, in the W"SO”'aU RG approach the_ part'de_part"?lqntermediate particle—hole excitations of ordedA can be
diagram only renormalizes the vertex function for the Precise. ' nied from the diaaram in Fig. 6. which is the only one
kinematics of the BCS channel, while it produces irrelevant,[hat renormalizes thEg channel g9-5 y
contributions for other choices of the external moménta. It can be appreciatéd from tHe diagrams in Figs. 5 and 6

The forwgrd-scattenng channél is singled out in the Fhat the renormalization of thE channel only depends on
vertex function when the momentum transfer along one of ~~ ) )
the fermion lines vanishes in the diagram. Technically, weN€ F| @ndF, couplings, as well as onl, couplings enter
may distinguish it from the exchange chankelvhich arises g]a;hde ?rzaeg;anrgls;/ ;g‘g;”:ﬁgz;Egtéﬁﬁtigzagpa-eomngggl Octgﬁrbe
when the momentum transfer between two lines connected®' ' ; - ' :
by the interaction vanishes. It is clear anyhow that, when théamed 0_?; ;Ee\p/aralle:_, by “_I§r']r_‘g_e';hertsetthc’ffCot“tﬂl"ﬁ;* to-
incoming and outgoing particles have all the same spin, thgether wi couplings. This 1S due 1o the 1act thal the
respecti?/e channgEH gn% E; contribute with opposite F;ign couplings feed the correlations of tagrojection of the spin
to the same scattering amplitudes. It can be checked that gliPerators, while th&, couplings drive the correlations for
the corrections can be written in terms of the combination

F|—Ey, so thatg can be redefined away by introducing the P q a P

couplinglEHZF”—EH . ] .

kt ki) pt kt() ki 00 O —
4 q P q
pt -pi(M) Pt kt(}) pt ki1 (a) (b) ()

FIG. 3. Different channels that undergo renormalization in the FIG. 5. Particle—hole diagrams renormalizing thehannel at
Wilsonian approach. the one-loop level.
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qt P| pt af
A A
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FIG. 6. Particle—hole diagram renormalizing tBe channel at b)

the one-loop level.

thex andy components. The flow equations for thend the
E, couplings have been studied in Refs. 12 and 7, respec-
tively. It can be shown that the different phases that one
obtains for the mode{ferromagnetism, antiferromagnetism,
superconductivity do not depend on the use of one set of
equations or the other. This relies on the key assumption of
spin rotational invariance of our RG scheme, that we turn to
check next.

It is possible to show that the response functions that mea-
sure the spin correlations for the y, andz components of (c)
the spin are numerically equal, at each point of the RG flow, ) o
with a suitable choice of the bare couplings of the model. we FIG. 7. First-order contributions to the correlator of gop-
deal in particular with the response functions at zero momeng"ator:
tum, which measure the correlations of the operators

Similar scaling equations can be obtained for the response
i ) functions for the other projections of the spiy, andR, . In
S= ; a:EA 5 8,,(K) 0, 8,,(K), 1=XY,Z. (6)  poth cases, we have the first-order contribution shown in Fig.
' 8. The scaling equation fdR,, for instance, reads
The following analysis can be also applied with complete
similarity to the response functions at finite wave vedpr R, 2¢ 1 c 1
E(77'-7"'_)- ) ) m:__ZX__Z(Eintrm+Eintem)KRx- ()
Scaling equations for the response functions can be de- 71 7t
rived in the same fashion as for the renormalizable one-
dimensional model¥’ The first-order contributions to the re- From inspection of Eqg.7) and(8), it turns out thatR,,
sponse functiolR,(w) for the S, operator are given in Fig. 7. R,, andR, are identical as long as the constraifg,
We introduce here a dls'glnct|on between the |.nteract|ons_|~:imrd‘:Eimm and |:imm_|”:imed‘:|5imerl are fulfilled at
Fintra @aNd Ejypo fOr currents in the same saddle point and the
interactionsF;., and E;,., between currents at different
saddle points. After taking the derivative with respect to the
cutoff and imposing the self-consistency of the diagrammatic
expansion, we obtain

IR, 2c 1

N w2t A

c - ~ 1
+ _Z(Fintrdl - I:intraJ_ + Fintelﬂ - I:inteu_ )X Rz ) (7)
mt

. FIG. 8. First-order contribution to the correlators of tBgand
where we have used the redefinitibp=F|—E; . S, operators.
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all the points of the RG flow. It can be easily seen that this is \F.
in fact the case provided that the initial values of the cou- nter
plings satisfy both conditions.
The RG flow equations for the interactions in the forward-
scattering channel can be obtained from Ref. 12. For the
combinationsF iyya; — Finga| @8NA Finter. — Finte, they read
I(Fingral — Fi
A Y Fintra = Fintal) F

intra

IN

1 - ~
== > C[(Fingar — Fintraﬂ|)2+(Finteu__Finted\)z]u 9
27t

J(F interL — ﬁ inte|1|)
A JA

1 ~ ~
:_EC(FintraL_Fintreﬂ)(FinterL_Fime'ﬂ)' (10 FIG. 9. Flow of the renormalized interactions in thﬁir(reﬁ

) . + Fintrar »Finter] T Finter.) Plane.
The RG equations in the exchange channel can be taken ieas e T neert

from Ref. 7. ForEinya, andEinen they have the forff the flow may be attracted to two different regions, which

characterize respective universality classes. When the initial

JE; 1 ) . ~ -
A ——ntral _ C(E2ya +E2 o), (1)  couplings satisfyFyrar + Fintg)™ Finter. + Fintef) » DOth com-
aA 272t P ; ;
™ binations are renormalized to zero at low energies. The com-
plete set of RG equations has then the asymptotic solution
A IBinten. _ ic(Emm E ). (12 P~ Finra and Fineq~~Finen - Otherwise, when
dA w2t Finrar + Finra| < Finter. + Finteq @t the initial stage, the flow

5 for these combinations of couplings becomes unstable, as
It becomes manifest that, #inga —Finta)=Einra. @nd  shown in Fig. 9. The corresponding universality class is

Finter. — Finte = Einter,. at the upper value of the cutoff, the characterized by the asymptotic behaviBfya + Finty
two constraints are satisfied at any lower scale. Let us remark — (F, ..., +"|imted|)_ This leads to important consequences
that this choice of initial conditions is actually quite reason-in the charge sector, as we will see in what follows.

able, as it is what one would make by taking the bare values

of the Hubbard interaction. We conclude that the spin rota-

tional invariance of the model is preserved within our RG Il CHARGE DYNAMICS BETWEEN HOT SPOTS
scheme, what is a rather remarkable result given the non-

trivial flow of the RG equations. By taking the initial condi- . ) : .
d y g interactions in the charge sector. They control the way in

tions Finyra —Finrg >0 and Finen —Fine >0, we observe  nich the chemical potential is renormalized in the model.
that these combinations flow to strong coupling at low ener—pe chemical potentigk is introduced to fix the Fermi en-
gies. Ir_l general, this kind of behav_lor leads to |nstab|I|t_|es 'nergy, but it gets corrections due to the charge present in the
the spin sector7(_)g the model, which have been studied b3§ystem. At the one-loop level, these corrections come from
several authors: , the diagrams in Fig. 10. The inspection of the kinematics of
We have moreover the complementary flow equations  yheqe diagrams shows that the charge in the system interacts
o(F L through the combination of the couplingSiyyai + Fingy|
A I(Fintrar + Fintra)) — Eintra| @MdFinter; + Finte) — Eintes - These are actually what
IA we have calledF s + Finga) @nd Finer + Finer . respec-
tively. The sum of all these couplings renormalizes to zero,
1 ~ -~ S . . .
= ——[(Finya, + Fintra\l\)2+ (Finter, + Finterﬂ)z]! (13)  ineither of the two universality classes mentioned at the end

The couplingsFiyyar + Finga| @nd Finer + Fintey drive the

2%t of Sec. Il. This means that, when the system is considered in
isolation, its compressibility cannot be very different from
I(Finten. + Finter) 1 - - that of the noninteracting model.
AT:ﬁC(Fimrm"’Fintrd|)(FinterL+Fintelﬂ)- When the model falls in the universality class with the

(14 unstab!e ﬂOW_ FintraL + I:intraﬂlm — (Finter. + Finterﬂ)i a mis-
match in the filling levels of the two hot spafsand B may
We assume that the bare couplings are such igla  arise. This has been anticipated by Halboth and Metzner in a
+ Fintg ™0 andFiper + Fine™0. Under these conditions, RG study of thet—t’ Hubbard model, in the form of a
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1 1
n(8)=—X|Og(|s|/A), —A<e<A. a7
Furthermore, for the same nominal chemical potentiabf
. the system, we introduce two independent Fermi le¥gls
i and eg for the respective hot spots. The Schwinger—Dyson
p p equation referred to these two variables splits then in two
equations of the form
@
EA ~
U SAZIU'_f_Ads[Fintrm(8)+Fintrd\(s)]n(s)
Il’/ \\\l B ~
” ' . . - f_AdS[Finteu(8)+Fintelﬂ(s)]n(s)a (18)
(b) _ _ B ~
EBT M 7Ad8[FintraL(8)+Fintrd\(s)]n(s)

FIG. 10. Diagrams contributing to the electron self-energy at the
one-loop level. ep -
_J dS[Finteu(8)+Finted\(s)]n(s)a (19
Pomeranchuk instability of the Fermi lif& The same kind A
of effect can be obtained in our model as an instability in thewhere we have introduced renormalized vertices in place of
response functiolR,g to perturbations in the difference of the four-point interactions in Fig. 10. We remark tlatand
charge densities, andng at the two patches andB. eg are measured in the reference frames in which the depen-
A scaling equation for the dynamic correlaRgg(w) of  dence of the density of states is fixed by Etj7). Thus, the
the operaton,—ng can be derived with the same techniquefact thate , and eg may be nominally different after renor-
applied in Sec. Il to the spin response functions. We obtairmalization is just a consequence of that convention. The

an expression of the form physical picture is however the opposite, namely that the
one-patrticle levels are shifted to higher energy by a different
IR 2¢c 1 amount in each of the two hot spots, up to a point in which
=—— % the respective Fermi levels reach the common chemical po-
oA it A tential.

c 1 It can be checked that, in the phase with the stable flow
+ _Z(FintraL + Fintrd\ ~Finten — Finterﬂ)K Rag. (15 Fintrar T I:intrai|> Finter. T Finted\ , Egs.(18) and (19 only ad-

Tt mit a single solution withe .= ¢5. However, for couplings
falling in the universality class with the unstable flow, to-
ether with that solution we find another which has different
lling levels for the two hot spots. A plot of the filling levels

From this equation, it can be checked tlfij{z develops a
divergence at a finite value of the frequency whenever th(%

bare couplings satisfyFinya, + Finua) ~ Finten. ~Finte <0-  yersus the total charge in the system is represented in Fig.
This is the signal that, when the Fermi level is nominally at11 or the particular bare valueB, . = A, Fiey =2A
1 Intr 1 Inter. .

the Van Hove singularity, an excess of charge develops i'We have found that the solution with,+ e turns out to

one of the h.Ot Spots over th_e cher. . - have always the lowest energy. The physical interpretation of
The precise nature qf this mstat_)lhty can be clar|f!ed BYthese results is that, due to the mismatch in the repulsive
performing a self-consistent solution of the Schwinger—ineraction, the one-particle levels are shifted upwards with
Dyson equation higher strength in one of the hot spots than in the other, so
that the common Fermi energy becomes placed below one of
the saddle points and above the other. The lowest-energy
solution describes therefore the splitting of the Van Hove
singularity, in correspondence with the spontaneous break-
down of the tetragonal symmetry found by Halboth and
Metzner.
If one were to take the nominal couplings of the Hubbard

G =Gy '-3 (16)

in our model with the two hot spots. The Fermi eneggyin
the full electron Green functio® is determined from the
balance between the chemical potentiah the free electron
Green functiorG, and the corrections to it introduced by the
electron self-energy. These corrections come at the one-loo . . . .
level from the diagrams in Fig. 10, which depend in turn on odel as the bar_ell.nteracthns in the RG approagh, this
the charge present in the system. Self-consistency is attaindypuld lead to the mmal CONditiont jnyrar = Finter, =U, with
when the chemical potential after such renormalizationthe regt ofF coupllngs equal to zero. Thus, the Hub_bard
matches the highest occupied level. model is placed right at the boundary between~the region of
To study the interaction between the charge in the two hotinstable flow and the phase in which g + Finve and
spots, we model each of them by a singular density of state;e, + Fineq CoOuplings are renormalized to zero. The
of the form slightest perturbation by any irrelevant operator may drive

045114-6



CHARGE INSTABILITIES NEAR A VAN HOVE SINGULARITY PHYSICAL REVIEW B 63 045114

Y - ' open up in the—t" model. From Eq(15), the charge insta-
bility arises at the point in which the renormalized coupling
Finter. T Finter — Finwar — Finwg) diverges. This happens at a
€ frequency

o=~A exp(— 277-zt/{C[Fintem(A) +ﬁinterﬂ(A)

= Fintra (A) = Fingrag (A1), (20

Whenc>c’, the response functions at vanishing momen-
tum dominate over those for perturbations with finite wave
vectorQ=(, ).’ Taking the expressions afandc’ given
€ o0 // . after Egs.(3)—(5), this corresponds to values of above

~0.27@.2% In this region of the phase diagram, a strong in-
AT 7B stability leading to ferromagnetism should also be present, as
it has been shown in Ref. 22. The mismatch between the
densities of spin up and spin down electrons is driven by the
€ coupling FintraJ_ - I:intraH + FinterJ. - I:interﬂ . From Eqs-(g) and
05 B i (10) it is seen that the response leading to ferromagnetism
becomes singular at the scale

wpy~A exp{— 7%t/(cU)}. (21)

Comparing with Eq.(20), we conclude that the splitting of
10 , . the Van Hove singularity takes place prior to any other in-
1.0 15 2.0 2.5 stability in the extended Hubbard model for-c’ and 4V
N >U. For valuesV<U/4 the comparison is more uncertain
FIG. 11. Filling levels in the two hot spots versus total chaige  since, as we have pointed out before, the effect of irrelevant
Middle curve: solution with even distribution of the charge. Upper operators cannot be dismissed in that regime, specially in the
and lower curves: uneven filling levels of the solution correspond4imit t’ — 0.5,c— . It is therefore likely a tight competition
ing to the splitting of the Van Hove singularity. between the ferromagnetic and the charge instability for such

. small values olV.
the system to either of the two phases, and the work of Hal~ For¢’>¢, the tendency towards a spin-density-wave in-

both and Metznéf shows indeed that the Hubbard model in stability prevails over any other instability in the spin sector
particular falls in the universality class with the charge insta- Y Pre yo Y In the spin :
bility. In this regime, backscatter]ng and _Umklapp interactions be-
However, the splitting of the Van Hove singularity is not c%r:izjstrotr;%ersgznt:e geit;‘rt‘i%:ong\g?:: Isthaep%roiﬁ(-:c?:géit i
a universal feature of 2D electron systems. There may exisl% TR 9 €q 9 9 P y
models that lead instead to the initial conditidf wavellnstab|l|ty h‘?s. the same structure that E(q)sand(8?,
ntral but with the coefficient’ instead ofc.” The scale at which

*+Finra > Finter. + Fintesf - According to Eqs(13), (14), and  the response leading to the spin-density-wave becomes sin-
(15), these models only have a weak, nonsingular response {Q 15y is

any charge perturbation, and they do not show therefore the

splitting of the Van Hove singularity. In general, whether wspw~A exp{— 7’t/(c'U)}. (22
one universality class or the other is realized depends on t
particular details of the microscopic model. For an extende
Hubbard model with nearest-neighbor interactdnfor in-
stance, the assignment of bare couplings made from th
nominal interactions in the model giveS o ~U+4V,

0.5 - b

hen, we observe that the formation of the spin-density-
wave takes place before the onset of the charge instability for
cV<c'U, while the latter prevails in the opposite case.
Coming back to the particular case of the Hubbard model
~ , , . with purely on-site interaction, the charge instability is defi-
Finter. ~U +4V, Fine~8V. In this case, the coupling driv- pjtely excluded in favor of other instabilities for small values
ing the charge instability becomeSyer + Fine—Finrar ~ 0f t’ below ~0.27@. This is also the region of the phase
_ﬁintrdlwsv- It turns out that the model with extended at- diagram in whichd-wave superconductivity is likely to oc-
tractive interactionV<0 fulfills the above condition for a cur, due to the Kohn—Luttinger mechaniémFrom inspec-
nonsingular response. On the other hand, the model witkion of Egs.(20) and (22) it is clear that, ag’—0 andc’
extended repulsive interactiorn>>0 falls in the universality —, the energy scale of the formation of the spin-density-
class with the charge instability. The tendency to the splittingvave becomes much higher than the scale at which the split-
of the Van Hove singularity is more pronounced in this casging of the Van Hove singularity takes place. Only for values
as the strength of the repulsive interactidns increased. of t" above~0.278 there is a close competition between the
We have to bear in mind, though, that the energies aspin and the charge instabilities, which requires to be re-
which the response to a charge perturbation becomes usolved a more precise analysis than that carried out in terms
stable may be below the scale at which other instabilitie®f the marginal perturbations.
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IV. CHARGE DYNAMICS IN CONTACT WITH CHARGE w
RESERVOIR n®(e)= 1 —BA<e. (24)

We have seen that a universal feature of our Wilsonian
RG scheme is that the coupling to the total charge of the ~ ~ : X
system is renormalized to zero when the Fermi level aptotal chargeFing + Fingar + Finteq + Finter: - IS renormalized
proaches the Van Hove singularity. This is just a consen€ar the singularity according to Eq4.3) and(14). On the
guence of the strong screening processes that arise due to i&er hand, the interaction between particles in the charge
divergent density of states. That property does not have anfServoir is scale independent and we suppose that it can be
sensible effect for a closed system with constant number gparametrized by a constant couplirig, in the forward-
particles, since the Fermi energy can only be a monotonougcattering channel. . _
function of the total charge. However, if the system is in- AS in the preceding section, we introduce a common
stead at fixed chemical potential, important effects may b&hemical potential for the two systems, which enforces the
derived from the mentioned result. The description at fixegtondition of thermodynamic equilibrium between them. The
chemical potential has to do with the situation in which theSchwinger—Dyson equation gives rise to the following pair
system is in contact with a charge reservoir, that has a muc@f nonlinear equations for the respective filling levels,
larger content of particles and is less susceptible to changeé¥ld e of the two systems
in its Fermi energy. This may be also the relevant situation ory ors
for the physics of the higi-, materials, regarding the inter- gFl:M—f de F(s)n(l)(g)—gfwdf de n®(g),
action of the CuO layers with the rest of the perovskite struc- —A —BA
ture. (25

When the system does not have a fixed number of par- ors ory
ticles, the Fermi energy displays a nontrivial dynamics which  ep,=u— Fof de n(z)(s)_gfwdf de n®(e),
tends to pin it to the Van Hove singularity® In the RG ~BA -A
framework it has been shown that the Fermi energy, taken as (26)

a running parameter dependent on the high-energy cutoffyhere |:E|~:inm‘+|:imm+|~:ime'”+|:interL and we have in-

has a stable fixed-point very close in energy to the Van Hovgroduced a coupling constagt,y that parametrizes the re-
singularity’” From the physical point of view, this leads to pyision exerted on one of the systems by the charge present
the important consequence that a certain range of filling$y the other.

should be forbidden above and below the singularity. The \ye stress once more that, in the above equationsand
prediction is that, for nominal values of the chemical poten-; _, are measured in the reference frames in which the de-
tial mthat range, the Fermi energy is led to the fixed-point f"“pendencem(l)(e) and n®®(¢) are fixed by Eqgs(23) and

the singularity. Only for lower or higher values of the chemi- (24) A5 remarked in the preceding section, the physical pic-
cal potential away from the region of attraction one mayyyre js however that the one-particle levels are renormalized
recover the regular evolution of the Fermi energy upon fill-, higher energy by a different amount in each of the sys-

Ing. o _ tems, so that both Fermi levels match at the end the common
The pinning mechanism can be best understood by solVshemical potential.

ing the Schwinger—Dyson equation for the model in contact e coupled set of equatiori@5) and (26) gives rise to
with a system with large but constant density of states. Thonrivial physical effects, as a consequence of the nonlin-
latter has then a Fermi energy much less sensitive to changggyities introduced by the divergent density of staté¥(s)

in the total number of particles, what amounts in practice t0;ng the renormalization d%(e) close to the Van Hove sin-
imposing the condition of fixed chemical potential in the Partyylarity. It is interesting, for instance, to solve for the loca-

of the system with the Van Hove singularity. As in the pre-tion of ¢ .. ander, in terms of the total charg in the two
ceding section, the Schwinger—Dyson equation written forsystems given by

the Fermi energy expresses how the filling level for each of
the systems is renormalized by the shift of the one-particle £F1 eF2

. . o . — (1) (2)
levels to higher energies due to the repulsive interaction. The N A\ de n'™(e) + ﬂBAds n(e). (27)
self-consistent dependence of this effect on the charge and ] )
the strength of the renormalized interactions leads to the untn€ Most remarkable effect is that there is not a one-to-one
conventional dynamics of the Fermi level near the Van Hoveésorrespondence betweéhand the respective filling levels

We assume that, in the first system, the coupling to the

singularity. egq1 andeg,. The different branches of the solution are rep-
We model the system with the Van Hove singularity by 'ésented N Fig. 12 for the particular valu€gA)=F
taking the density of states =4A, c¢/7°=0.2, andgs,q=3A. The parameteB has been

chosen equal to 3.0, andhas been set equal to 4.0, accord-
1 ing to the idea of having a large density of states in the
nW(e)=— Zlog(|e|/A), —A<e<A. (23  second of the systems. _ _
A At low values ofN, the filling of the first system with the
Van Hove singularity proceeds in a regular way, with a mo-
For the system with large but constant density of states, waotonous increase afg;. There is a point, however, above
take a dependence of the form which two other locations of; become possible, closer to

045114-8



CHARGE INSTABILITIES NEAR A VAN HOVE SINGULARITY PHYSICAL REVIEW B 63 045114

1.0 . . - -
140 | il
2o} .
0.0 - .
€ 100 |
F1
80 b
E
€ ot 1
60 F
40 |
20 F .
SFZ
. . 0.0
-3.0
15 20 25 3.0 L5

N

FIG. 12. Self-consistent solutions for the respective filling levels ) o
eg; andeg, in the system with the Van Hove singularity and inthe ~ FIG. 13. Total energy of the solutions shown in Fig. 12 versus
charge reservoir. total chargeN.

the singularity in the density of statesat0. In these in- by splitting in two phases, one with a higher value of the
stances, the corresponding filling level, in the second charge density and the other with the density corresponding
system suffers a decrease with respect to the expected valugpproximately taN,.2 This reflects in another fashion that

It is interesting to discern what of the possible solutions isspecial stability is conferred to the system when the Fermi
most favorable energetically. We have plotted in Fig. 13 thdevel is at the Van Hove singularity.

values of the total enerdy versus the total charge. We see
that the filling level closer to the Van Hove singularity gives
always the lowest-energy configuration of the system.

The result that turns out to be valid under very general In this paper we have adopted a Wilsonian RG approach
conditions is the existence of a certain range of filling levelsto discern the charge instabilities of 2D electron systems at
that are forbidden above and below the Van Hove singularthe Van Hove filling. This kind of differential method of
ity. This is in agreement with previous analyses of the pin+enormalization was implemented in Ref. 15 to discuss
ning of the Fermi level of electrons near a Van HoveFermi liquid theory in the context of the universality classes
singularity’®* The present study of the Schwinger—Dysonof interacting fermion systems. When applied to the system
equation helps to clarify the mechanism involved in that ef-of electrons near the Van Hove singularity, we have seen that
fect. It happens that, for certain values of the chaXge¢his  the method leads to a rigorous analysis of the instabilities in
finds more favorable to fill the Fermi sea up to the Van Hovethe spin and charge sectors.
singularity, at the expense of the charge in the other system. It is well known that the main problem of dealing with the
In general, there is a critical valul.;(N.,) of the total  singular density of states in the RG framework is that it gives
charge in which the filling levetg, jumps discontinuously rise to harmful logA divergences in the particle—particle
from the regular evolution upon addiigemoving particles  diagrams. These divergences cannot be removed by RG
to a position much closer to the Van Hove singularity. Thismethods in a standard fashion, as they actually point at the
is in correspondence with the onset of attraction to the stablappearance of nonlocal operators that are infrared divergent
fixed-point found in the RG framework. in the limit of vanishing momentum at the singularity. In the

A last remark regarding the plot in Fig. 13 is that the differential RG approach, however, a careful analysis of the
abrupt change in the lowest energy of the system akinematics shows that, at least at the one-loop level, the di-
N¢1(N¢o) leads to phase separation for valuesNobelow  vergences of the particle—particle diagrams only affect the
(above that critical value. It is clear, for instance, that for a BCS channet® The forward-scattering channel is only af-
certain range abovl ., the whole system lowers its energy fected by conventional lod divergences. These are at the

V. CONCLUSIONS
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origin of potential instabilities in the correlators for the den- +F;. , vanishes in the low-energy limit. As a conse-
sity of spin and charge, that can be now properly understooduence of this fact we have seen that, for an open system that
in the differential RG scheme. is allowed to exchange particles with a charge reservoir,
An important property of our RG approach is that it al- there is a certain range of fillings forbidden above and below
lows to preserve the spin rotational invariance at all the stepthe Van Hove singularity. This has the property of attracting
of the RG process. In fact, of all the flows that we havethe Fermi level for the corresponding values of the total
described in the space of couplings, there is only a vergharge in the mentioned range, as the system reaches then its
reduced number of combinations that realize the mentionetbwest energy when the Fermi energy is at the singularity.
invariance. This shows how stringent the Wilsonian ap- The mechanism of pinning to the Van Hove singularity
proach can be by enforcing symmetry constraints to detercould be relevant to explain some of the properties of the
mine the low-energy effective theory. hole-doped copper-oxide superconductors. Angle-resolved
Starting with bare repulsive interactions in the forwardphotoemission experimert$,as well as quantum Monte
and exchange channels, we have seen that there are only t&ro computations for the-J and Hubbard modef, have
asymptotic low-energy behaviors consistent with theZU shown very flat portions of the quasiparticle dispersion at the

spin invariance. One of them corresponds to the ﬁ]e boundary of the Brillouin zone. In different compounds, the
P ) : bon Fermi level has been estimated to be very close to saddle
=F,, for all the forward-scattering couplings, aixd =0,

f I th h i Under th diti | oints of the band. These observations have been contested
or afl the exchange couplings. Lnder these conditions, a y the fact that the evidence for quasiparticles does not ap-
theF couplings are renormalized to zero at low energies, an

o s - I" ear quite clear, given the broad peak of the spectral weight
it is clear from Eqgs(7) and(8) that all the spin projections ey the Fermi energy. However, the reduction in the quasi-
have equal dynamical correlations at all points of the flow.paricle weight is another of the consequences which derives
The other possibility corresponds to the choiEe —F;  from the interaction of electrons near a Van Hove singular-
=E, for all the couplings. In this case, these flow to a strongity. It has been shown that the electron wave function is
coupling regime with singular response functions in the spirstrongly renormalized in these circumstantealthough the
sector. As discussed above, thet’ Hubbard model has a quasiparticle description does not lose its validity, there is a
low-energy behavior that falls within the latter class. strong attenuation of the quasiparticle pole as the Van Hove
Turning to the charge instabilities, we have seen that theingularity is approached, and the normal state of the system
interaction between the electrons at the two inequivalenadheres to the so-called marginal Fermi liquid beha%for.
saddle points of the square lattice leads to two different uni- The greater stability attained when the Fermi level ap-
versality classes for 2D electron systems near a Van Hovproaches the Van Hove singularity could have experimental
singularity. One of them corresponds to the RG flows belowsignatures in other systems that are essentially two-
the bisector of the first quadrant in Fig. 9, for whiEly,y  dimensional and may exchange particles with the environ-
+Finm>,~:imed‘+,:imeu_ In this class, both combinations Ment. Interfaces like Sn/GEL1) have been muc_h_ stud_led
of couplings are renormalized to zero at low energies, nd€cently, as they show a remarkable phase transition with the
response function in the charge sector displays singular bdormation of a surface charge-density-wave in the low-
havior, and the instabilities may arise in the spin sector. emperature phasé Photoemission experiments have shown

The other universality class corresponds to the unstablfg‘e 3pptearance of a ver_)t/)IfIat col?du::htion béfgwthighbis
flows With Finyg+ Fira: <Fireq + Finer - Which lead to a ound at an energy sensibly smaller than predicted by con-

sinaular response in the charge sector. We have shown thv?ntional band calculations. An important property is that the
g P : 9 o .System remains metallic across the transition, what makes
this phase is characterized on physical grounds by the spli

ting of the levels of the two inequivalent saddle points. This lausible the description by means of weak coupling RG
hg ot t N d . POINTS. methods. It has been proposed actually that the main features
kind of instability has been found recently in a numerical RG

L 4 . : of the interface, including the loss of spectral weight below
study of thet .t Hubbard mode]r: A naive assignment of the transition and the formation of the charge-density-wave
the bare couplings of the model givEegs, = Finern. =U and

= S structure, can be explained by the effect of pinning at a Van

Fintra = Finte =0, placing it right at the boundary between poye singularity that is present in the conduction band of the
the two universality classes. However, the boundary is nopp systent?
itself stable and the effect of any irrelevant perturbation may \we remark finally that the stability of the Van Hove fill-
break the balance in favor of either side. The findings of Refmg may result in the effect of phase separation over a wide
14 show that this is indeed the case and that the Hubbarl%nge of nominal filling levels above and below the Van
model has to belong to the universality class with the chargejove singularity?® This effect has to be realized when the
instability. In any event, our analysis makes clear that theystem is in contact with a sufficiently large reservoir, as we
singular response in the charge sector may develop befogye shown in the paper. A most important question would
any instability in the spin sector only for valuestéfabove  pe to ascertain, from the experimental point of view, to what
~0.27@. In that range, there is a competition with the fer- extent the perovskite structure of the hijp-materials may
romagnetic instability that is also known to open up in thejead to the pinning mechanism we have proposed, and
model at the Van Hove filling? _ _ whether the phase separation associated with it may bear

A feature common to both universality classes is that thgsome relation to that observed in the form of stripes in the
coupling to the total charge,Fiyg+ Finra + Finter underdoped cuprates.
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