Supporting Information

A Near-Edge X-ray Absorption Fine Structure Investigation of the Quasi-One Dimensional Organic Conductor (TMTSF)₂PF₆

K. Medjanik^{*,*}, A. Chernenkaya^{‡,§}, X. Kozina[‡], S. A. Nepijko[‡], G. Öhrwall[†], P. Foury-

Leylekian[⊥], P. Alemany[∥], G. Schönhense[‡], E. Canadell[#] and J.-P. Pouget[⊥]

[†] Lund University, MAX IV Laboratory, 22100 Lund, Sweden

[‡] Institut für Physik, Johannes Gutenberg-Universität, 55099 Mainz, Germany

[§] Graduate School Materials Science in Mainz, 55128 Mainz, Germany

[⊥] Laboratoire de Physique des Solides, Université Paris-Sud, CNRS UMR 8502, 91405 Orsay, France

^{II} Departament de Ciència de Materials i Química Física and Institut de Química Teórica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain

[#] Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra, Spain

CONTENTS

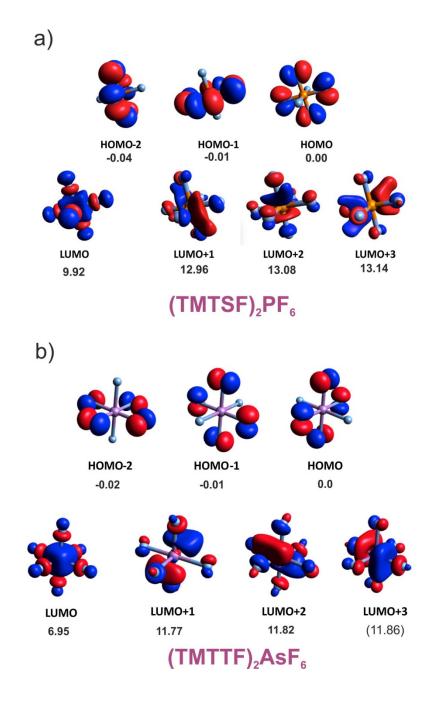

Figure S1. Comparison of the anion molecular orbitals relevant for the analysis of the NEXAFS spectra of $(TMTSF)_2PF_6$ (a) and $(TMTTF)_2AsF_6^{12}$ (b). Energy values (in eV) are given with respect to the energy of the HOMO.

Figure S2. Comparison of the TMT(S/T)F molecular orbitals relevant for the analysis of the NEXAFS spectra of $(TMTSF)_2PF_6$ (a) and $(TMTTF)_2AsF_6^{12}$ (b). The geometry of TMTSF is based on the 4 K crystal structure of $(TMTSF)_2PF_6$ where the TMTSF donors where symmetrized so as to possess D_{2h} symmetry. Energy values (in eV) are given with respect to the energy of the HOMO.

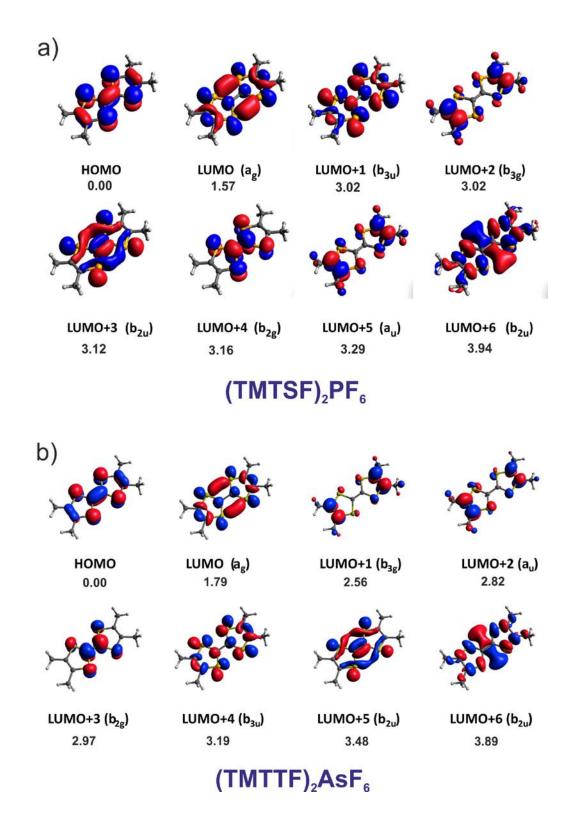

Figure S3. TMTSF molecular orbitals calculated using the 4K crystal structure [21] of $(TMTSF)_2PF_6$. Energy values (in eV) are given with respect to the energy of the HOMO.

Figure S4. TMTSF molecular orbitals calculated using the room temperature crystal structure [22] of $(TMTSF)_2PF_6$. Energy values (in eV) are given with respect to the energy of the HOMO.

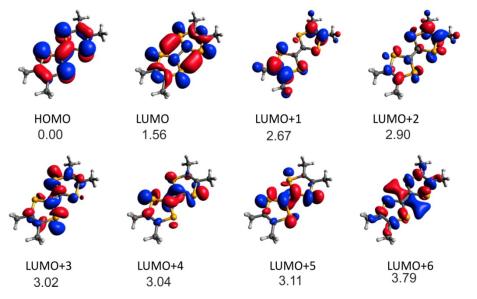

Figure S5. Projection of the σ (red) and π (blue) contributions of the 2p orbitals of C to the "DOS" of discrete TMTTF levels calculated using the crystal structure of (TMTTF)₂AsF₆ at 4K (a) and room temperature (b). Energies (in eV) are given with respect to the energy of the HOMO.

Figure S1. Comparison of the anion molecular orbitals relevant for the analysis of the NEXAFS spectra of $(TMTSF)_2PF_6$ (a) and $(TMTTF)_2AsF_6^{12}$ (b). Energy values (in eV) are given with respect to the energy of the HOMO.

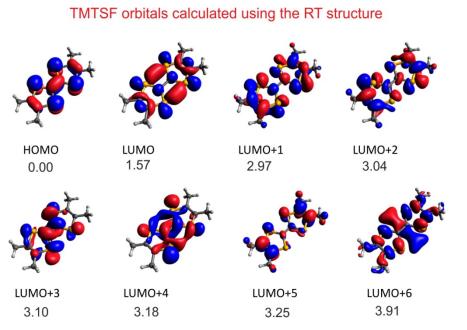
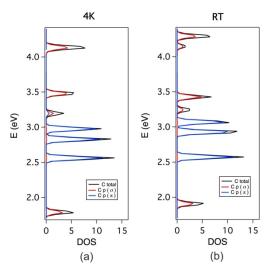


Figure S2. Comparison of the TMT(S/T)F molecular orbitals relevant for the analysis of the NEXAFS spectra of $(TMTSF)_2PF_6$ (a) and $(TMTTF)_2AsF_6^{12}$ (b). The geometry of TMTSF is based on the 4 K crystal structure of $(TMTSF)_2PF_6$ where the TMTSF donors where symmetrized so as to possess D_{2h} symmetry. Energy values (in eV) are given with respect to the energy of the HOMO.



TMTSF orbitals calculated using the 4K structure

Figure S3. TMTSF molecular orbitals calculated using the 4K crystal structure¹⁴ of $(TMTSF)_2PF_6$. Energy values (in eV) are given with respect to the energy of the HOMO.

Figure S4. TMTSF molecular orbitals calculated using the room temperature crystal structure²¹ of $(TMTSF)_2PF_6$. Energy values (in eV) are given with respect to the energy of the HOMO.

Figure S5. Projection of the σ (red) and π (blue) contributions of the 2p orbitals of C to the "DOS" of discrete TMTTF levels calculated using the crystal structure of (TMTTF)₂AsF₆ at 4 K (a) and room temperature (b). Energies (in eV) are given with respect to the energy of the HOMO.