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Abstract:  

Chemical-looping reforming (CLR) allows H2 production without CO2 emissions into 

the atmosphere. The use of a renewable fuel, bioethanol, in an auto-thermal CLR 

process has the advantage to produce H2 with negative CO2 emissions. This work 

presents the experimental results obtained in a continuously operating CLR unit (1 

kWth) using ethanol as fuel. Two NiO-based oxygen carriers were used during more 

than 50 hours of operation. The influence of variables such as temperature, water-to-fuel 
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and oxygen-to-fuel molar ratios was analysed. Full conversion of ethanol was 

accomplished and carbon formation was easily avoided. A syngas composed by ≈61 

vol.% H2, ≈32 vol.% CO, ≈5 vol.% CO2 and ≈2 vol.% CH4 was reached at auto-thermal 

conditions for both materials. Gas composition was closed to the given by the 

thermodynamic equilibrium. These results demonstrate the technical viability of 

H2/syngas production by using bioethanol in an auto-thermal CLR process. 

 

Keywords: hydrogen; chemical-looping reforming; bioethanol, CO2 emissions.  

 

1. Introduction: 

The concentration of carbon dioxide in the atmosphere is increasing continuously 

due to the use of anthropogenic sources [1]. Very recently, the world's most 

important CO2 monitoring station at Mauna Loa recorded short term CO2 

concentrations above 400 parts per million, the highest levels found on earth in 

millions of years. Therefore, new solutions are urgently needed to enforce CO2 

emissions reduction.  

CO2 emissions from human activity arise from a number of different sources, 

mainly from the combustion of fossil fuels.  Carbon capture and storage (CCS) has 

been identified as an essential technology to meet the internationally agreed goal of 

limiting the temperature increase to 2 ºC [2, 3]. This option is mainly fitted in the 

scenario of large power plants or industrial processes. However, diffuse emissions 

derived from transport represent an important part (≈21%) of the global CO2 

emissions [4]. The use of hydrogen has been considered during last years as a 

promising option to reduce CO2 emissions from mobile sources [5]). However, 
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hydrogen is an energetic vector that needs to be obtained from primary energy 

sources. Hydrogen production by most existing technologies entails substantial use 

of fossil fuels and CO2 emissions. In fact, steam methane reforming is currently the 

most common and developed technology used for hydrogen production at large 

scales, and it is likely to remain in the nearby future. Partial oxidation is the most 

appropriate technology to produce H2 from heavier feed-stocks such as heavy oil 

residues and coal [6]. In a low-carbon context, two possibilities arise: the use of 

carbon-free renewable energy sources [7] or the integration of fossil-fuel H2 

production and CO2 capture processes [6]. The high cost associated to both 

solutions can be considered as the main barrier to further development. 

During last years, innovative technologies for CO2 capture have arisen. Among 

them, chemical looping is considered as the highest technology regarding cost 

reduction benefit among all available options although the time to 

commercialization is expected to be large [8, 9]. 

Chemical looping processes have got a great development during last decade [10], 

including both Chemical-Looping Combustion (CLC) for heat/electricity 

production and Chemical looping Reforming (CLR) for syngas/H2 production. 

These processes are based on the transfer of oxygen from air to the fuel by means of 

a solid oxygen carrier avoiding direct contact between fuel and air. In the CLR 

process the air to fuel ratio is kept low to prevent the complete oxidation of the fuel 

to CO2 and H2O. Fig. 1 shows the scheme of a typical CLR process. A N2 free gas 

stream concentrated in H2 and CO is obtained at the outlet of the fuel reactor. 

Moreover, the Air Separation Unit (ASU) required in the conventional auto-thermal 

reforming for CO2 capture is here avoided. In addition, higher H2 yield is obtained 
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when a Water-Gas Shift (WGS) reactor is used downstream the CLR system, but 

with the advantage that the CO2 capture is accomplished in the global process and 

no additional energy from an external source is needed [11]. 

Most of the technology development up to now has been carried out using CH4 as 

fuel. The CLR process has been demonstrated at atmospheric pressure in 

continuous units [12, 13], at laboratory scale [14] and in a 140 kWth pilot plant 

[15]. In addition, the effect of pressure in a semi-continuous fluidized bed reactor 

has been also analysed [16]. All the above works were carried out using Ni-based 

oxygen carriers and gaseous fuels. Very recently, a liquid fuel, sulfur-free kerosene, 

has been used for the first time for H2 production via CLR in a 300 Wth unit [17]. 

The above technologies are all based in the use of fossil fuels. However, interesting 

options are open if the fuel comes from renewable sources (biomass or biofuels) 

[18, 19] since negative CO2 emissions can be achieved [20, 21]. This result 

especially interesting considering the CO2 price in the future carbon markets.  

Although carbon price have fallen to low levels during recent years, reaching values 

as low as $3/tonne in April 2013, most of the future scenarios assume a continuous 

rising in the price of CO2. In the new policies scenario reported by the IEA [2], the 

price will increases up to ≈$20/tonne in 2020 and ≈$40/tonne in 2035. This price is 

even higher in the 450 scenario, reaching values of $20-$35/tonne in 2020, 

$95/tonne in 2030 and $125 in 2035. 

Currently, liquid fuels from renewable energies are becoming more relevant. 

Among them, ethanol (EtOH) offers high possibilities due to the large amount 

available. Currently, USA and Brazil are the main ethanol producers worldwide 

with more than 28440 and 15783 thousand tonnes in 2013 [22], respectively. 
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Furthermore, the ethanol production estimated for 2014 was around 90 billion litres, 

which involves a decrease in the greenhouse gas emissions of 291 thousand tonnes 

per day [23]. 

Recently, Cormos, [24] has evaluated the hydrogen production from bioethanol at 

industrial scale (300 MWth) with different carbon capture options. He concluded 

that chemical looping design showed promising energy efficiency and total carbon 

capture. Very recently, experimental results of CLR process of ethanol were 

obtained in a packed bed reactor [25]. However, no experimental data regarding this 

process have been carried out up to now in a continuous unit.  

The objective of this work is to demonstrate the technical feasibility of syngas/H2 

production in a 1 kWth continuous unit by integrating a low cost technology 

including inherent CO2 capture, CLR, and the most popular biofuel, ethanol. The 

effect of the main operating conditions such as oxygen-to-fuel molar ratio, 

temperature, and H2O/EtOH molar ratio is evaluated. 

2. Experimental  

2.1 Materials  

Ni-based materials were the first materials used for demonstrating the viability of 

chemical looping as a carbon capture technology. Moreover, the catalytic activity of 

metallic Ni made of them suitable materials for H2 production when reforming 

processes are involved. An additional advantage of the joint use of these Ni-based 

materials and bioethanol is the absence of deactivation processes by sulphur that 

normally happens when fossil fuels are used [26].   

Two different oxygen carriers (OC) based on NiO have been used in this work. The 

materials have been designated with the metal oxide followed by its weight content 
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and the inert used as support. The NiO21-Al2O3 was obtained by the incipient 

wetness impregnation method using commercial -Al2O3 (Puralox NWa-155, Sasol 

Germany GmbH) as support [27]. The NiO18-Al2O3 was prepared by hot incipient 

wet impregnation [28], a modification of the method above mentioned, to increase 

the amount of NiO which could be introduced into the support in each impregnation 

stage.  

These oxygen carriers have been patented by CSIC [29, 30]. The reduction and 

oxidation kinetics of these oxygen carriers with regards to the main gaseous 

products existing in CLC and CLR processes, and their catalytic activity have been 

determined in previous works [31, 32].  Table 1 shows the physical characteristics 

of both oxygen-carriers and the two inert used as support. After operation in plant, 

nickel was present as NiO and NiAl2O4 in both materials although the NiO/NiAl2O4 

ratio was different for each oxygen carrier. It must be considered that both nickel 

compounds are active for oxygen transfer although with very different reactivities. 

The lower reactivity of the NiO21-Al2O3 oxygen carrier was due to the higher 

interaction between the NiO and the -Al2O3 to form NiAl2O4. On the contrary, this 

interaction was reduced when using the -Al2O3 as support. 

Ethanol, 96 vol.%, was used as fuel. The simulation of bioethanol with different 

water contents was accomplished by addition of different amounts of water to the 

fuel. 

2.2 1 kWth experimental facility (ICB-CSIC-liq1) 

Fig. 2 shows a schematic diagram of the 1 kWth Chemical Looping unit, designated 

as ICB-CSIC-liq1, used in this work. The unit was composed of two interconnected 
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fluidized-bed reactors, a system for gas and liquid feeding, and a system for gas 

analysis.  

The fuel reactor, FR, (1) consisted of a bubbling fluidized bed in which NiO is 

reduced to Ni, and the fuel is mainly oxidised to CO and H2. This FR had a conical 

shape (0.08 m top i.d. and 0.026 m bottom i.d.) and a bed height of 0.15 m. This 

shape avoided solids elutriation as a consequence of the increase in the gas velocity 

by the gas generated during ethanol processing. Reduced oxygen carrier particles 

overflowed into the air reactor, AR, (3) through a U-shaped fluidized bed loop seal 

(2) to avoid the mixing of the gases between FR and AR. The regeneration of the 

carrier took place at the AR, which consisted of a bubbling fluidized bed (0.052 m 

i.d.) with a bed height of 0.15 m, followed by a riser (4) (1.8 m height and 0.026 m 

i.d.). Secondary air can be injected at the top of the dense bed to help the particles 

transport through the riser. The oxygen-carrier, recovered by the cyclone (5), was 

sent to a solids reservoir, setting the particles ready to another cycle, and avoiding 

the gas leakage between the riser and the FR. A diverting solid valve (6) located 

just below the cyclone allowed the measurement of the solid circulating rate. The 

oxygen carrier returned to the FR by gravity from the solids reservoir through a 

solid control system (7). The fine particles produced by attrition were recovered by 

the filters (8) located downstream the FR and AR.  

The gases were fed by means of specific mass-flow controllers. The ethanol and 

water were injected to a heater (10) using two peristaltic pumps (9). The liquids 

were evaporated and then fed into the FR mixed with N2. 

The gas outlet streams of the FR and AR were drawn to respective on-line gas 

analysers to get continuous data of gas composition. The outlet gas from the FR was 
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normally composed by N2, CO2, H2O, CH4, H2, and CO. Pure N2 or depleted air 

was obtained at the AR outlet. The possible carbon formation on the FR would be 

detected as CO2 at the AR outlet. 

CH4, CO, CO2 were measured via a non-dispersive infrared analyser 

(Siemens/Ultramat 23), H2 using a thermal conductivity analyser (Maihak S710), 

and the O2 by a paramagnetic analyser (Siemens/Oxymat 5E). A Gas 

Chromatograph (Clarus 580 with Model Arnel 4016 PPC and Haye Sep columns) 

was also established on line to detect the possible hydrocarbon compounds coming 

from ethanol decomposition or reaction.  

2.3 Operational conditions 

Test under different operational conditions were carried out in the 1 kWth unit using 

ethanol as fuel. The solids inventory in the system was ≈1.3 kg and ≈1.8 kg for 

NiO21-Al2O3 and NiO18-Al2O3, respectively. 

The total air flow in the AR was 1100 Nl/h, divided between primary (700 Nl/h) 

and secondary (400 Nl/h) air. The total gas inlet flow in the FR was 150 Nl/h. The 

flow of EtOH injected were ≈100 g/h which corresponds to ≈675 Wth.  

Tests to evaluate the effect of the main operating conditions such as temperature 

(850-950 ºC), water to ethanol molar ratio (0-1), and oxygen to ethanol molar ratio 

(0.6-6) were carried out.  

The steady-state for the different operating conditions was maintained at least for 

forty five minutes in each test. This gives a total of about 80 hours at high 

temperature, from which 50 hours corresponds to ethanol-fuelled operation with 

both oxygen carriers. Agglomeration problems were never detected during 

operation and both materials showed good hydrodynamic behaviour. Furthermore, 
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the attrition rate was low for both oxygen carriers reaching values of  ≈0.04 wt%/h 

and ≈0.01 wt%/h for the NiO21-Al2O3 and NiO18-Al2O3, respectively. 

 

 2.4 Main reactions 

CO2, CO, CH4, and H2 (and N2) were the main gaseous products found at the outlet 

of the FR, and N2, O2, (and CO2 if carbon formation in FR takes place) at the outlet 

of the AR.  The main reactions happening inside both reactors are given below.  

In the fuel reactor takes place the direct oxidation of the ethanol with the NiO, or 

some other intermediate gaseous compounds, to give CO2 and H2O as final products 

(R1-R4). These reactions are all exothermic and are necessary to give the heat 

necessary to produce the endothermic reforming reactions in an auto-thermal 

process. Syngas/H2 can be produced via partial oxidation (R5) or via steam fuel 

reforming (R6-R8). Fatsikostas et al. [33] determined the main products obtained 

from ethanol decomposition in an empty reactor or in presence of alumina and 

nickel. According to these authors, ethanol can suffer carbon break change to 

produce lighter hydrocarbons (R9, R11-R12) and carbon (R10, R13). The ethanol 

decomposition routes can change depending on the operational conditions existing 

in the reactor. This carbon can be gasified inside the reactor in presence of H2O or 

CO2 (R14-R15). The water gas shift reaction is always present in the gaseous phase 

(R16).    

The main reaction taking place in the air reactor is the Ni oxidation to give NiO 

(R.17). The carbon formed in the fuel reactor can be also burnt to give CO2 (R18).  

Inside the Fuel reactor: 

Oxidation 
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C2H5OH + 6 NiO → 6 Ni + 2 CO2 + 3 H2O  (R.1) 

CH4 + 4 NiO → 4 Ni + CO2 + 2 H2O  (R.2) 

H2 + NiO → Ni + H2O  (R.3) 

CO + NiO → Ni + CO2 (R.4) 

Partial oxidation 

C2H5OH + NiO → Ni + 2 CO + 3 H2  (R.5) 

Steam reforming catalysed by Ni 

C2H5OH + H2O → 2 CO + 4 H2  (R.6) 

C2H5OH + 3 H2O → 2 CO2 + 6 H2  (R.7) 

CH4 + H2O → CO + 3 H2 (R.8) 

Carbon chain breakage 

C2H5OH ↔ C2H4 + H2O (R.9) 

C2H4 ↔ 2 C + 2 H2  (R.10) 

C2H5OH ↔ C2H4O + H2 (R.11) 

C2H4O ↔ CH4 + CO  (R.12) 

CH4 ↔ C + 2 H2  (R.13) 

Carbon gasification 

C + H2O → CO + H2  (R.14) 

C + CO2 → 2 CO  (R.15) 

Water-gas shift 

CO + H2O ↔ CO2 + H2  (R.16) 

Inside the Air Reactor: 

Ni + ½ O2 → NiO  (R.17) 

Carbon combustion 
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C + O2 → CO2 (R.18) 

 

 

2.5 Mass balance  

A mass balance regarding the oxygen involved in the process of oxygen carrier 

reduction for syngas production and oxidation for regeneration has been carried out.  

The mass balance in the FR of the CLR system, based on the oxygen to EtOH molar 

ratio, ONiO/EtOH, can be expressed as 

FsxNiO,AR
MNiO

∆XsൌFEtOH ൭
ONiO

EtOHൗ ൱            (1) 

where Fs is the oxygen carrier circulation flow-rate, xNiO,AR is the fraction of NiO 

present in the oxygen carrier at the outlet of the AR, MNiO is the molecular weight 

of NiO, and FEtOH is the molar flow of EtOH fed to the FR. The ONiO/EtOH molar 

ratio is the amount of oxygen transferred by chemical reaction with NiO to the fuel 

per mol of ethanol fed. The variation of the oxygen carrier conversion between the 

fuel and air reactors, Xs, was defined as: 

Xs = XAR - XFR              (2) 

XARൌ
xNiO,ARିxNiO,red
xNiO,oxିxNiO,red

            (3) 

XFRൌ
xNiO,FRିxNiO,red
xNiO,oxିxNiO,red

                    (4) 

being XAR and XFR the conversion of the oxygen carrier at the exit of the AR and 

FR respectively, xNiO,AR and xNiO,FR the fraction of NiO in the oxygen carrier at the 

exit of the AR and FR respectively, and xNiO,ox and xNiO,red  the fraction of NiO 

when the oxygen carrier is fully oxidized or reduced respectively.  

The mass balance in the AR based on the reacted oxygen can be written as: 
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FsxNiO,AR
MNiO

∆XsൌFO2,in∆ܺைଶ (5) 

∆ܺைଶൌ
FO2,inିFO2,outିFCO2

FO2,in
 (6) 

where FO2,in and FO2,out are the molar flow of oxygen fed to or leaving the AR, and 

XO2 is the conversion of the oxygen in the AR which is consumed by the oxygen 

carrier. FCO2 corresponds to the CO2 detected at the AR as a consequence of the 

combustion of the carbon formed in the FR.  

2.6 Control of the oxygen used in the system 

In a chemical looping process it is very important to control the oxygen available 

for reaction in the FR. The solids circulation rate between reactors must be high 

enough to transfer the oxygen necessary for the desired reactions. This will depend 

on the oxygen transport capacity of the oxygen carrier which is a function of the 

metal oxide content and of the oxygen transfer in the redox reactions [34]. 

 In CLC, the control of the oxygen fed into the fuel reactor is normally carried out 

by controlling the solids circulation rate in the system. Some excess of oxygen over 

the stoichiometry is necessary to reach high combustion efficiencies. In this specific 

case, more than 6 moles of NiO must be fed into the FR per mole of ethanol to 

obtain CO2 and H2O as final products (see R1).  

In CLR, where under stoichiometric oxygen ratios must be used, an alternative 

method is recommended. The control of the oxygen to ethanol molar ratio can be 

accomplished by limiting the oxygen supplied by the air flow fed to the AR. In the 

ICB-CSIC-liq1 unit this was carried out by diluting this stream with N2. This 

method has important consequences from an industrial point of view because it 

allows an easy operation, an accurate oxygen flow control from the AR to the FR, 

and, in addition, pure N2 can be obtained at the outlet of the AR [11, 15]. In this 
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case, all oxygen entering the AR is transferred to the FR (i.e. XO2=1) and the 

global air to EtOH ratio is equal to the ONiO/EtOH molar ratio used for syngas 

production in the FR. Obviously, this is true when carbon formation in FR is zero 

(FCO2=0). 

3. Results and discussion 

3.1 Effect of the fuel reactor temperature  

The effect of the fuel reactor temperature on syngas production was tested in the 

range of 850 to 950 ºC. The other operating variables (ethanol feeding, H2O/EtOH, 

and ONiO/EtOH molar ratios) were kept constant. As an example, Fig. 3 shows the 

syngas production composition expressed per mol of EtOH at the three 

temperatures evaluated with the NiO21-Al2O3 oxygen carrier. 

Ethanol conversion was complete at all temperatures, with a small concentration of 

methane detected. That means that CH4 is an important intermediate product in the 

whole reaction system, which is produced by chain breakage in carbonaceous fuels 

(R.11-R.12). In any case, it was observed that the FR temperature hardly affected 

the gas composition. 

3.2 Effect of the water to fuel molar ratio 

In a CLR global process, water addition is necessary because increases H2 

production and avoids carbon formation. H2O can be directly fed to the FR, to the 

water gas shift reactor or to both places. However, it must be considered that 

renewable ethanol usually contains a certain amount of water due to the production 

method or improper storage. The production of ethanol as a fuel can be divided into 

two purities: anhydrous, with a water content less than 1 wt.%, and hydrous with a 

water content between 5 and 10 wt.%. Since H2O addition in a CLR process is 
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needed, direct application of hydrous ethanol would be advantageous because will 

reduce energy costs during the production stage [35].  

In this work, three different H2O/EtOH molar ratios were evaluated (0, 0.5 and 1) 

for the same ethanol feeding and maintaining constant the inlet stream to the FR at 

150 Nl/h. Fig. 4 shows the effect of the H2O/EtOH molar ratio on the gas product 

concentration at the exit of the FR for the NiO21-Al2O3 oxygen carrier. 

An increase in the amount of the water injected produced a slight increase on the H2 

and CO2 concentrations and a decrease on the CO and CH4 concentrations. This 

variation was produced by the water enhancement of the steam reforming reactions 

catalysed by Ni, including both ethanol and CH4 (R.6-R.8), and especially by the 

water gas shift reaction (R.16). A proof of this is that the amount of syngas 

(CO+H2) produced remains almost constant at all molar ratios. This behaviour was 

similar to a previous work using methane as fuel [14].  

Finally, it should be remarked that the effect observed was similar for both oxygen 

carriers, and that no carbon formation was observed in any case at these operating 

conditions. 

3.3 Effect of the oxygen to fuel molar ratio 

The main parameter in a CLR process is the oxygen to fuel molar ratio used in the 

FR for syngas production. As above explained, the method used in this work to 

control the amount of oxygen transported by the oxygen carrier as NiO to the FR 

was the control of the oxidation reaction in the AR by limiting the oxygen feeding. 

The oxygen concentration in the AR inlet stream was varied from 2 to 21 vol.% by 

diluting the air with N2 in order to maintain constant the total gas flow and the 

hydrodynamic properties in the system. These values correspond to ONiO/EtOH 
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ratios from 0.6 to 6. In all cases, the solid circulation rate was maintained constant 

at 9 kg/h.  

Fig. 5 shows the effect of the ONiO/EtOH molar ratio on the syngas composition 

obtained in the FR outlet stream with different H2O/EtOH molar ratios for the two 

oxygen carriers, NiO21-Al2O3 and NiO18-Al2O3. 

A complete conversion of ethanol was achieved in all cases. Values of ONiO/EtOH 

above 6 represented combustion conditions and the gas was mainly composed by 

CO2 and H2O. For the specific case of Ni-based oxygen carriers, some CO and H2 

appeared always at equilibrium [10]. A decrease in the ONiO/EtOH molar ratio 

produced an increase in the H2, CO, and CH4 concentrations and a decrease in the 

CO2 (and H2O) concentration. This was due to the contribution of the different 

reactions aforementioned (R.1-R.16) to the overall global process. In this sense, 

partial oxidation and reforming reactions are being more relevant in comparison to 

oxidation as the ONiO/EtOH used is lower.  

To maximize syngas production without H2O feeding, ONiO/EtOH molar ratios 

about 1 should be used. Values lower to 1 means that no enough oxygen (in the 

form of NiO) is contributed by the oxygen carrier to produce syngas, (even for the 

lower oxidation stoichiometry as it is the partial oxidation, R.5). In such case, 

carbon should be formed through reactions R.10 or R.13. In fact, data obtained in 

Fig. 5b at ONiO/EtOH≈0.6 showed a high amount of H2 but some CO2 was detected 

at the outlet of the AR as a consequence of the combustion of the carbon formed in 

the FR. Obviously, an increase in the H2O content produced a decrease in carbon 

formation through gasification reaction (R.14). In any case it is worthy to note that 
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these operating conditions will never be used in a real case where auto-thermal 

conditions must be reached.  

In an autothermal-CLR process, the heat necessary for the endothermic reduction 

reactions (R.6-R.8) is given by the hot solids coming from the AR and also by the 

partial exothermic reactions in the FR (R.1-R5). A calculation showed that a molar 

ratio ONiO/EtOH range between 1.2 and 1.5, depending on the water to fuel molar 

ratio used, was necessary to reach auto-thermal conditions. A dry syngas composed 

by ≈59-62 vol.% H2, ≈36-27 vol.% CO, ≈1-10 vol.% CO2, and ≈1-3 vol.% CH4 was 

experimentally obtained in the CLR unit using ethanol as fuel for both oxygen 

carriers at these operating conditions. The syngas composition was quite similar in 

comparison to that obtained using CH4 as fuel [9]. If we consider that the syngas 

produced is further associated with a WGS and a H2/CO2 separation unit, a final 

amount of ≈4.8 moles of H2 could be finally obtained per mol of ethanol fed. This 

can be considered a good result given that the maximum theoretical value based 

only in a mass balance is 5 mol H2/mol EtOH.  

The thermodynamic equilibrium gas compositions were also represented in Fig. 5 

by continuous lines. The equilibrium data were obtained with the HSC Chemistry 

6.1 software [36] which uses the method of minimization of the Gibbs free energy 

in the system. As mentioned earlier, an increase in the H2O/EtOH molar ratio 

produced an increase in the H2 and CO2 and a decrease in the CO concentrations, 

both in the experimental and in the equilibrium data. It was observed that syngas 

compositions experimentally obtained for both oxygen carriers were very close to 

that given by the thermodynamic equilibrium. 
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3.4 Effect of the solids circulation rate, Fs 

An important feature of the CLR process herein used is the possibility to control the 

oxygen used for syngas production in the FR by limiting the oxygen supplied by the 

air flow fed to the AR, i.e. controlling XO2 in eq. (6). However, for an oxygen 

carrier with a given NiO content, the same oxygen reacted, XO2 (and therefore the 

same syngas composition) can be accomplished using different combinations of 

solid circulation rates, Fs, and solid conversions, Xs (see eq. 5).  

To better analyse this behaviour, oxidation conversion of the oxygen carriers, XFR 

and XAR, at the exit of the FR and AR were determined in a thermobalance with 

samples extracted from the unit after the tests. Obviously, Xs values can be further 

calculated by means of eq. (2), which have a direct dependency with ONiO/EtOH 

molar ratios. 

As an example, Fig. 6a shows the solid conversions, XAR and XFR, of the Ni21-

Al2O3 oxygen carrier as a function of the ONiO/EtOH molar ratio for different solid 

circulation rates, Fs. The solid conversion at the exit of the AR, XAR, was very 

similar in all cases independently on the solid circulation rate. It is also remarkable 

that the oxygen carrier returned to the FR incompletely oxidised at typical CLR 

operating conditions. That means that the oxygen carrier contains NiO and NiAl2O4, 

which transfer oxygen for syngas production, and metallic Ni that can act as 

catalyst in the reforming reactions (R.6-R.8). On the contrary, the conversion at the 

exit of the FR, XFR, was very dependent on the solid circulation rate, as it is shown 

in Fig. 6a. Samples fully reduced were only obtained for the lowest solid circulation 

rate, Fs=3 kg/h, and ONiO/EtOH molar ratios above 3, although this situation will 

never be used in a CLR process. Considering the auto-thermal conditions 
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previously determined, the solid conversions varied between ≈0.4 and ≈0.6, for an 

oxygen carrier with a 21 wt.% NiO.   

Finally, a comparison between the two oxygen carriers was done for the same solid 

circulation rate (Fs=9 kg/h), i.e. residence time in the fuel reactor. Even though a 

similar behaviour was observed for both oxygen carriers, the solid conversions, XAR 

and XFR, obtained with the NiO18-Al2O3 were lower. The higher presence of free 

NiO in the oxygen carrier NiO18-Al2O3, which is more reactive than the NiAl2O4, 

implies a lower solid conversion at the outlet of the FR, XFR. As mentioned earlier, 

the control of the oxygen to ethanol molar ratio was accomplished by limiting the 

oxygen reacted with the oxygen carrier in the AR. That means that, for a given 

ratio, the same amount of oxygen was transferred from the carrier to the fuel, i.e. 

the same Xs, independently of the material used. Therefore, the solid conversion 

reached in the AR, XAR, was also lower for the NiO18-Al2O3 oxygen carrier.  

In any case, both materials are suitable for syngas production in an auto-thermal 

CLR process using bioethanol as fuel.  

 

4. Conclusions 

The continuous Chemical-Looping Reforming of ethanol has been evaluated during 

more than 50 hours using two different NiO-based materials. Both oxygen carriers 

exhibited a good performance during the whole experimentation. The gas 

concentrations obtained in the syngas were very close to the values given by the 

thermodynamic equilibrium and pure N2 was obtained in the air reactor. 

Furthermore, ethanol conversion was complete at all operating conditions and 

carbon formation was easily avoided. This work has demonstrated the possibility of 
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integrating a low cost technology for H2 production with inherent CO2 capture, the 

CLR, and the most popular biofuel. In addition, the renewable character of the 

biofuel makes interesting the process considering that negative CO2 emissions 

could be achieved in some cases. 
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Figure Captions 

Fig. 1. Chemical Looping Reforming Process 

Fig. 2. Schematic diagram of the 1 kWth chemical-looping reforming unit (ICB-CSIC-
liq1). 

Fig. 3. Effect of the fuel reactor temperature on the syngas composition. OC= NiO21-
Al2O3, H2O/EtOH=1, ONiO/EtOH=1.2.  

Fig. 4. Effect of the H2O/EtOH molar ratio in the syngas composition. OC=NiO21-
Al2O3, TFR= 900 ºC, ONiO/EtOH=1.2. 

Fig. 5. Syngas composition obtained as a function of the oxygen-to-fuel molar ratio. a) 
NiO21-Al2O3 , b) NiO18-Al2O3. T= 900 ºC. Lines represent thermodynamic 
equilibrium. ( ,___, H2O/EtOH = 0), ( ,- - -, H2O/EtOH = 0.5), ( ,…., H2O/EtOH = 1). 

Fig. 6. Solid conversion at the exit of the fuel and air reactors for different solid 
circulation rates. a) OC= NiO21-Al2O3, b) NiO21-Al2O3 and NiO18-Al2O3 with 
Fs=9 kg/h. TFR= 900 ºC. ( , Solid conversion in the AR), ( , Solid conversion in the 
FR). 
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Tables 

 

Table 1 

Physical properties of the supports and the fresh oxygen-carriers 

Sample -Al2O3 -Al2O3 
NiO21- 
Al2O3 

NiO18- 
Al2O3 

Particle size (mm)  0.1-0.3 0.1-0.3 0.1-0.3 0.1-0.3 
Apparent density (kg/m3) 1300 2000 1700 2500 
Porosity (%) 55.4 47.3 50.7 42.5 
Specific surface area BET (m2/g) 155 14.6 83.4 7 
Mechanical strength (N)  - - 2.6 4.1 
XRD phases -Al2O3 -Al2O3 -Al2O3, 

NiAl2O4 
-Al2O3, 

NiO, 
NiAl2O4 
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Fig. 1. Chemical Looping Reforming Process 
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Fig. 2. Schematic diagram of the 1 kWth chemical-looping reforming unit (ICB-CSIC-liq1). 
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Fig. 3. Effect of the fuel reactor temperature on the syngas composition. OC= NiO21-Al2O3, 
H2O/EtOH=1, ONiO/EtOH=1.2.  
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Fig. 4. Effect of the H2O/EtOH molar ratio in the syngas composition. OC=NiO21-Al2O3, TFR= 900 ºC, 
ONiO/EtOH=1.2. 

 

   



30 
 

 

 

 

 

 

 

 

Fig. 5. Syngas composition obtained as a function of the oxygen-to-fuel molar ratio. a) NiO21-Al2O3 , b) 
NiO18-Al2O3. T= 900 ºC. Lines represent thermodynamic equilibrium. ( ,___, H2O/EtOH = 0), ( ,- - -, 
H2O/EtOH = 0.5), ( ,…., H2O/EtOH = 1). 
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Fig. 6. Solid conversion at the exit of the fuel and air reactors for different solid circulation rates. a) OC= 
NiO21-Al2O3, b) NiO21-Al2O3 and NiO18-Al2O3 with Fs=9 kg/h. TFR= 900 ºC. (  , Solid conversion in 
the AR), ( , Solid conversion in the FR). 
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