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SUMMARY

System dynamics approach offers great potential for addressing how intervention policies can
affect the spread of emerging infectious diseases in complex and highly networked systems. Here,
we develop a model that explains the severe acute respiratory syndrome coronavirus (SARS-CoV)
epidemic that occurred in Hong Kong in 2003. The dynamic model developed with system
dynamics methodology included 23 variables (five states, four flows, eight auxiliary variables,
six parameters), five differential equations and 12 algebraic equations. The parameters were
optimized following an iterative process of simulation to fit the real data from the epidemics.
Univariate and multivariate sensitivity analyses were performed to determine the reliability of
the model. In addition, we discuss how further testing using this model can inform community
interventions to reduce the risk in current and future outbreaks, such as the recently Middle
East respiratory syndrome coronavirus (MERS-CoV) epidemic.
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INTRODUCTION

Middle East respiratory syndrome (MERS), is a res-
piratory illness caused by a novel coronavirus (CoV)
[1]. The disease was reported for the first time in
Saudi Arabia in June 2012 and spread to several coun-
tries in Africa, Asia, Americas and Europe [2, 3]. The
capability of human-to-human transmission has been
observed in at least four hospital settings [4–7].
Significantly, MERS-CoV shares certain similarities

with the severe acute respiratory syndrome
(SARS)-CoV that produced a global epidemic with
more than 8000 human cases in 2002–2003 [8, 9].
First, a number of patients infected with both viruses
developed an acute respiratory disease that in some
cases resulted in death [7, 9]. In this sense,
MERS-CoV appears to be highly pathogenic with
an estimated case-fatality rate of around 50%,
although this might be an overestimation as many
infected patients may not have sought hospital assist-
ance [2]. Second, both MERS-CoV and SARS-CoV,
belong to the genus Betacoronavirus and are closely re-
lated to coronaviruses isolated from bats [10–12]. This
strongly suggests that MERS-CoV and SARS-CoV
may have been transmitted from bats to humans
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through intermediate species (e.g. camels for
MERS-CoV and civet cats for SARS-CoV). Third,
since they are new emerging viruses, there are no effec-
tive vaccines or antiviral treatments. The SARS epi-
demic is a clear example of how a networked health
system can respond to a new threat to human health.

One of the best-characterized outbreaks during the
SARS epidemic was in Hong Kong in 2003 where
there were 1755 confirmed cases with 299 deaths
(WHO; http://www.who.int/csr/sars/country/en/index.
html). The outbreak began in mid-February caused
by an infected person who travelled from
Guangdong to Hong Kong [13]. An important fact
in the generation of a model of the outbreak is that
the Hong Kong health authorities quickly implemen-
ted contagion control procedures [14]. In general, two
interventions were introduced to prevent the spread of
SARS-CoV. The first was implementation of quaran-
tine measures to isolate healthy people who had been
in contact with infected people and therefore poten-
tially in contact with the virus; isolating those that
could be infected and asymptomatic during the incu-
bation period and isolating and treating patients
who had developed the disease. The other intervention
was the application of protective measures by healthy
people who were in contact with infected people to
avoid becoming infected, such as respiratory protec-
tion for healthcare workers and daily disinfection of
the environment of affected rooms [14]. These control
interventions were implemented progressively in the
Hong Kong Special Administrative Region from
mid-March to late April [15]. The application of
these procedures allowed the rapid control of the out-
break in the subsequent months. In this sense, it is esti-
mated that the epidemic in Hong Kong ended in late
June.

System dynamics has been proved to be a powerful
instrument for analysing social, economic, ecological
and biological systems [16]. In addition, disease epi-
demiology has been studied using this approach,
whereby system dynamics offers the practical appli-
cation of concepts by computerized models that
allow the systematic test of different scenarios and
alternative policies [17–19]. In this work, we per-
formed a modelling of the Hong Kong SARS-CoV
outbreak using system dynamics. The developed
model contains five states, four flows, eight auxiliary
variables and six parameters that interact through
five differential and 12 algebraic equations. The para-
meters of the model were optimized following an iter-
ative process of simulation to obtain a model that

largely fits the data available to the epidemic.
Moreover, the credibility of our model and its par-
ameters are supported by both univariate and multi-
variate sensitivity analyses. The model reproduces
how the implementation of control measures was ef-
fective in preventing the spread of infection to the
rest of the population. Basically, these measures result
in a sustained reduction in the frequency of contacts.
At present, the application of similar measures for in-
fection containment can help to prevent the spread of
new emerging epidemics, such as the outbreak caused
by MERS-CoV.

METHODS

Data sources and collection

Data on the total population of Hong Kong in 2003
was obtained from statistics of the Census and
Statistic Department, The Government of the Hong
Kong Special Administrative Region (http://www.cen-
statd.gov.hk/home/). Data on cumulative cases,
deaths and recoveries during the SARS epidemics in
Hong Kong was obtained from Global Alert and
Response databases of the WHO (http://www.who.
int/csr/sars/country/en/index.html).

Modelling

The model was developed following the four-step se-
quence proposed by system dynamics methodology
[16]. First, the real data from the Hong Kong SARS
epidemics (Fig. 1) together with other evidences and
our professional experience were used to create a
mental modelling of the reality of the outbreak.
Second, the model structure that is able to explain
the evolution of the epidemics was represented as a
Forrester diagram (Fig. 2). Third, the outbreak was
mathematically modelled as a continuous dynamic
process represented by a set of differential and al-
gebraic equations (Tables 1–3). Finally, the model
was optimized to fit the real data from Figure 1.

A dynamic compartmental model provides a frame-
work for the study of transport between different com-
partments of a system, i.e. well known epidemiological
compartmental models [20]. To explain how the pro-
tective measures taken by the government of Hong
Kong allowed the rapid control of the epidemic we
consider a dynamic model with five compartments
(states) and four transitions (physical flows) between
them. This model is based on two assumptions.
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First, the individuals are classified into five subgroups
(SUSCEPTIBLE, LATENT, INFECTED, RECOVERED, DEAD).
Although, the last subgroup is not strictly needed, it
is used to keep an account of those dead. Second,

every day there is a different number of people: who
are infected without symptoms of the disease (inci-
dence); who develop signs and symptoms of the illness
(sick per day); who recover from the disease

Fig. 1. Real data from the Hong Kong SARS outbreak. (a) Daily reported new cases, deaths, and recovered. (b) Cumulative
cases, dead, and recovered.

Fig. 2. Graphical description of the model using Vensim software. Stock variables are represented inside boxes; flow
variables are designed as arrows with a valve; the rest of the variables are auxiliary (inside circles) or parameters (in bold);
single lines with arrow are used as connectors to specify that the destination variable is affected by the variable of origin.
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(daily recovered), and who die (daily deaths) as conse-
quence of the outbreak.

The model structure built with Vensim software
(Ventana Systems Inc., USA) (Fig. 2) contains the
five states and the four flows mentioned above and
also eight auxiliary variables (inside circles) and six
parameters (in bold). These elements are linked by
the physical flows (double line with arrow) and by
the information transmissions (single line with
arrow) according to the mathematical model repre-
sented by the set of differential and algebraic equa-
tions (Tables 1–3).

The five differential equations in Table 1 establish
the mass balance (inflows minus outflows) in the

compartments, and as such, they describe the changes
in the number of people (stocks) in the five subgroups.
The four algebraic equations of Table 2 express that
the physical transitions depend directly from the
stock in the compartment of origin and indirectly
from other stocks and parameters through the corre-
sponding auxiliary variables. These equations involve
three stocks (SUSCEPTIBLE, LATENT, INFECTED), three
auxiliary variables (prevalence, contagion rate, recov-
ery rate) and three parameters (incubation period,
case fatality, disease duration). For instance, the
incidence flow is proportional to the number of sus-
ceptible people, the prevalence and the contagion
rate. The contagion rate or transmission coefficient

Table 1. Differential equations for the five model stocks

Eqn no. Stock Equation Initial value Units

(1) SUSCEPTIBLE ∂ SUSCEPTIBLE(t)/∂t= −Incidence(t) 6·5 × 106* People
(2) LATENT ∂ LATENT(t))/∂t = Incidence(t) − Sick per day(t) 0 People
(3) INFECTED ∂ INFECTED(t)/∂t= Sick per day(t) −Daily

recovered(t) − Daily deaths(t)
1† People

(4) RECOVERED ∂ RECOVERED(t)/∂t =Daily recovered(t) 0 People
(5) DEAD ∂ DEAD(t)/∂t=Daily deaths(t) 0 People

* Hong Kong’s population in 2003 was about 6·5 million people who were susceptible to infection with the SARS virus.
† It is considered that the Hong Kong outbreak originated from an infected person from the province of Guangdong [13].

Table 2. Algebraic equations for the four model flows

Eqn no. Flow Equation Units

(1) Incidence Incidence(t) = SUSCEPTIBLE(t) × Prevalence(t) × Contagion rate(t) People day−1

(2) Sick per day Sick per day(t) = LATENT(t)/Incubation period People day−1

(3) Daily recovered Daily recovered(t) = INFECTED(t) × Recovery rate(t) People day−1

(4) Daily deaths Daily deaths(t) = INFECTED(t) × Case fatality/Disease duration People day−1

Table 3. Algebraic equations for the eight model auxiliary variables

Eqn
no. Auxiliary variable Equation Units

(1) Prevalence Prevalence(t) = INFECTED(t)/Population(t) Dimensionless
(2) Recovery rate Recovery rate(t) = (1 − Case fatality)/(Disease duration) Day−1

(3) Contagion rate Contagion rate(t) = Frequency of contacts(t) × Infectivity Day−1

(4) Population Population(t) = INFECTED(t) + LATENT(t) + RECOVERED(t) + SUSCEPTIBLE(t) People
(5) Cumulative cases Cumulative cases(t)= DEAD(t) + RECOVERED(t) + INFECTED(t) People
(6) Cumulative attack rate Cumulative attack rate (t) = Cumulative cases(t)/Population(t) Dimensionless
(7) Frequency of contacts Frequency of contacts(t) =Daily contacts /(1 + (Cumulative attack rate/

Threshold of cumulative attack rate)3)
Day−1

(8) Basic reproductive
number (R0)

Basic reproductive number(t) = Contagion rate(t)/Recovery rate(t) Dimensionless
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theoretically depends on the number of contacts per
unit time and the probability of effective contact, i.e.
the probability that a contact between an infectious
source and susceptible host results in a successful
transfer whereby the susceptible host becomes infected.

The first three algebraic equations of Table 3 ex-
press the auxiliary variables (prevalence, contagion
rate, recovery rate) used in the equations of Table 2.
In turn, these depend on other auxiliary variables,
stocks and parameters. For instance, prevalence is
defined as the ratio between number of infected people
and the total population [Table 3, equation (1)]. The
recovery rate depends on the illness duration and
case fatality [Table 3, equation (2)]. Equation (3) in
Table 3 expresses the contagion rate which is directly
dependent on the auxiliary variable ‘frequency of con-
tacts’ and the parameter ‘infectivity’.

One of the key variables in the model is frequency
of contacts because it tries to reproduce the control
measures carried out by the Hong Kong Government
to control the SARS outbreak. We assumed that: (1)
the control measures gave, as consequence, a marked
reduction of daily contacts in Hong Kong; (2) the con-
trol measures were based on the cumulative attack
rate, measured as the ratio between cumulative cases
and total population [Table 3, equation (6)]. There-
fore, we decided to use the frequency of contacts as
the daily contacts modulated by the repression Hill
function (Fig. 3), in accordance with the equation
(7) of Table 3. Despite the complexity level of biologi-
cal systems several cases have been modelled using the
Hill function, in order to simulate repressor activities
of enzymatic reactions and the regulation mechanisms
of several transcription factors [21]. In our model this
repressor function allows the establishment of the
relationship between frequency of contacts and the
cumulative attack rate. Note that the cumulative
attack rate is used as an active repressor, so half-
maximal repression occurs when the cumulative
attack rate is equal to the threshold, and almost
total repression occurs when this cumulative attack
rate is double the threshold.

Equation (8) in Table 3 is used to report on the
basic reproductive number (R0), which is defined as
the expected number of secondary infectious cases
generated by an average infectious case in an entirely
susceptible population [20]. In our model this number
is calculated as the ratio between the contagion rate
and the recovery rate. If R0 < 1, then the infected indi-
viduals in the total population fail to replace them-
selves, and the disease does not spread. However, if

R0 > 1, the number of cases generally increases over
time and the disease spreads.

Parameterization

One of the most challenging issues in system dynamics
modelling is to establish the value of the model par-
ameters. The parameters can be estimated taking ad-
vantage of the known information available in the
literature and can be optimized by means of an itera-
tive process of simulation. Using this approach, we set
values for the six parameters of our model which are
summarized in Table 4.

Infectivity expresses the ability of the pathogen to
penetrate, survive and multiply in the host and it is
measured through the secondary attack rate which is
defined as the probability that infection occurs in sus-
ceptible persons within a reasonable incubation period
following known contact with an infectious person or
an infectious source. Epidemiological studies in

Fig. 3. Normalized representation of repression Hill
function. The solid line corresponds to a value of n= 3 [as
used in equation (7) of Table 3]. The dotted line
corresponds to the threshold repression function (when n
tends to infinity). The representation is normalized to the
threshold of cumulative attack rate on the abscissa axis
and the value of the discontinuity (daily contacts) on the
ordinate axis.

Table 4. Values for the six model parameters

Parameter Value Units

Infectivity 0·022 Dimensionless
Incubation period 5·3 Day
Disease duration 26 Day
Case fatality 0·17 Dimensionless
Daily contacts 16·8 Day−1

Threshold of cumulative
attack rate

7·8 × 10−5 Dimensionless
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Singapore showed that 80% of individuals infected
with SARS-CoV did not cause secondary infections,
suggesting low infectivity [22]. After the optimization
process, the final value set for infectivity was 0·022,
which is in agreement with a previous work examining
the probability of transmission for SARS-CoV [23].

The incubation period of the disease, during which
time the individual is asymptomatic appears to be be-
tween 2 and 10 days with an average value of 5·3 days
[24]. Similarly, although the duration of the disease is
variable depending on the case, the average of the
most severe and the mildest cases is 26 days [24].
During this time period the virus can be transmitted
to other people.

Several studies have shown that the case fatality of
SARS-CoV was also variable in the 2003 outbreak
depending on different factors. It has been estimated
that the mean case fatality for SARS in Hong Kong
was around 0·17 [25].

Social contact patterns have been shown to be
highly relevant on the transmission dynamics of res-
piratory infections such as measles, rubella and
influenza [26–28]. Quantifying this parameter is criti-
cal for estimating the impact of such infections, for de-
signing and targeting preventive interventions, and for
modelling their impact. In our model the daily con-
tacts parameter, indicating the mean number of con-
tacts of a person in 1 day, was set to 16·8 after the
optimization process, which is in agreement with pre-
vious studies quantifying these social mixing patterns
[29, 30].

The parameter ‘threshold of cumulative attack rate’
is critical in our model since it allows setting the value
of the cumulative attack rate at which control meas-
ures were established by the Hong Kong authorities.
This parameter was finally set at 7·8 × 10−5.
Therefore, according to the Hill function of
Figure 3, for any number of the cumulative attack

rate below the 78 cases by million, the frequency of
contacts will be greater than 8·4 (half of the daily con-
tacts), and in the opposite case the frequency of con-
tacts will be markedly reduced.

As explained before, our dynamic model was sub-
jected to successive rounds of simulation and optimi-
zation in order to fine-tune the parameters of the
model. In all these simulations we assumed that the
Hong Kong epidemic originated from a traveller
from Guangdong in China [13], and at the beginning
of the outbreak the entire population of Hong Kong
was susceptible to SARS-CoV infection. These
assumptions are represented by the initial values in
the five stocks (Table 1). Moreover, based on the
reported data, the simulation period was set to 146
days with a time step of 1 day.

Sensitivity analysis

Parameters of system dynamics models are subject to
uncertainty. Sensitivity analyseswere conducted to pro-
vide insight into how uncertainty in the parameters
affects the model outputs and which parameters tend
to drive these variations. In this task it is essential to
define the probabilistic distribution patterns of the
model parameters,which are shown inTable 5, together
with the references that support these patterns.

The most influential parameters were estimated by
univariate analyses, in which changes in the model
output were studied after disturbance in each par-
ameter value independently. In complex models, uni-
variate sensitivity analysis can be insufficient for a
comprehensive study of the model. Simultaneous
fluctuations in the value of more than one parameter
may create an unexpected output change due to non-
linear relationships in different model components.
Thus, to test the influence of simultaneous changes
in the model parameters, the univariate analyses

Table 5. Probabilistic distribution patterns of the model parameters

Parameter Distribution Range Distr. values* Reference

Infectivity Gamma (0·001–0·2) 1·1/0/0·025 [23]
Incubation period Gamma (1–30) 1·4/1/3·85 [24]
Disease duration Gamma (1–70) 5·6/0/4·55 [24]
Case fatality Normal (0·14–0·21) 0·171/0·01 [25]
Daily contacts Normal (1–40) 16·8/8·5 [29]
Threshold of
cumulative attack rate

Normal (5·0 × 10−5–1·1 × 10−4) 7·8 × 10−5/1 × 10−5

* The distribution values for normal distributions are mean and standard deviation, whereas for gamma distributions they are
order/shift/stretch.
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were followed by Monte-Carlo multivariate sensitivity
analysis, in which the values of the six parameters
were altered at the same time.

Software

Modelling process, simulations and sensitivity analy-
ses were performed using Vensim DSS software
v. 5.7a (Ventana Systems).

RESULTS

Figure 4 shows a graphic comparison between the
simulation results using the parameters of Table 4
and the real data of the Hong Kong outbreak. We
compared only the variables of the model for which

records were found in the public databases, which
are the same six variables shown in Figure 1.

The simulation output for the variable ‘sick per
day’ fit the data reported by the Hong Kong auth-
orities (Fig. 4a), suggesting that the model was able
to reproduce the epidemic curve. We observed that
the number of new cases per day obtained in the simu-
lation grew during the first 46 days. From this time,
the number of new infections gradually fell to values
<1 at later stages of the outbreak.

As a consequence, the auxiliary variable that stores
the cumulative SARS cases showed a characteristic
sigmoidal growth (Fig. 4b), consistent with the real
data. We observed that the number of SARS cases
grew from one at the beginning of the epidemic
to around 1800 at the final stage of the outbreak, simi-
lar to the 1755 cases reported by the authorities.

Fig. 4. Simulation of the model. For simulation, the time period was set to 146 days with a time step of 1 day. The
graphs represent the output of the simulation (solid lines) and the data reported for the SARS outbreak (dotted lines).
(a) Sick per day, (b) cumulative cases, (c) recovered, (d) dead, (e) daily recovered, and (f) daily deaths.
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Moreover, we observed a high fit between the model
predictions and the real data.

As expected, the number of deaths and recovered
people in the simulation also grew with a sigmoidal
shape to reach values similar to those found in the
public databases (Fig. 4c, d). However, we observed
a partial fit of these stock variables to the data
reported during the outbreak. These slight mismatches
were also observed in the flow variables for recovered
and daily deaths (Fig. 4e, f) that may be due to delays
in reporting of cases by the authorities.

In short, looking the simulation results of Figure 3
we can conclude that our model is able to reproduce
largely the most important indicators of the SARS
epidemic that occurred in Hong Kong in 2003.

Focusing on the evolution of the basic reproduction
number (Fig. 5), we note that during the early stages
of the epidemic, R0 >1, which is consistent with the
observed disease spread. Moreover, after day 30, R0

starts to drop to values <1, probably due to the im-
plementation of containment measures by the Hong
Kong authorities after the issuance of the first global
alert against SARS on 12 March 2003. These results
are consistent with a previous report showing the
basic reproductive numbers for different SARS epi-
demic curves, which supports the notion that our
model is able to largely replicate the disease outbreak
in Hong Kong [31].

The results of the univariate sensitivity analysis are
shown in Figure 6. We focused our attention on the
epidemic wave although the analysis is possible in
other variables, as shown in the multivariate analysis
of Figure 7. Variations in case fatality, threshold of
cumulative attack rate and disease duration induced
little changes in the epidemic curve (Fig. 6–c), while
more extensive alterations in the epidemic wave were

observed after changes in infectivity, daily contacts
and incubation period (Fig. 6d–f). Variations in the
case-fatality parameter do not alter the output of the
variable sick per day (Fig. 6a), although other vari-
ables from the model such as recovered and dead
are highly impacted (data not shown). Small changes
in the shape and the maximum of the curve are
observed after modification of the parameters ‘thresh-
old of cumulative attack rate’ and ‘disease duration’
(Fig. 6b, c). By contrast, changes in infectivity, daily
contacts and to a lesser extent in incubation period
significantly alter both the position and height of the
maximum of the epidemic curve (Fig. 6d–f ).

The results of the multivariate sensitivity analysis
are shown in Figure 7, we analysed the output of
four variables: sick per day, infected, recovered, and
dead (Fig. 7a–d, respectively). Variations in the
model parameters clearly change the shape of the epi-
demic curve, altering both the position and the height
of the maximum of this variable (Fig. 7a). Similarly,
the output of the variables infected and recovered is
highly impacted by the changes in parameters carried
out in the multivariate sensitivity analysis (Fig. 7b, c).
The alterations of variable outputs are clearly exem-
plified by the variable ‘dead’ (Fig. 7d). Certain
changes in the parameters of the model can explain
an increase in the total number deaths during the epi-
demic rising from about 300 to about 700. The
observed variations in model output when the value
of the parameters is changed support the idea that
this model might be able to simulate different scenar-
ios and epidemic conditions.

DISCUSSION

System dynamics modelling has been successfully ap-
plied to study complex public health issues such as the
design of optimal policies in healthcare [32], the im-
pact of public health intervention in different situa-
tions [33, 34], and to study disease epidemiology
[35–37]. In the latter, system dynamics technology
has become a powerful tool to understand and predict
the impact of infectious diseases. Epidemiological
models can help health authorities to make recom-
mendations regarding intervention to fight the spread
of directly transmissible pathogens, especially when
empirical data is limited. In this sense, mathematical
models have been previously used to advise health
policies against diseases such as pandemic influenza
[38, 39] and SARS [31, 40, 41].

Fig. 5. Basic reproductive number obtained from the
simulation. R0 was calculated as the ratio between the
contagion rate and the recovery rate.
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Several models studying SARS transmission and
interventions have been published. These are detailed
hybrid stochastic and compartmental models that
successfully explain the behaviour of the epidemic
[14, 31, 42]. Here, trying to follow Ockham’s razor
principle, we have built a simpler deterministic
model, which is also able to reproduce the behaviour
of the epidemic based on its natural history and the in-
tervention measures taken in Hong Kong. The use of
a less complicated model could be helpful in under-
standing the disease epidemic and also facilitating its
reuse under other conditions.

The epidemiological models depend on the consist-
ency of the chosen parameters. Therefore, the accurate
quantification of these parameters is critical to esti-
mate the path of a disease, to predict the impact of
possible interventions, and to inform planning and

decision making. Here, we have combined reported in-
formation from the SARS epidemic with an iterative
optimization process to set the final values for
the model parameters. Under these conditions, the
model output fits the epidemic curve observed in the
Hong Kong SARS-CoV outbreak (Fig. 4).

Of the factors that influence the dynamics of infec-
tious diseases, the person-to-person contact pattern
has been shown to be essential in disease spread [43].
Our model takes this essential factor into account
through the auxiliary variable ‘frequency of contacts’,
which is dependent on the auxiliary variable ‘cumulat-
ive attack rate’ and the parameters ‘daily contacts’
and ‘threshold of cumulative attack rate’ (Fig. 2). A
previous work showed that mixing patterns and con-
tact characteristics were remarkably similar across
the different European countries analysed in that

Fig. 6. Sensitivity of the model to changes in parameters. Univariate analysis with 1000 simulations was performed for
each parameter: (a) case fatality, (b) threshold of cumulative attack rate, (c) disease duration, (d) infectivity, (e) daily
contacts, and (f) incubation period. The parameters were varied considering ranges and distributions shown in Table 5.
The solid black line represents the simulation output and the grey area represents the 95% confidence bounds.
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study even though the average number of contacts
recorded differed. Interestingly, the authors suggests
that the results may well be applicable to other coun-
tries with similar social structures, and that the initial
epidemic phase of an emerging infection in susceptible
populations, such as SARS was in 2003, is likely to be
very similar [30]. During the SARS outbreak, health
authorities, hospitals, and the overall population pro-
gressively implemented quarantine and protection
policies to prevent the transmission of the disease
[15]. With this in mind, we made the assumption that
the intervention of the health authorities caused a de-
crease in the frequency of contacts, which in turn led a
decrease in the rate of contagion. To mimic this event
in our model, the number of daily contacts is regulated
by means of a repression Hill function, which has been
used to simulate repressor activities in complex biologi-
cal systems [21].

The basic reproductive number is a key epidemiolo-
gical variable that characterizes the potential of a dis-
ease to spread. Several works have estimated that
prior to the first global alert the basic reproductive
number for SARS was >1, correlating with an expo-
nential increase in the number of cases. However,
the implementation of effective control measures,
such as quarantine, isolation, and strict hygiene prac-
tice in hospitals led a sudden decrease in R0 [14, 31].

The fact that, in our model, R0 drops to values <1
around the date of the global alert reinforces the
idea that a decrease in the frequency of contacts is
able to effectively simulate the effects of the control
measures established in the first stages of the epidemic.
It is important to note that estimations of R0 in pre-
vious publications are considerably lower (around
2–4) than ours, which is almost 12 at the beginning
of the outbreak [14, 31, 42]. Nevertheless, the esti-
mated value of R0 also differs in these works and
the credible intervals surrounding these deterministic
estimations were wide, reaching superior values of
almost 8. This high variability can be explained
in part by the superspreading events that occurred in
SARS epidemics. Superspreading is an unusual situ-
ation, in which a single individual directly infects a
large number of other people that has a large influence
on the early course of the epidemic [42]. Interestingly,
the fact that our model does not explicitly account
these events could partially explain the very high esti-
mated value of R0 at the beginning of the outbreak.

The reliability of the model parameters is supported
by univariate and multivariate sensitivity analyses
(Figs 6 and 7). Furthermore, sensitivity analysis is a
powerful tool to analyse the influence of certain de-
cision making in the evolution of the epidemic.
Taken together, these findings strongly suggest that

Fig. 7. Multivariate sensitivity analysis of the model. A Monte-Carlo sensitivity analysis with 1000 simulations was
performed and the results for (a) sick per day, (b) infected, (c) recovered, and (d) dead are shown. The values of the six
parameters were altered at the same time following the distributions described in Table 5. The solid black line represents
the simulation output and the grey area represents the 95% confidence bounds.
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our model, together with other system dynamics mod-
els can be used by epidemiologists to investigate the
likely consequences of future re-emergences of
SARS-CoV based on analysis of the previous known
epidemics. In addition, by adapting the key para-
meters of these models or with a little change in the
model structures, they can be used to face emerging
outbreaks of infectious diseases, such as the recent
MERS-CoV epidemic. In this regard, there are several
similarities and differences which should be taken into
account when using this model. Both SARS-CoV and
MERS-CoV may cause severe respiratory failure,
extrapulmonary features such as diarrhoea and also
mild or asymptomatic cases. In contrast with SARS,
MERS has lower human-to-human transmission po-
tential, affects predominantly older people with
more comorbid illness and has a higher case-fatality
rate [44]. These factors would affect the output of
the model variables (e.g. epidemic curve, cumulative
cases, number of dead, etc.).
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