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Transient behavior of a parametric amplifier with an added fourth-order interaction
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The dynamical properties of an optical parametric amplifier with an added fourth-order (Kerr-
effect term) nonlinearity are studied by means of a computer simulation of a semiclassical nonlinear

Langevin formulation.

The transient statistics above threshold are analyzed in detail, and the

relevance of the present results for the production of squeezed light in traveling-wave devices is

finally discussed.

PACS number(s): 42.50.Dv, 42.65.Ky, 42.50.Md

I. INTRODUCTION

The possibility of achieving strong noise suppres-
sion in an optical parametric amplifier by means of an
added Kerr-effect (x(3)) nonlinearity was pointed out
by Tombesi [1] and further considered by Gerry and
Rodrigues [2] some time ago. The rationale behind it
was the fact that such a higher-order nonlinearity could
well shorten the interaction time required to achieve the
sought reduction in noise compared with the usual x®
devices. An effective Hamiltonian was postulated com-
prising both the usual terms appearing in the descrip-
tion of a conventional optical parametric amplifier and
an added fourth-order term which was found to enhance
the squeezing properties of the model device at least in
the initial stages of the evolution. A previous work (3]
was devoted to the study of the stability of a more re-
alistic model where noise sources arising from the cou-
pling to a phonon bath were explicitly taken into ac-
count. The presence of the nonlinear contribution was
found to be responsible for the appearance of a pitch-
fork bifurcation at threshold leading to bistable behavior
above this point. In this paper the temporal evolution
of such a model system is analyzed in detail. Because
of the semiclassical nature of the treatment, which was
carried out in a Wigner-representation frame, the tran-
sient behavior could be analyzed by means of a computer
simulation of the coupled stochastic equations (provided
that the analysis is not carried out in the vicinity of the
instability point).

The squeezing characteristics both during the transient
evolution and once the steady states above threshold have
been reached have been studied in order to compare the
noise reduction with those attainable by means of purely
Kerr-effect interactions. In this latter respect, the inter-
est was focused on the characterization of the statistics
of the output field since it was shown previously [4,5]
that “amplitude-squeezed” states could be produced by
systems which are describable by means of anharmonic-
oscillator Hamiltonians, such as those currently used to
study the dynamics of fourth- and higher-order Kerr non-
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linearities.

The outline of the paper is as follows. The field statis-
tics of the stationary states above threshold is consid-
ered first in Sec. II. The transient behavior as well as
some considerations about the underlying assumptions
are then examined in Secs. III and IV. Finally the main
conclusions and the relevance of the present findings are
commented in Sec. V.

II. STUDY OF THE SQUEEZING FEATURES
OF THE STATIONARY STATES ABOVE
THRESHOLD

In order to study the interaction of an intense laser
beam of frequency 2Q2—the pump beam—with the suit-
able nonlinear medium, one should be able to solve the
Heisenberg equations associated to the corresponding ef-
fective Ilamiltonian. This is in general a difficult and still
open problem. In this paper and following the work de-
scribed in Ref. [3], we make use of a semiclassical aproach
based on a Wigner (symmetric) phase-space represen-
tation [6]. This approach allows the representation of
the evolution of the system in terms of two coupled real
stochastic differential equations, provided that a certain
linearization is valid. The resulting equations are then
more convenient for computational purposes than their
Heisenberg-Langevin counterparts. The details of the
method are given in Ref. [3]. We give here only a brief
outline of the main results.

The evolution of the annihilation operator is replaced
by a complex stochastic process @ = z(t) + iy(t). Re-
moving the oscillatory motion of a(t), z(t) and y(t) (the
quadratures of the optical field) satisfy the following
Langevin equations:

d 2
-(f = (=7 + &)z + Ty(y® + %) + L,
(1)
dy 2 2
2 = (-7 =Ry - Te(* +2) + Ly,

where 4 and & are the loss and gain parameters, respec-
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tively, and T is the strength of the nonlinear (fourth-
order) term of the Hamiltonian. Rewriting the above
equations in terms of the dimensionless time 7 = (y+&)t,
we get

dz -
o= =uz+vy(y’ +2°) + L,
(2)
Yoy va(y o)+ L
dr v
where we have introduced the dimensionless constants
K—7 r
== y V= (3)
K+ T+K

and L, and Ly are real Gaussian white noises of zero
mean and correlations given by

< Li(t)L;(t) >= Dé;;6(t —t'), (4)
where D is defined by

— ¥ _

2D 7+n(1+2n) (5)
and 7 depends on the temperature of the reservoir. The
semiclassical equations (2) are the basis of our subsequent
analysis.

A degenerate parametric amplifier operating above
threshold gives rise (when pump depletion is accounted
for) to two stationary states symmetrically located with
respect to the origin [7,8]. In a Wigner-representation
frame, the fluctuations can be graphically represented in
the quadrature phase space by means of an error ellipse so
that the quadrature noise components are just the projec-
tions of the ellipse contour on the two axes [9,10]. In this
case, the orientation of the error ellipse is such that its
main (larger) principal axis lies along the z axis (i.e., the
phase-sensitive noise amplification makes this quadrature
the most amplified one and the converse is true for the
other component). Such particular redistribution of the
noise is a general feature of an optical parametric ampli-
fier and does not depend upon the relationship between
pump and loss.

It is worth noticing that the bistable behavior of our
model system arises from the fourth-order interaction
term, and not from the pump depletion (not considered
in this model). The only feature that remains in our
case is the symmetry with respect to the origin. In fact,
Egs. (2) give rise above threshold (i.e., p > 0 and in ad-
dition to the trivial solution £ = y = 0) to two stationary
states symmetrically located with respect to the origin.
Namely, the stationary states (z,,ys) are given by

1/4
T, = i_”—___’
Vr(l+p)

As a result, the stationary states are not in the z axis
and the principal axes of the error ellipses are not paral-
lel to the coordinate axes. It is interesting, then, to study
the orientation of the error ellipse seeking special direc-
tions of the ellipse main axis, i.e., perpendicular to the

Ys = —\/HTs. (6)
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FIG. 1. The different angles and vectors involved in the
problem. The coordinates z and y are the quadratures of the
electric field and the ellipse represents the error contour in a
symmetric phase-space representation of a steady state above
threshold.

<

position vector of the stationary state (pure “amplitude
squeezing”) or parallel to it (pure “phase squeezing”).

The error ellipse in the stationary states is defined from
the variance matrix o(o, = 01; =< 22 > — < z >2,
Ogy = 012 = 021 =< ZY > — < 2 > Y >,0y = 022
=< y? > — < y >?). This is obtained by allowing
small fluctuations éz and éy around the steady states
and considering the linearized version of the stochastic
equations (2)

(§y> =4 (§;> * (f) (7)

where A is the drift matrix. The variance matrix o is
then the solution of the following equation [11]:

Ao +0AT =-D [ (8)

As it was shown in Ref. [3], the drift matrix A depends
only on the p parameter. So ¢ only depends upon g and
D. Taking ¢ = o D~! we have

As +6AT = - L (9)
2r —
[}
)
£
2
P r
=
c
<
k
o L
0 0.5 1.0
72

FIG. 2. The angles illustrated in Fig. 1 vs the parameter
u.



3218

FIG. 3. Illustration of the projection of the error ellipse
onto the position-vector direction.

Therefore & only depends on y and has the same principal
axes as o since D is a real number. The position vector
of the stationary state V, only depends on the A matrix
and, therefore, only on the parameter pu.

Figure 1 illustrates the different angles involved in
the problem. V; and V, are eigenvectors of & in
the maximum- and minimum-variance directions, respec-
tively. The expressions for the different angles are

V.
0y = t 29
o = arctan (st)’

Vi
0, = t —£
1 arctan (V ) ,

1z
)

arctan <V2z ,

where the values for the angles are considered to be
within the interval [0, 27]. A numerical evaluation of
this expression has been done. The representation of the
different angles against u is shown in Fig. 2. A V; vector
parallel or antiparallel to V; would represent an intersec-
tion between the curves 6y(u) or 8o(p) —m with 6, (x) and
a V, vector parallel or antiparallel to V,; would repre-
sent an intersection with 62(u). So, the model considered
here does not show pure “phase” or “amplitude squeez-
ing.” However it is still possible that the projection of the
error ellipse onto the V, direction be less than % which

would represent a value smaller than that of a coherent
J
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d=|z,| =

cos<p2 sincp2
Car) + (&)
022 J11
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FIG. 4. The projection of the error ellipse onto the
position-vector direction vs the parameter x.

state and, therefore, a state of sub-Poissonian light. The
equation for the error ellipse in the z” and y” axes shown
in Fig. 3 is

@), W
+ = 1’ 11
of o3 (1)

where o01; and o093 are in this frame the maximum
and minimum variances of the state. Transforming the
(2",y") axes to the (z’,y’) axes by a rotation of angle ¢
we obtain the equation in the (z’, y’) frame with a general
form

a(p)(¥')? +b(e)2'y’ +c(p)(2')* = 1=0.

Taking (12) as a second-degree equation for y’ the solu-
tion has the general form

y/ — _b(¢)xl + Vv A(go,l")
2a(p) ’
where A(yp, z') is equal to [b(p)z’]2—4a(p)[c(p)(z')* —1].

In order to obtain the z’ values for which y' is single
valued, the following condition must hold:

(12)

(13)

A(p,zp,) = 0. (14)

In this way we obtain

1/2

() (2)][Czo)

Since ¢, 011, and 032 only depend on p, d must have the
same dependence. Figure 4 shows a plot of d versus p. It
is clear that the produced states are not of sub-Poissonian
character since d(u) never goes below the 0.25 value.

. 2 2
sin <p> ( 1 1 ) 5 2
— | = — =] cos?ysin
722 o3y of v i

III. TRANSIENT BEHAVIOR

The numerical simulation uses a stochastic first-order
Euler scheme as explained in the Appendix of Ref. [12].
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The Gaussian white noise has been generated by means
of the Box-Muller-Wiener transformation [13] and an in-
tegration step of 10~3 has been used. The temporal de-
pendence is given by the dimensionless time 7 = (y+&)t.

We have not considered thermal fluctuations (72 = 0)
and v/« (loss-pump ratio), I'/x (fourth- to second-order
strength ratio) as independent parameters in all calcu-
lations. The statistical averages were taken over 10000
trajectories when dealing with quadrature statistics and
20000 for photon-number statistics.

A. Below threshold

Figure 5 shows the temporal dependence of the quadra-
ture variances (022 is the minimum quadrature variance
and o1; is the maximum quadrature variance hereafter).
For values of I'/x within the range [0.02,0.002] used in
this work no influence of the nonlinear term has been
found within our numerical precision. Therefore the tran-
sient behavior in this regime is essentially governed by the
pure two-photon interaction.

B. Above threshold

As stated above, the nonlinear term included in our
model system leads to the appearance of bistable behav-
ior above threshold. In what follows we will briefly de-
scribe the transients.

Making use of the symmetry with respect to the ori-
gin of the evolution equations, averages over trajectories
leading to the same final state were taken. As a conse-
quence, the stationary variances calculated in this man-
ner are the same as those reported in Ref. [3]. All the
simulations presented here have 500 “measures” with a
time step A7 = 0.15.

It was clear from the outset that two different regimes
could be defined depending on the value of the parameter
v/k. While oscillations do not appear for large enough
values of v/k, a rich oscillatory behavior was present
when small enough values of the parameter vy/k were
used. Since both regimes exhibit a rather distinctive phe-
nomenology they are, in what follows, considered sepa-
rately.

0.8 L A .
:é (om
[ 0.6 -
i3
2 g Ir/k=0.026
o
© 0.4 _
8 E 7/k=1.333
d
e
g 0.2 O L
0.0 T ~— T
0.0 1.0 2.0 3.0 4.0
T
FIG. 5. Evolution of the maximum and minimum quadra-

ture variances below threshold.
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1. Overdamped regime

Figure 6 shows the evolution of the minimum variance
for different values of the parameters. All the curves show
an “oversqueezing” region [1,2] which corresponds to a
pure two-photon interaction [no influence of the nonlinear
term around the (0,0) unstable point]. The value of 029
in this region coincides with the linearized theory around
the unstable point [14,15] (second formula of Eq. (4.3) in
Ref. [3]).

Figure 6(a) displays the influence of the I'/x parame-
ter. We have chosen v/x = 0.64 to ensure that no jumps
between stationary states occur [3]. A larger value of
I'/x involves an approach to the stationary states that
implies a reduction of the two-photon interaction region
and a quieter transient.

Figure 6(b) shows the dependence with v/k. A larger
value of v/k implies also an approach of the stationary
states, but in this case the “oversqueezing” and station-
ary values of o3 get closer while v/« increases, reach-
ing the same value in the limit y/k = 1. Therefore in
this case an increase of v/« implies a larger period of
oversqueezing, a larger value of o2 in this region, and a
quieter transient.

In Fig. 7 we show a transient with a coherent ini-
tial state other than the vacuum. This initial state is
such that [a(0)|T/(y + k) = 1 is satisfied. In this way
it reproduces the most favorable initial condition used
by Tombesi [1]. The result shows how the squeezing is

O

0 10 20 30 40 50
T

FIG. 6. Evolution of the minimum quadrature variance
above threshold for a coherent-vacuum initial state. The de-
pendence with respect to the parameter I'/x is shown in (a)
and with respect to the parameter v/x in (b). The insets
show the initial stages of the evolution.



3220

0.1 e I/k=0.02 L
7/6=0.64
0.0 T T T T
0 3 8 T 9 12 15
FIG. 7. Evolution of the minimum quadrature variance

for a nonvacuum initial state compared with the same for
a coherent-vacuum initial state. Solid line: coherent initial
state such that |a(0)|T'/(y + &) = 1. Dotted line: coherent-
vacuum initial state.

revoked before it reaches a value smaller than that of
a pure two-photon interaction as Gerry and Rodrigues
have shown for a lossless case [2].

2. Osctllatory regime

When 7/ tends to small enough values, damped oscil-
lations appear on the different calculated variables. Be-
sides the diagonalized variances for the quadratures, the
average photon number and variance have been obtained,
allowing a clearer vision of the oscillations. Considering
that a Wigner (symmetric) representation in the phase
space has been used and taking into account the commu-
tation relations between quadrature operators we have

<a>=<ala>=<22+iz,9)+9° >
=(&Ha + ¥)a — 3,
(15)
< (A)? > = (zY)a + (¥*)a — [(z7)a + (¥7)a)?
+ 2(x2y2)c - %;

where < > and () indicate quantum and classical aver-
ages, respectively.

The evolution of the mean photon number and vari-
ance i1s shown in Fig. 8. Two cases, one in the over-
damped regime and one in the oscillatory regime, are
displayed. Figure 9 shows the diagonalized variances for
the quadratures for the coherent vacuum as initial state.

The oscillations in the quadrature quantities show an
interesting double structure which is not present in the
standard parametric amplifier [15]. A closer look at a
display of several trajectories (Fig. 10) reveals a large
temporal dispersion in the starting times (the times in
which each trajectory reaches an observable value of the
photon number). This temporal dispersion seems to be
constant, i.e., each trajectory seems approximately to be
just a shifted replica of one of them. A passage-time (PT)
statistic has been computed for twelve different photon-
number reference values scanning the first peak in the
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FIG. 8. Evolution in the oscillatory regime compared with
the same in the overdamped regime for photon-number av-
erage (a) and the photon-number variance (b) (coherent-
vacuum initial state).

evolution. A value of 1.50 for the passage-time vari-
ances has been obtained in all cases. This means that,
at least, there is no dispersion in the width of the first
peak. Assuming that only PT dispersion occurs (i.e., all
curves have exactly the same shape), it is not difficult
to understand the double-peak structure if we interpret
the dispersion in a variable as the projection of an os-
cillatory band of constant width (the PT variance) onto
the axis corresponding to the considered variable. If the
PT-probability distribution is symmetric with respect to
the most likely trajectory, the position of the local mini-

112 . o
ag,, solid line

O, dotted line

I/k=0.002
7/£=0.052

28 -

diagonalized quadrature
variances
o
@

0 10 20 30

FIG. 9. Evolution of the quadrature variances in the os-
cillatory regime (coherent-vacuum initial state).
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FIG. 10. Ten switching events for the photon number cor- FIG. 12. Evolution of the quadrature variances for the

responding to the oscillatory case of Fig. 8(a). The thick line
represents the average value.

mum in the variance will coincide with that of the local
maximum of the average of the corresponding variable
[16,17]. Since in our case the local maximum is located
before the local minimum of the variance we conclude
that the PT-probability distribution is not symmetric
with respect to the most likely trajectory. In general
this structure will appear in regions in which PT disper-
sion is dominant and roughly constant. This can occur,
at least at the beginning of the evolution, if the start-
ing times show large dispersion. Our model system has
a two-dimensional real phase space and bistability with
equal probabilities for both stationary states. Because
of the two-dimensional and real character of our model,
if there is an oscillatory regime it must have a conserva-
tive limit and both generalized position and momentum
must oscillate around steady states. This implies that
the starting directions in the unstable point cannot aim
at the stationary points. Therefore the deterministic flow
around the unstable point can produce a large dispersion
in the starting times. This is not the case of the standard
parametric amplifier [15] in which the larger dimension-
ality of the phase space allows the stationary states to

1000 L L L

750 -

500 1

250 -

FIG. 11. Ten switching events for the photon number with
the same parameter values as in Fig. 10 but with an initial
coherent state such that < z(0) > = 21, and < y(0) >= —5.3.
The thick line represents the average value.

case of Fig. 11.

settle onto the starting directions of the unstable state.

Figure 11 shows the same switching events for the pho-
ton number as Fig. 10 but with an initial state different
from the vacuum. As can be clearly seen upon inspec-
tion of the figure, the input of a nonvacuum state results
in a smaller dispersion of the initial times. At the same
time a dispersion on the oscillation frequencies appears
due to the influence of the fourth-order term at the initial
time (self-phase-modulation [4,5,18]). The double struc-
ture in the variances now tends to disappear as is shown
in Fig. 12.

It should also be noted that the oscillations occur
around an exponential decay and not around a horizontal
line as in the standard parametric amplifier. Again this
i1s due to the noncoincidence of the starting directions
with those which stationary states settle onto.

IV. ADEQUACY OF THE MAIN
APPROXIMATION

For a correct application of the semiclassical phase-
space representation used herein it is necessary that the
quantum fluctuations are appreciably smaller than the
mean value. As we have computed statistical quanti-
ties over the whole evolution, an analysis of the region
where the approximation holds must be done. Follow-
ing Tombesi we use as a criterium for the validity of the
approximation the smallness of the parameter

(az)cl — (a)zl
= |———< 1
S(r) = |Fs= (16)
which has the expression in quadrature variables
1/2
(07 — 0y)? + 402
S(1) = Y , 17
(") ( @5+ W) (17)

where o, 0y, and o,y are the components of the vari-
ance matrix at each 7. Figure 13 shows S(r) for several
cases. Comparing the S(7) curves with the correspond-
ing counterparts for the variances it is observed that the
approximation is not valid in the regions around the max-
imum of the variances as can be expected. Therefore the
results should be taken as qualitative in these regions.
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FIG. 13. Evolution of the parameter S (variance-average

relation) for a coherent-vacuum initial state (a) and for a non-
vacuum initial state (b). The inset shows the evolution below
the value § = 0.1.

In cases where the initial state is the vacuum, the over-
squeezing region does not present a small enough value
of S. However, in this region there is no influence of
the fourth-order term and the method is exact [6]. Set-
ting I'/k = 0 in the simulations, no discrepancy with the
cases I'/k # 0 has been found in these regions within our
numerical precision. The same holds for the simulations
made below threshold. In the oscillatory case, S(7) takes
small enough values in regions in which the characteris-
tic oscillatory behavior is observed. Therefore, we can
conclude that this behavior is not a consequence of the
approximation taken.

It should be noticed that we have not taken into ac-
count the depletion in the pump which is expected to
be important near threshold (some region in the over-
damped regime). In due time a complete study of the
model system including depletion in the pump will be
reported.
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V. SUMMARY AND CONCLUSIONS

We have considered here the squeezing properties of
a model device which includes two- and four-photon in-
teractions as well as a realistic account of beam losses.
Such a model exhibits bistable behavior above thresh-
old leading to a steady regime which shows quadrature
squeezing. A detailed analysis of the stationary statistics
has evidenced that the attained states do not have min-
imum uncertainty relations and show super-Poissonian
photon statistics.

The study of the transient behavior above threshold
when the initial state is a coherent vacuum has evidenced
that the fourth-order term does not exert any effect at
the first stages of the evolution, and therefore the results
are comparable to those attained by a conventional para-
metric amplifier [15]. At these first stages the squeezing
is the maximum attainable with a parametric amplifier
since it shows the same dependence with respect to the
pump-loss relation as in the case below threshold. It has
to be noticed that the model herein studied enables the
possibility of controlling the duration of this initial “over-
squeezing” region in a pump-independent way since it is
governed not only by the pump-loss relation but also by
the relative values between the pump and the Kerr-effect
term. On the other hand, for the case of nonvacuum
initial states, the present results confirm the numerical
calculations carried out by Gerry and Rodrigues [2] for
a lossless case regarding the disappearance of the “over-
squeezing” effect before it attains a value corresponding
to a two—photon interaction. An oscillatory behavior has
been found for low-loss cases. In particular, the time
evolution of the variances shows a characteristic double-
peak structure similar to those found in recent papers
[16,17] on semiconductor-laser gain switching. A close
look at several sets of trajectories has shown that the ap-
pearance of such double structure is caused by the large
temporal dispersion, at least when the initial state is a
coherent vacuum. For cases where the trajectories depart
from a nonzero coherent state, a noticeable frequency dis-
persion is readily seen. Such an effect is caused by the
fourth-order term and can be considered to be an ana-
logue to the observed self-phase-modulation exhibited in
optical fibers [18] under circumstances where the Kerr-
effect term plays a dominant role.
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