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Tryptophan dendrimers that inhibit HIV replication by binding to the HIV envelope glycoproteins gp120 and gp41 have unex-
pectedly also proven to be potent, specific, and selective inhibitors of the replication of the unrelated enterovirus A71. Den-
drimer 12, a consensus compound that was synthesized on the basis of the structure-activity relationship analysis of this series,
is 3-fold more potent against the BrCr lab strain and, surprisingly, inhibits a large panel of clinical isolates in the low-nanomo-
lar/high-picomolar range.

Enterovirus A71 (EV71) is a small virus (�30 nm) with a single-
stranded positive-sense RNA genome of �7.4 kb that belongs

to the genus Enterovirus of the family Picornaviridae (1, 2). EV71 is
the etiologic agent of hand, foot, and mouth disease (HFMD), a
mild syndrome that most frequently affects children younger than
6 years and that is characterized by the development of fever with
skin vesicles on the palms and feet, as well as ulcers on the oral
mucosa (3). Unlike other HFMD-associated enteroviruses, EV71
can also cause severe neurological problems, such as aseptic men-
ingitis and brain stem encephalitis, which can lead to cardiopul-
monary failure and death (4–6). After having suffered from such
neurological complications, survivors often have permanent neu-
rological sequelae, such as delayed neurodevelopment, reduced
cognitive function, and polio-like paralysis (7). Similar to other
human enteroviruses, such as poliovirus, transmission of EV71
occurs through the fecal-oral route (8).

In recent years, large outbreaks of EV71 have been reported
throughout the world, and they have been particularly severe in
the Pacific region of Asia, with a high number of fatal cases among
children (9–11). So far, there is no drug on the market to treat or
prevent this infection. An inactivated EV71 vaccine was recently
approved in China (12), but it may induce only limited cross-
neutralization between EV71 genogroups, which does not make it
suitable for widespread use.

Recently, we reported on the anti-HIV activity of a dendrimer
family containing different central scaffolds and multiple (9 to 18)
peripheral tryptophan (Trp) groups (Fig. 1, compounds 1 to 11)
that are linked to the dendrimer branches through an amino
group. These compounds were shown to inhibit an early step in
the replication cycle of HIV by interacting with glycoproteins
gp120 and gp41 of the HIV envelope (13). Further exploration in
virus-cell-based assays for broad-spectrum antiviral activity
against other viruses (herpes simplex viruses 1 and 2, vaccinia
virus, varicella-zoster virus, vesicular stomatitis virus, respiratory
syncytial virus, reovirus 1, Sindbis virus, Punta Toro virus, cyto-
megalovirus, influenza virus A [subtypes H1N1 and H3N2], in-
fluenza virus B, feline coronavirus, and feline herpes virus) did not
reveal any inhibitory activity, except when evaluated against
EV71, a virus whose structure and mechanism of replication are

completely different than those of HIV. This unexpected and in-
triguing observation prompted us to investigate in more detail the
anti-EV71 activity of this dendrimer family.

Dendrimers 1 through 11 (Fig. 1) were first evaluated for se-
lective antiviral activity (50% effective concentration [EC50])
against the BrCr lab strain of EV71 in a virus-cell-based assay on
rhabdomyosarcoma (RD) cells, which are known for their high
susceptibility to EV71-induced cell death (14). Toxicity (50% cy-
totoxic concentration [CC50]) was also assessed in a similar assay
setup with treated uninfected cells. Table 1 summarizes the results
of these evaluations. The capsid binder pirodavir was included as
a reference (15, 16). While the antiviral activity against HIV was in
the 2.2 to 16 �M range, slightly better activity was observed (0.8 to
14 �M) for EV71.

Study of the structure-activity relationship (SAR) led to the
following conclusions: (i) the absence of Trp on the periphery is
detrimental for anti-EV71 activity (“nude acids” 10 and 11 were
inactive at EC50s of �98 and �48 �M, respectively); (ii) multiva-
lent presentation of Trp is important for anti-EV71 activity (com-
pound 9, with only three Trp residues, is inactive, while its respec-
tive superior analog, 5, with nine Trp residues is active); (iii) the
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presence of 9 or 12 Trp residues on the periphery is sufficient for
anti-EV71 activity (compound 6, with 12 Trp residues, was more
active than compounds 7 and 8, with 15 and 18 Trp residues,
respectively); and (iv) the flexibility of the central scaffold does not
appear to have a pronounced impact on antiviral activity (com-
pounds 1 and 2, with triethylbenzene and benzene rigid cores,
respectively, showed activity similar to that of compound 3, with a
more flexible cyclohexane core). Interestingly, the SAR that is de-
scribed here for EV71 is very similar to that previously reported
for HIV (13).

To take a next step in the exploration of the structure-activity
relationship of this class of compounds, compound 12, which has
a central pentaerythritol scaffold and 12 Trp residues on the pe-
riphery, was synthesized (Fig. 1). This compound was prepared
using a strategy similar to that described by Rivero-Buceta et al.
(13).

Compound 12 proved to be 3-fold more active (EC50, 0.29
�M) than compounds 5 and 6 (EC50s, 0.9 and 0.8 �M, respec-
tively), the most active compounds among dendrimers 1 through
11, and equally as active as pirodavir, the reference compound
(Table 1). Compound 12 also has the highest selectivity index (SI
of 103) of the dendrimer series.

Subsequently, the antiviral activity of compound 12 was eval-
uated in virus-cell-based assays against a panel of representative

FIG 1 Structures of dendrimers 1 through 12.

TABLE 1 Antiviral activity of dendrimers against the BrCr lab strain of
EV71 in RD cellsa

Compound EC50 (�M) CC50 (�M) SI

1 10 � 1b �37 �3.7
2 3.5 � 0.3b 45 � 2b 13
3 3.9 � 0.2b 67 � 1b 17
4 �39 90 � 2b ND
5 0.9 � 0.1b �38 �42
6 0.8 � 0.1b 28 � 13b 35
7 1.9 � 0.1b 32 � 1b 17
8 14 � 1b 22 � 1b 1.5
9 �120 �120 ND
10 �98 �98 ND
11 �48 48.0 � 0.2b ND
12 0.29 � 0.07b 30.0 � 2.5b 103
14 42 � 7b 117 � 2b 2.8
Pirodavir 0.3 � 0.1b �54 �180
a All values are a summary of multiple dose-response curves (�2) from multiple
independent (�1) experiments. CC50, concentration of compound at which a 50%
reduction in cell viability is observed; EC50, concentration of compound at which the
virus-induced cytopathic effect is reduced by 50%; SI, selectivity index (CC50/EC50);
ND, not determined.
b Following microscopic quality control, at least at one concentration of compound, no
virus-induced cell death was observed, and the compound did not cause an adverse
effect on the host cell or monolayer morphology.
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enteroviruses (Table 2). Some, but less pronounced, antiviral ac-
tivity was detected against echovirus 11 (ECHO11) and enterovi-
rus D68 (EV-D68), which indicates that this compound is a quite
specific inhibitor of the replication of EV71.

Finally, the antiviral potency of compound 12 was also evalu-
ated in virus-cell-based assays against a large panel of clinical
EV71 isolates with strains that belong to different clusters (A, B5,
C2, and C4). Strikingly, compound 12 proved to be a 250- to
3,800-fold more potent inhibitor of the replication of these viruses
than the BrCr lab strain (Table 3), with EC50s in the low-nanomo-

lar/high-picomolar range. To determine at which stage of the vi-
rus replication cycle the compound acts, a time-of-drug-addition
study was performed in which the capsid binder pirodavir and the
3C protease inhibitor rupintrivir were indicated on reference
compounds (Fig. 2) (15, 17). Similar to results for pirodavir, clear
inhibition of virus replication was observed only when the drug
was added during or before infection. Both compound 12 and
pirodavir lost their moderate activity when added after the infec-
tion period. This is in line with the observations that the com-
pounds inhibit HIV entry. The viral 3C protease inhibitor rupin-
trivir lost its activity when added 6 or 7 h after infection, which is
in line with its mechanism of action.

It can be hypothesized that the mechanism of action in the
context of EV71 will most involve a glycosylated protein on the
host cell surface because of the following: (i) the structures of
the two viruses (HIV and EV71) are very different, (ii) the differ-
ence in potencies against the clinical isolates versus the laboratory
strain is striking, and (iii) the EV71 virion lacks (in contrast to
HIV) glycosylated proteins on its surface This is currently being
explored further.

In summary, a novel class of potent, selective, specific, and
early-stage inhibitors of enterovirus A71 replication has been dis-
covered. To consolidate the structure-activity relationship obser-
vations, a new dendrimer with a central pentaerythritol scaffold
and 12 Trp residues on the periphery was synthesized. This com-
pound proved to be exquisitely active against clinical isolates of
EV71 (belonging to each of the genogroups).

Because enterovirus A71 is a virus that is transmitted through
the fecal-oral route and because the molecular weight of the mol-
ecules probably would prevent them from being transferred from
the gut lumen to the bloodstream following oral administration,
one could envisage using this type of compound prophylactically
to create a chemotherapeutical barrier in the gut to prevent infec-
tion with EV71 or using it as a topical cream to treat virus-induced
lesions. However, whether additional modifications can further
increase the potency of this compound to obtain a suitable candi-
date for proof-of-concept studies should be explored first.
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