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Abstract. The MAPT H1 haplotype has been linked to several disorders, but its relationship with Alzheimer’s disease (AD)
remains controversial. A rare variant in MAPT (p.A152T) has been linked with frontotemporal dementia (FTD) and AD. We
genotyped H1/H2 and p.A152T MAPT in 11,572 subjects from Spain (4,327 AD, 563 FTD, 648 Parkinson’s disease (PD), 84
progressive supranuclear palsy (PSP), and 5,950 healthy controls). Additionally, we included 101 individuals from 21 families
with genetic FTD. MAPT p.A152T was borderline significantly associated with FTD [odds ratio (OR) = 2.03; p = 0.063], but
not with AD. MAPT H1 haplotype was associated with AD risk (OR = 1.12; p = 0.0005). Stratification analysis showed that this
association was mainly driven by APOE �4 noncarriers (OR = 1.14; p = 0.0025). MAPT H1 was also associated with risk for PD
(OR = 1.30; p = 0.0003) and PSP (OR = 3.18; p = 8.59 × 10-8) but not FTD. Our results suggest that the MAPT H1 haplotype
increases the risk of PD, PSP, and non-APOE �4 AD.
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INTRODUCTION

Tau protein plays an essential role in the central
nervous system by promoting microtubule assem-
bly and stability in neuronal cells. Neurofibrillary
tangles composed of truncated and hyperphospho-
rylated tau proteins are one of the hallmarks of
Alzheimer’s disease (AD) pathology [1]. Neurofibril-
lary tangles are also present in a substantial subgroup
of frontotemporal dementia patients (FTD), and in
other FTD-spectrum tauopathies, such as progressive
supranuclear palsy (PSP) and corticobasal degen-
eration (CBD). Tau deposits also colocalize with
alpha-synuclein in Lewy bodies of Parkinson’s disease
(PD) patients [1–4].

Tau protein is encoded by the MAPT gene (MAPT:
OMIM: *157140), located at chromosome 17q21-22.
There are two common MAPT extended haplotypes
in Caucasians resulting from an ancestral inversion:

H1 and H2. The H1 haplotype has been linked with
sporadic and familial neurodegenerative disorders like
PSP [5–8], CBD [9], FTD [10], PD [11–13], and
inconsistently with AD [14]. In fact, the last AlzGene
meta-analysis including case-control data showed no
significant association between MAPT H1 haplotype
and AD [15] and, so far, available genome-wide associ-
ation study found no MAPT risk variants in AD subjects
[16], and only very recently the IGAP consortium has
found a significant association with AD near MAPT in
subjects not carrying APOE �4 [17].

Mutations in MAPT have been identified in famil-
ial FTD syndromes [18–24]; however, the role of rare
genetic MAPT variants in sporadic neurodegenerative
diseases is not well established. More recently, a rare
variation in MAPT exon 7 (p.A152T) has been linked
to both sporadic FTD and AD risk [25–27]; however,
to date, p.A152T association has not been replicated
in large independent populations.
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In the present study, we assessed the risk effect of the
rare variant MAPT p.A152T and the common extended
MAPT H1/H2 haplotypes in a large series of partic-
ipants with sporadic and genetic neurodegenerative
disorders from Spain.

MATERIALS AND METHODS

Ethics statement

A signed informed consent to participate in genetic
research was obtained from all participants or patients’
relatives. The study protocols were approved by local
ethical committees.

Study subjects

A total of 4,327 AD patients (mean age at onset
76.5 ± 9.3 years, 69.0% women), 563 FTD patients
(mean age at onset 64.2 ± 10.3 years, 45.3% women),
and 5,950 healthy controls (mean age at clinical assess-
ment 64.1 ± 14.8 years, 62.1% women) were included
through a collaborative effort involving 11 specialized
centers across Spain belonging to the Dementia Genet-
ics Spanish Consortium (DEGESCO). Additionally,
we studied 21 families (101 individuals) with different
genetic FTD mutations belonging to the Biodonostia
Center (San Sebastian; Basque Country, Spain).

All individuals were Spanish and of European ori-
gin. Patients were diagnosed using established clinical
research criteria for AD [28], FTD [29], PSP [30], or
PD [31]. The familial FTD sample included 15 fami-
lies (n = 90 individuals) with a progranulin mutation
(GRN IVS6-1G>A) that has only been reported in
the Basque Country. The phenotypic profile associated
with this mutation has been described elsewhere [32].
Additionally, we included six families with other FTD
gene mutations: three families with the C9orf72 repeat
expansion and three families with GRN mutations in
Cys139Arg, Arg177His, and Pro357fs.

Genotyping

Genotyping of MAPT p.A152T (rs143624519)
and H1/H2 (rs1800547) variants was performed in

four centers using TaqMan SNP Genotyping Assays
(Applied Biosystems, Foster City, CA). To minimize
genotyping errors, a human DNA sample validated
by Sanger sequencing, carrying the rare A-allele
(rs143624519-A) or H1/H2 in a heterozygous state was
distributed to all genotyping centers to be included as
a positive control in all genotyping plates.

Statistical analysis

Allelic and genotypic frequencies were compared
using χ2 statistics. Adjusted analyses were performed
using multiple logistic regression. Age, gender, and
APOE �4 status were included in the model as covari-
ates. Allelic frequencies, HWE analysis, and pair-wise
LD D’ and r2 measurements were calculated using
Haploview software [34]. Univariate and multivari-
ate genotype assessments were performed using SPSS
software version 19 (SPSS Inc., Chicago, IL). The stu-
dent’s T test was performed to analyze the effect of
MAPT p.A152T on age of disease onset. Power cal-
culations were performed with PS software (version
2.1.30)

RESULTS

No deviation from Hardy Weinberg equilibrium
(Pearson’s Chi-Square) was found in controls for both
studied variants (p = 0.78 for MAPT p.A152T and
p = 0.86 for MAPT H1/H2).

Role of p.A152T in sporadic neurodegenerative
diseases

We found that 0.97% of AD, 1.42% of FTD, and
0.77% of patients with PD carried the MAPT p.A152T
variant compared to 0.71% of controls. None of the
PSP patients carried MAPT p.A152T. Comparing AD
versus controls and PD versus controls for the vari-
ant showed no statistical difference between groups
(Table 1). MAPT p.A152T frequency among FTD
was double compared to controls showing a trend
toward significance (OR = 2.03; 95% CI = 0.95–4.34;
p = 0.06). Differences remained non-significant when

Table 1
MAPT p.A152T frequencies across groups

AD FTD PSP PD Controls
(n = 4,327) (n = 563) (n = 84) (n = 648) (n = 5,950)

p.A152T carriers (%) 42 (0.97) 8 (1.42) 0 (0.0) 5 (0.77) 42 (0.71)
OR (95%CI) 1.38 (0.90–2.12) 2.03 (0.95–4.34) – 1.09 (0.43–2.77) ref
P-value 0.14 0.06 – 0.85 ref
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we adjusted these tests by age and gender in the entire
sample, and for APOE �4 status in the AD group. Age
of symptom onset was not modified by MAPT p.A152T
for AD or FTD.

Role of p.A152T in genetic FTD

We found that MAPT p.A152T co-segregated, com-
pletely or partially, with GRN IVS6-1G>A, an intronic
mutation carried by 15 FTD families from the Basque
Country. MAPT p.A152T was also present in eight fam-
ilies, co-segregating in 70.5% of GRN IVS6-1G>A
mutation carriers (Table 2). Linkage disequilibrium
(LD) analysis in the families disclosed that p.A152T
and GRN, both located in chromosome 17, were in par-
tial LD (D’ = 0.78; r2 = 0.46). At the time of this study,
none of the four MAPT p.A152T carriers negative for
GRN IVS6-1G>A harbored a history of neurodegen-
erative or psychiatric disease: one individual passed
away at 86 years of age, two other individuals remain
healthy at 80 and 86 years of age, and the fourth indi-
vidual is 52 years old who remains asymptomatic.
Age of symptom onset was not associated with the
MAPT p.A152T genetic variant in GRN IVS6-1G>A
mutation carriers; mean age at onset was 60.9 ± 7.5
years in p.A152T-carriers and 61.4 ± 9.2 years in
noncarriers (p = 0.87). We found no MAPT p.A152T
carriers in three families with other GRN mutations
(Cys139Arg, Arg177His, and Pro357fs), nor families
with the C9orf72 expansion. Sanger sequencing of
GRN in 97 MAPT p.A152T carriers from all participant
centers did not reveal GRN mutations.

Role of APOE �4 status and MAPT H1/H2
haplotype in neurodegenerative diseases

APOE �4 status did not change the effect of MAPT
p.A152T on AD risk. Table 3 shows the allelic and
genotypic frequency distribution of the SNP rs1800547

Table 2
MAPT p.A152T in individuals belonging to 15 families with PGR

VS6-1G mutation

Symptomatic (n) Asymptomatic (n) Total (n)

PGR+/A152T+ 22 9 31
PGR+/A152T– 10 3 13
PGR–/A152T+ 0 4 4
PGR–/A152T– 0 42 42
Total 32 58 90

PGR+, carrier individual of PGR VS6-1G mutation; PGR-, noncar-
rier individual of PGR VS6-1G mutation; A152T+, carrier individual
of MAPT p.A152T variant; A152T-, noncarrier individual of MAPT
p.A152T variant.

tagging the MAPT H1/H2 haplotype. We found a
statistically significant overrepresentation of MAPT
H1 haplotype, present in 72.1% of AD compared to
69.8% of controls (p = 0.0005). When we stratified
the sample by APOE �4 status, the association of
H1 haplotype was driven by noncarriers of APOE
�4 (p = 0.0025) (Table 3) and older subjects (geno-
type trend p = 0.005) (Fig. 1). As described for other
European series, we also found a highly significant
association between MAPT H1 and PD (OR = 1.30,
95% CI = 1.13–1.50; p = 0.0003) and PSP (OR = 3.18,
95% CI = 2.034–4.974 p = 8.59 × 10–8). FTD risk was
not associated with the MAPT haplotype (p = 0.40).

DISCUSSION

In our first analysis, we tested whether the MAPT
p.A152T rare genetic variant was associated with risk
for various neurodegenerative diseases (AD, FTD,
PSP, and PD). We found that MAPT p.A152T occurs
more frequently in Spanish patients with neurodegen-
erative disease compared with the study by Coppola
et al. [25], whose cohort was primarily comprised of the
US population (AD:0.97% versus 0.69%; FTD: 1.42%
versus 0.89% and PD: 077% versus 0.48% respec-
tively). Because the frequency of MAPT p.A152T
was also significantly higher in our healthy controls
than the healthy control cohort of Coppola et al.
(0.71% versus 0.30%, respectively) [25], the asso-
ciation between AD risk and MAPT p.A152T was
not significant in our population. Although our OR
for AD risk associating with p.A152T occurred in
same direction as in the previous study [25], our
OR was considerably lower and thus did not reach
statistical significance (OR = 1.4; 95% CI = 0.9–2.1
versus OR = 2.3; 95% CI = 1.3–4.2, respectively). Sim-
ilarly, the OR we obtained for p.A152T in FTD risk
trended toward significance, but was also lower than
the OR for FTD risk in the previous study (OR = 2.0;
95% CI = 0.9–4.3 versus OR = 3.0; 95% CI = 1.6–5.6,
respectively) [25].

Several factors may explain the lack of replication of
previous results. Rare genetic variant frequencies can
differ across populations, and MAPT p.A152T appears
to occur more frequently in the general Spanish popu-
lation than in the US. Another consideration is that the
real ORs for diseases associated with the variant may
be lower than the ORs in the discovery cohort due to
the “winner’s course” effect, a common phenomenon
observed in pioneer genetic epidemiological studies
[35]. Another potential influence on the difference
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Fig. 1. Genotype frequency distribution of the rs1800547 SNP tagging MAPT H1/H2 haplotype stratified by APOE �4 status and Age tertile.

between our results and those of Coppola et al. [25] is
the mean age at which controls were deemed healthy;
for example, p.A152T carriers in one cohort may have
been classified as controls at a younger age, prior to
disease onset. Since the controls of Coppola et al. [25]
were significantly younger (50 ± 16 years) than those
analyzed in our study (64.1 ± 14.8 years), it is less
likely that misclassification of our p.A152T carriers
as controls who might manifest future degenerative
disease could explain the higher p.A152T allelic fre-
quency observed in our cohort.

A surprising finding of the present study was the
co-segregation of MAPT p.A152T in 70% of carri-
ers of the GRN mutation IVS6-1G>A (g.1872G>A)
unique to the Basque Country [32]. This is a splicing
mutation located at chromosome 17 (base pair posi-
tion 139486) that causes truncated GRN protein due
to mRNA degradation [33]. The fact that the MAPT
p.A152T variant co-occurred with the GRN mutation
only in families in a limited geographical region sug-
gests that these individuals share the same haplotype,
most likely from a common ancestor. However, MAPT
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Table 3
MAPT H1/H2 haplotype frequencies and AD risk

Control (%) AD (%) Genotype P-value Allelic -value Allelic OR (95%CI)

ALL
H2H2 532 (9.15) 344 (8.34)
H1H2 2444 (42.03) 1614 (39.11) p = 0.001 [p = 0.016]∗ p = 0.00051 1.12 (1.05–1.19)
H1H1 2839 (48.82) 2169 (52.56)
H1 frequency 0.698 0.721
APOE4+
H2H2 78 (9.07) 139 (8.50)
H1H2 345 (40.12) 655 (40.04) p = 0.88 [p = 0.86] p = 0.65 1.03 (0.91–1.18)
H1H1 437 (50.81) 842 (51.47)
H1 frequency 0.709 0.715
APOE4-
H2H2 343 (8.46) 160 (8.16)
H1H2 1701 (41.97) 730 (37.24) p = 0.001 [p = 0.005] p = 0.0025 1.14 (1.05–1.24)
H1H1 2009 (49.57) 1070 (54.59)
H1 frequency 0.706 0.732

In brackets p-values adjusted by age and gender . ∗p-values adjusted by age, gender, and APOE status.

p.A152T variant in patients carrying the GRN IVS6-
1G>A mutation did not influence age at onset. Future
studies are necessary to probe the influence of the co-
ocurrence of MAPT p.A152T and GRN IVS6-1G>A
on the FTD clinical or neuropathological phenotype.

Our last finding was that MAPT H1 haplotype is
overrepresented in patients with AD, PD, and PSP
compared to controls. Although the association of
MAPT with PD and PSP risk is well documented [5–8,
11–13], its association with AD is much more contro-
versial. To date, genome-wide association studies and
case-control data meta-analyses such as AlzGene have
not been able to link MAPT genetic variants to AD
[15] despite numerous experimental evidence of the
involvement of tau protein in AD pathogenesis [36].
In our study, we found a very significant overrepre-
sentation of the MAPT H1 haplotype in patients with
AD compared to controls. The mildly increased risk
for AD conferred by the H1 haplotype emerged only
in our subgroup of noncarriers for APOE �4, espe-
cially in the oldest subjects. This is in line with a recent
publication re-analyzing the IGAP consortium data in
APOE �4 carriers and non-carriers. That study reported
genome-wide significant association with many SNPs
across a region on chromosome 17 including MAPT
and with the H1 haplotype, however, the association
was accounted for by SNPs located between two genes
(KANSL1 and LRRC37A) adjacent to MAPT [17].

Ourresultsareconsistentwith thehypothesis thatAD
pathology could develop through different causal path-
ways with several genetic factors likely to be involved,
APOE �4 being the strongest one. APOE �4 lowers
the threshold for AD susceptibility, which 1) associates
with an earlier age of disease onset, and 2) may decrease
the number and magnitude of etiological factors that

would be necessary to start the disease’s pathological
mechanisms. However, in the absence of APOE �4, the
participation of an ensemble of alternative etiological
factors, and for longer periods of time, might be nec-
essary to elicit the disease. For instance, if MAPT H1
haplotype confers a modest risk for AD independent of
APOE �4, we may be able to detect this association only
in elderly individuals not carrying APOE �4; otherwise,
APOE �4’s effect on AD risk might mask the ability to
detect the effect of MAPT H1 on AD risk. The associa-
tion between the MAPT haplotype and AD is consistent
with studies suggesting that H1/H1 status is associated
with an increased rate of conversion from mild cogni-
tive impairment to AD [37]. Our results are also in line
with a recent publication studying MAPT haplotypes in
a large sample of late onset AD from the US that found
that H2 haplotype carriers were protected from AD and
had lower MAPT levels in brain [38]. An alternative
explanation toour resultscouldbe thatwithin theAPOE
�4 non-carriers group the number of subjects with
dementia due to pure tauopathies (PSP, CBD, or FTD-
tau) misdiagnosed as AD might be higher than those
among the APOE �4 carriers group. We suggest that
in large population samples this phenomena is likely
to occur to a certain degree, but we consider unlikely
that these disorders with a low prevalence are contribut-
ing significantly to our results. Additionally, the fact
by which most patients included in our study come
from specialized memory units from academic hospi-
tals increases the likelihood of a correct AD diagnosis.

In summary, we did not find a significant association
between the rare variant MAPT p.A152T and AD risk,
although our findings trended toward significance for
p.A152T being associated with FTD risk. Despite our
large sample size, our results should be interpreted with
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caution, as our study may be underpowered to detect the
effectofsuchan infrequentgeneticvariant if the realOR
is lower in our population than found in previous stud-
ies.OurfindingthatMAPTp.A152Tandtheprogranulin
IVS6-1G>A mutation cosegregates in families from
the Basque region raises interesting questions about
the influence of multiple risk genetic variants coincid-
ing in neurodegenerative diseases; future studies will
address these questions [39]. Finally, we found a robust
statistical associationbetweenMAPTH1extendedhap-
lotypeandriskoflate-onsetADinAPOE�4noncarriers.
Our results, in a large sample of Spanish population,
represent strong evidence supporting a link between
common MAPT genetic variants and AD. The mod-
est risk effect conferred by MAPT H1 haplotype and
the fact that it is restricted to APOE �4 negative sub-
jects might contribute to clarify controversial results in
previous studies.
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Tarragona, América Morera, Marina Guitart, Oscar
Sotolongo Grau, Elvira Martı́n, Victòria Fernández,
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HUMV: José Luis Vázquez-Higuera, Ana Pozueta,
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Juan Fortea, Olivia Belbin, Daniel Alcolea, Marı́a
Carmona-Iragui, Mª Belén Sánchez-Saudinós, Isabel
Sala, Sofı́a Anton-Aguirre, Estrella Morenas, Roser
Ribosa, Martı́ Colom-Cadena, Laura Cervera, Laia
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