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A detailed theoretical formalism for the calculation of energy levels and eigenfunctions of molecules with
a large amplitude coordinate in the presence of a strong laser pulse is developed based on a discrete variable
representation to setup the Hamiltonian matrix. This approach is applied to nonrigid biphenyl-like molecules
displaying a large amplitude motion corresponding to respective rotations of their two groups. The eigenvalues
and eigenvectors obtained in several limiting cases of the hindering potential can be symmetry labeled and provide
us with useful insights into the feasibility of torsional alignment. The present results support the rotation-induced
breakdown of torsional alignment, under adiabatic following, previously described by Coudert, Pacios, and
Ortigoso [Phys. Rev. Lett. 107, 113004 (2011)].
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I. INTRODUCTION

The behavior of molecules subject to intense laser fields has
been intensively studied in recent years in order to investigate
the formation of oriented or aligned states, quantum control,
and solutions of the time-dependent Schrödinger equation.
In some of these investigations, for instance, those reported
in Refs. [1–5], the molecules were assumed to be rigid and
were treated as rigid rotators undergoing overall rotation only.
In more recent investigations, internal degrees of freedom
were taken into account. Vibrational degrees of freedom were
considered in Ref. [6] and a large amplitude internal rotation
was treated in Refs. [7–12]. Guidelines for the realization
of torsional control experiments have been provided by
Seideman and coworkers [13], who proposed applications of
torsional control to several problems like electronic transport in
molecular junctions or charge transfer events. The theoretical
approach of Ref. [13] is based on the quantum Liouville
equation that allows them to take into account dissipation.
However, these investigations [6–13] were performed ignoring
the overall rotation of the molecule. Recently, thanks to a new
approach rigorously taking into account the large amplitude
torsional motion and the overall rotation, results about the
behavior of a nonrigid biphenyl-like molecule subject to an
intense nonresonant laser field were reported [14].

In the present paper, we give a full account of the theoretical
approach introduced in Ref. [14]. Our approach treats simul-
taneously the large amplitude torsional motion and the overall
rotation and involves using a discrete variable representation
(DVR) similar to that introduced in Refs. [15,16] to solve
a multidimensional time-independent Schrödinger equation.
The method is applied to nonrigid biphenyl-like molecules
undergoing internal rotation of their two groups and displaying
a torsionally mediated interaction with an external electric
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field. The theoretical approach allows us to retrieve energies
and wave functions and to label them with their symmetry
species [17] in G

(2)
16 for all strengths of the electric field.

As a test case, numerical results are computed for the
biphenyl molecule. Specifically, expectation values of several
rovibrational operators are evaluated for selected rotation-
torsion-Stark levels, for various strengths of the electric field,
and for various model hindering potentials. Thermal averages
are also calculated for different temperatures.

The paper has four remaining sections. In Sec. II, the
new theoretical approach is presented. It is applied to the
particular case of biphenyl-like molecules in Sec. III. In
Sec. IV, numerical results are presented about the biphenyl
molecule. Section V is the discussion.

II. THEORY

Four coordinates are necessary to describe a nonrigid
molecule undergoing internal rotation: the usual Eulerian-type
angles χ,θ,φ, denoted �, and the angle corresponding to
the internal rotation, denoted ρ, with 0 � ρ � 2π . Using
a molecule-fixed axis system with its origin located at the
molecular center of mass, the rotation-torsion-Stark interaction
Hamiltonian H can be obtained using Eq. [9] of Ref. [18]:

H = 1

2

∑
γ,δ

Jγ μγ,δ(ρ)Jδ + V (ρ) + HS(ρ,�) , (1)

where γ,δ = x, y, z, and ρ; Jx, Jy, and Jz are the components
of the angular momentum in the molecule-fixed axis system;
Jρ = −i∂/∂ρ is the momentum conjugated to ρ; μγ,δ(ρ) are
the components of the inverse of the 4 × 4 generalized inertia
tensor; V (ρ) is the potential energy function; and HS(ρ,�)
describes the Stark coupling with the electric field. In Eq. (1),
the potential energy function contains the mass-dependent
pseudopotential energy given in Eq. [10] of Ref. [18]. The
volume element to be used for the Hamiltonian in Eq. (1) is
dρ sin θdθdφdχ .
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A. The rotation-torsion-Stark Hamiltonian in discrete variable
representation

In internal rotation problems, the wave function is usually
expanded using as a finite basis representation (FBR) the free-
internal-rotation functions:

fm(ρ) = eimρ/
√

2π, (2)

where m is an integer such that −N � m � +N . These 2N +
1 functions fulfill the orthogonality relation:∫ 2π

0
f ∗

m(ρ)fn(ρ)dρ = δm,n. (3)

A weight function ω(ρ), as defined in Eq. (1) of Ref. [19],
does not appear in this equation as it reduces to unity with the
FBR functions of Eq. (2). In agreement with Refs. [15,16], the
DVR functions uα(ρ), where α is an integer such that 1 � α �
2N + 1, can be expressed in terms of FBR functions using the
orthogonal transformation matrix T defined in agreement with
Ref. [19] as

Tα,m = √
ωαfm(ρα), (4)

where ρα and ωα are the points and weights, respectively, of the
(2N + 1)-Gauss quadrature. In the case of the FBR functions
in Eq. (2), points and weights can be found in Eq. (A1) of the
Appendix.

In the DVR, the matrix of the rotation-torsion-Stark
interaction Hamiltonian in Eq. (1) is divided into (2N +
1) × (2N + 1) submatrices. Each submatrix corresponds to
a rotational operator, denoted Hα,α′

. This rotational operator
is the following:

Hα,α′ = 1

2
hα,α′ + δα,α′ [Hr (ρα) + V (ρα)]

+ 1

2
cα,α′ ∑

γ=xyz

Jγ [μγ,ρ(ρα) + μγ,ρ(ρα′)] , (5)

where hα,α′
and cα,α′

are matrix elements of Pρμρ,ρ(ρ)Pρ and
Pρ , respectively, between two DVR functions; and Hr (ρ) is a
rotational operator, which does not involve Pρ . We have

cα,α′ = 〈uα|Pρ |uα′ 〉, (6)

hα,α′ = 〈uα|Pρμρ,ρ(ρ)Pρ |uα′ 〉, (7)

and

Hr (ρ) = 1

2

∑
γ,δ=xyz

Jγ μγ,δ(ρ)Jδ + HS(ρ,�). (8)

Using Eq. (6) of Ref. [19], the matrix element cα,α′
in Eq. (6)

can be expressed as

cα,α′ =
+N∑

m=−N

Tα,mT ∗
α′,mm. (9)

This equation ensures that cα,α′ = (cα′,α)∗. Similarly, the
matrix element hα,α′

in Eq. (7) can be written as

hα,α′ =
2N+1∑
α′′=1

cα,α′′
μρ,ρ(ρα′′ )cα′′,α′

. (10)

This equation is consistent with hα,α′ = (hα′,α)∗. When μρ,ρ

does not depend on the ρ coordinate, Eq. (10) reduces to

hα,α′ = μρ,ρ

+N∑
m=−N

Tα,mT ∗
α′,mm2. (11)

B. Rotation-torsion-Stark eigenvalues and eigenfunctions

The rotational operator Hr (ρ) in Eq. (8) is the rotation-Stark
coupling Hamiltonian of the molecule for a given value of ρ.
This operator involves the overall rotation Hamiltonian and
the Stark field interaction operator. Using Refs. [20,21], the
matrix of Hr (ρ) can be setup in a basis set consisting of
symmetric top functions |J,k,M〉, where J corresponds to the
total angular momentum, k to the eigenvalue of its projection
along the molecule-fixed z axis Jz, and M to the eigenvalue
of its projection along the space-fixed Z axis JZ . Taking a
maximum J value equal to Jmax leads to a finite p × p matrix,
where p depends on Jmax and on the rotational functions
selected. Diagonalization of this matrix yields eigenvalues
and eigenvectors depending implicitly on ρ and denoted Ei

and ψi , where i is a counter with 1 � i � p. Below, Eα
i and

ψα
i indicate eigenvalues and eigenvectors for ρ = ρα .
The product functions uα(ρ)ψα

i are used to setup the matrix
of the rotation-torsion-Stark Hamiltonian of Eq. (1). Using
Eq. (5), we have

〈uα|〈ψα
i

∣∣H ∣∣ψα′
i ′

〉|uα′ 〉
= 1

2
hα,α′ 〈

ψα
i

∣∣ψα′
i ′

〉 + 1

2
cα,α′ ∑

γ=xyz

〈
ψα

i

∣∣Jγ

∣∣ψα′
i ′

〉
[μγ,ρ(ρα)

+μγ,ρ(ρα′)] + δα,α′δi,i ′
[
Eα

i + V (ρα)
]
. (12)

This equation emphasizes that the Hamiltonian matrix be-
comes a [(2N + 1)imax] × [(2N + 1)imax] matrix, where imax,
with imax � p, is the number of rotational eigenvectors se-
lected. Numerical diagonalization of this Hamiltonian matrix
requires choosing for N , Jmax, and imax values providing the
needed accuracy.

III. ROTATION-TORSION-STARK ENERGY LEVELS OF
BIPHENYL-LIKE MOLECULES

The approach of the previous section is applied to biphenyl-
like molecules consisting of two identical planar groups with
C2v symmetry. The large amplitude internal rotation displayed
by such molecules correspond to a rotation of both groups
about a fixed axis coinciding with their C2 axes. In the case
of the biphenyl molecule, the two groups are phenyl rings and
the axis of internal rotation is the C−C bond. The theoretical
results derived by Merer and Watson [17] for ethylene can
be used for biphenyl-like molecules. In agreement with these
authors, the angle ρ is such that 2ρ is the angle of torsion of
the two groups. The molecule-fixed axis system is attached to
the molecule so that the z axis is parallel to the axis of internal
rotation; the x and y axis being parallel to two of the three
twofold axes of symmetry. When ρ = 0 or π , the molecule
is planar and all atoms are in the xz plane; when ρ = π/2 or
3π/2, the molecule is also planar, but all atoms are in the yz

plane. Equations (1) and (2) of Ref. [17] allow us to obtain
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nonvanishing components of the generalized inverse inertia
tensor:

μρ,ρ(ρ) = μz,z(ρ) = 2A, μx,x(ρ) = 2Bx(ρ),
(13)

μy,y(ρ) = 2By(ρ),

where A is a structural parameter; and the rotational constants
Bx(ρ) and By(ρ) should be obtained using Eq. (3) of Ref. [17]
involving the structural parameter B. This leads to the
following kinetic energy operator:

APρ
2 + AJz

2 + Bx(ρ)Jx
2 + By(ρ)Jy

2. (14)

In the case of the biphenyl molecule, A and B are equal to
0.095 833 and 0.016 942 cm−1, respectively, as obtained from
the ab initio calculation reported in Ref. [14].

Because biphenyl-like molecules have no permanent
dipole, the field-matter interaction reduces to the interaction
of the electric field with the induced dipole, described by the
polarizability tensor. It will be assumed that this tensor is the
sum of that of each subunit. This leads to the results displayed
in Eqs. (1) of Ref. [14], which emphasize that the total
polarizability tensor depends on ρ. The molecule is subject
to the electric field arising from a nonresonant circularly
polarized laser beam propagating along the Z axis with nonva-
nishing laboratory-fixed components EX = E cos ωt/

√
2 and

EY = E sin ωt/
√

2, where E is the magnitude of the electric
field and ω its angular frequency. The operator HS(ρ,�)
describing the interaction with the electric field obtained after
time averaging is

HS(ρ,�) = E2

√
96

(
α0

x − α0
y

)(
D

(2)
20 + D

(2)
−20

)
cos 2ρ

+ E2

12

(
2α0

z − α0
x − α0

y

)
D

(2)
00

− E2

6

(
α0

z + α0
x + α0

y

)
, (15)

where functions involving the Eulerian-type angles have been
expressed in terms of Wigner D(J ) functions defined as in
Eq. (15.27) of Wigner’s book [22]; and α0

x , α0
y , and α0

z are
diagonal components of the polarizability tensor of each
molecular group with its atoms in the xz plane and its C2 axis
parallel to the z axis. Using Table I of Ref. [14], numerical
values of −3.6 and +3.6 Å3 are obtained for α0

y − α0
x and

2α0
z − α0

x − α0
y , respectively, in the case of the biphenyl

TABLE I. The four types of rotational functions to be used when
diagonalizing the rotational operator Hr (ρ) of Eq. (8) in the case of
biphenyl-like molecules.a

Type Even J Odd J pb

A E+ E− 57
B E− E+ 56
C O+ O− 56
D O− O+ 56

aIn the body of the table, E+, E−, O+, and O− are usual Wang-type
linear combinations of symmetric top functions.
bThe matrix to be diagonalized is p × p (see Sec. II B). The values
given are for Jmax = 14.

molecule. With these values and expressing the Wigner D(J )

functions in Eq. (15) in terms of θ and χ shows that the
interaction with the electric field in this equation displays eight
equivalent minima. Due to the double-valued characteristic
of the coordinate system used in Ref. [17], there arise only
four configurations with values of (θ,χ,ρ) equal to (π/2,0,0),
(π/2,π/2,π/2), (π/2,0,π ), and (π/2,π/2,3π/2).

Evaluation of the rotational matrix elements of the Stark
field interaction operator in Eq. (15) can be performed using
Eq. (1.45) of Ref. [23] rewritten below:

〈J ′k′M ′|D(k)
pq |J ′′k′′M ′′〉 = (−1)k

′+M ′√
(2J ′ + 1)(2J ′′ + 1)

×
(

J ′ k J ′′

−k′ p k′′

)

×
(

J ′ k J ′′

−M ′ q M ′′

)
. (16)

This equation emphasizes that, as in Eq. (15), the second
subscript of the Wigner D(J ) functions is zero, the Stark
field interaction operator will have vanishing �M �= 0 matrix
elements, and M will be a good quantum number. Due to
the form of the |�J | > 0 and |�k| > 0 matrix elements of
the Stark field interaction operator, it can also be shown that
four types of rotational functions should be considered when
setting-up the matrix of the rotational operator Hr (ρ) in Eq. (8).
These four types are defined in Table I along with the size of
the matrix p for Jmax = 14. Figures 1 and 2 illustrate the results
of the calculation for the lowest lying eigenvalues and for two
values of the intensity of the laser beam in the case of the
biphenyl molecule.

We are led to consider FBR functions that are even or odd
functions of ρ. The even functions, denoted Cn(ρ), with 0 �
n � N , are cosine functions: C0(ρ) = 1/

√
2π and Cn(ρ) =

cos(nρ)/
√

π for n > 0. The odd functions, denoted Sn(ρ),
with 1 � n � N , are sine functions: Sn(ρ) = sin(nρ)/

√
π .

The weights and points for the Cn(ρ) and Sn(ρ) functions can
be found in Eqs. (A4) and (A5), respectively. The Hamiltonian
matrix is set-up using Eq. (12). Depending on the FBR

FIG. 1. (Color online) Variations of three rotational eigenvalues
Ei of the rotational Hamiltonian Hr (ρ) of Eq. (8) for the biphenyl
molecule as a function of the angle ρ in degrees in the field-free limit.
The dot-dashed curve is an i = 2 eigenvalue corresponding to Type A

rotational functions. The solid (dotted) curve is an i = 1 eigenvalue
corresponding to Type C (D). The three eigenvalues are periodic
functions of ρ with π/2 or π periodicity.
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FIG. 2. (Color online) Variations of three M = 0 rotational
eigenvalues Ei of the rotational Hamiltonian Hr (ρ) as a function
of the angle ρ in degrees for a circularly polarized laser field with an
intensity I = 1.562 × 1012 W/cm2. The i values and the rotational
types are the same as described in the legend of Fig. 1. The same
periodicity as in this figure is displayed.

functions chosen and on the type of rotational functions, up to
eight matrices can be built. Table II gives the symmetry species
spanned by the rotation-torsion-Stark interaction levels arising
for each matrix. This result can be obtained using Table IV of
Ref. [17]. Each matrix is block diagonalized in order to obtain
the eigenvalue and eigenvectors corresponding to one of the
12 single-valued symmetry species of G

(2)
16 .

IV. NUMERICAL RESULTS

The results of Sec. III are applied to the calculation of the
rotation-torsion-Stark interaction energy levels of the biphenyl
molecule considering four limiting cases for the internal rota-
tion potential energy function V (ρ). This function is assumed
to be either zero (Case I); to have four minima at the eclipsed
configurations (Case II); to have 4 minima at the staggered
configurations (Case III); or to be the potential energy function
obtained through ab initio calculations in Ref. [14] (Case IV).

TABLE II. The symmetry species of the rotation-torsion-Stark
interaction levels.

Functiona Typeb �c

Cn(ρ) A A+
1g B+

1g E1(u)

Cn(ρ) B A−
2g B−

2g E2(u)

Cn(ρ) C E−(1) Eg(1)

Cn(ρ) D E+(2) Eg(2)

Sn(ρ) A A−
1u B−

1u E1(g)

Sn(ρ) B A+
2u B+

2u E2(g)

Sn(ρ) C E+(1) Eu(1)

Sn(ρ) D E−(2) Eu(2)

aThe functions are the FBR cosine and sine functions described in
the text.
bThe rotational function type is given in this column as defined in
Table I.
cThe symmetry species spanned by the resulting rotation-torsion-
Stark energy levels are given in this column using the same labeling
as in Ref. [17].

TABLE III. Rotational assignment and energies are given for
field-free n = 1 rotation-torsion-Stark interaction levelsa for the four
internal rotation potentials.

Case

I II III IV

� J E J E J E J E

A+
1g 0 0.00 0 13.748 0 13.748 0 30.745

B+
1g 0 0.383 0 13.748 2 14.165 0 30.745

A−
2g 1 0.034 1 13.782 1 13.782 1 30.779

B−
2g 2 0.417 1 13.782 2 14.165 2 30.779

A−
1u 0 0.383 0 41.048 0 13.748 0 30.745

B−
1u 0 0.801 0 41.048 2 14.165 0 30.745

A+
2u 1 0.417 1 41.082 1 13.782 1 30.779

B+
2u 2 0.801 1 41.082 1 41.082 2 30.779

E− 1 0.208 1 13.859 1 13.861 1 30.856

E+ 1 0.209 1 13.862 1 13.861 1 30.857

aThe rotational quantum number J and the energy in cm−1 are given
in the columns headed J and E, respectively.

Cases I–III were considered in our previous paper [14], and
analytical expressions for the potential energy function can be
found in Table I of this reference. In Case IV, the analytical
expression taken for the internal rotation potential energy
function is

V (ρ) = V0 − 1/2
6∑

i=1

V4i cos 4iρ, (17)

where the constants V4i , with i = 1 to 6, are equal to −32.288,
−738.683, −136.964, −84.92, −41.061, and −32.562 cm−1,
and V0 = 345.34 cm−1. This value ensures that the potential
energy function is 0 at the eight equivalent minima for values
of ρ equal to 22, 68, 112, 158, 202, 248, 292, and 338◦. The
height of the barrier for the staggered and planar configurations
are 670 and 860 cm−1, respectively.

Rotation-torsion-Stark interaction energies will be denoted
E�

M,n, where n, with n � 1, is a counter and � is the symmetry

species in G
(2)
16 . For all cases, Table III gives calculated field-

free energies for n = 1 rotation-torsion-Stark interaction levels
and for all ten single-valued symmetry species of G

(2)
16 . In

the field-free limit, levels can also be labeled [20] with the
quantum number J , which is also given in Table III. In the
next sections, for a given rotation-torsion-Stark interaction
level, the expectation value of an operator O is calculated as

〈O〉 =
∫

�� ∗
M,n O ��

M,nd�dρ. (18)

In these numerical calculations, Jmax in Sec. II B was taken
equal to 14 and imax defined in the same section was set to its
maximum value, given in Table I. N in Sec. II A was set to
91 and 93 for g-type (gerade) and u-type (ungerade) nonde-
generate levels, respectively; and to 92 for doubly degenerate
levels. These values ensure converged energy levels up to the
maximum intensity value of the laser field, 2 × 1014 W/cm2.
From the experimental point of view, this intensity value is
above the threshold of off-resonance ionization of biphenyl,
but this will be ignored in the present theoretical calculation.
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FIG. 3. (Color online) Variations with ρ (in degrees) of the
squared field-free torsional functions |φvt

(ρ)|2 for Case II potential
and for A+

1g field-free levels with J = 0.

Figure 3 shows the torsional function squared |φvt
(ρ)|2 for

Case II potential and for field-free A+
1g levels with J = 0. This

figure serves the purpose of explaining some effects due to the
electric field described below. These functions can be labeled
using the torsional quantum number vt and display one or
several maxima near the values of ρ minimizing the hindering
potential. Each maximum consists of vt + 1 close lying peaks.

A. Averaged torsional function

Taking O = δ(ρ − ρ0) in Eq. (18) yields the averaged
torsional function squared. Its variations were studied with the
help of 2D surfaces plotted against the intensity of the laser
beam I and the angle ρ0. Figure 4 shows the surface for Case I
potential and for the n = 1, M = 0, A+

1g rotation-torsion-Stark
interaction level, correlating to a J = 0 level in the field-free
limit. This figure emphasizes that for a low intensity value,
the torsional function is a constant, as expected for an 0+
free internal rotation state [17]. When the intensity of the
laser beam increases, the torsional function tends to become
localized near values of ρ0 minimizing the coupling with the
electric field: 0, 90, 180, 270, and 360◦. The surface for Case II
potential, also for the same level, is not shown here because
it is barely altered when the laser field is turned on. In the
field-free limit, this function is localized near ρ0 = 0, 90, 180,
270, and 360◦, due to the nature of the hindering potential.
When the intensity of the laser field increases, the function
remains localized near these values of ρ0. Figure 5 shows the
surface for Case III potential and for the same level. This
figure clearly indicates that in the field-free limit the averaged
function is localized near values of ρ0 equal to 45, 135, 225, and
315◦, corresponding to the minima of the hindering potential.
For the largest intensity value, the function is almost localized
near ρ0 = 0, 90, 180, 270, and 360◦. The surface for Case IV
potential and for the same level, not shown here, is consistent
with a torsional function localized near the eight values of
ρ0 minimizing the potential energy function in the field-free
limit. When the intensity of the laser beam increases, only

FIG. 4. (Color online) Variations of the averaged torsional func-
tion in Case I potential for the n = 1, M = 0, A+

1g , rotation-torsion-
Stark interaction level correlating adiabatically to a J = 0 level in the
field-free limit.

slight shifts of the maxima of the function take place. Such
a behavior is expected since the barriers between the various
configurations are higher in Case IV than in Cases I, II, and III.

FIG. 5. (Color online) Variations of the averaged torsional func-
tion in Case III potential for the n = 1, M = 0, A+

1g , rotation-torsion-
Stark interaction level correlating adiabatically to a J = 0 level in the
field-free limit.
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FIG. 6. (Color online) Variations of the averaged torsional func-
tion in Case I potential for the n = 5, M = 0, A+

1g , rotation-torsion-
Stark interaction level correlating adiabatically to a J = 3 level in the
field-free limit.

In Case IV, the electric field cannot alter the torsional function
and torsional alignment does not take place.

For levels correlating to higher J values than in the previous
cases, the effects of the electric field are more complicated.
For Case I potential, Fig. 6 shows the torsional functions
of an n = 5, M = 0, A+

1g level correlating to a J = 3 level
in the field-free limit. For low intensity values, the averaged
torsional function displays four maxima as expected for a 2+
free internal rotation state [17]. For higher intensity values,
the function tends to become localized near the values of ρ0

minimizing the coupling with the electric field: 0, 90, 180, 270,
and 360◦. Unlike for the n = 1 level dealt with previously, the
variations of the function with the electric field are not smooth.
For several values of the intensity, as well as for the largest
one, the function displays broad maxima consisting of close
lying peaks. Figure 7 shows similar results, but for Case II
potential and for an n = 2, M = 0, A+

1g level correlating to
a J = 2 level in the field-free limit. When the intensity of
the laser beam is zero, the averaged torsional function is
localized near ρ0 = 0, 90, 180, 270, and 360◦, due to the
nature of the hindering potential. For small intensity values,
the function remains localized near these values of ρ0. For an
intensity larger than 7.5 × 1013 W/cm2, the function displays
several broad maxima consisting of close lying peaks near
the same values of ρ0. For Case III potential, the results are
analogous to those of Cases I and II. For high intensity values,
the function also displays broad minima consisting of several
close lying peaks. For Case IV potential, the torsional function
is quite close to that described in the previous paragraph and
is barely altered by the electric field. For Cases I, II, and III,
the qualitative features of the torsional function for the highest

FIG. 7. (Color online) Variations of the averaged torsional func-
tion in Case II potential for the n = 2, M = 0, A+

1g , rotation-torsion-
Stark interaction level correlating adiabatically to a J = 2 level in the
field-free limit.

value of the intensity of the laser beam may be unexpected.
However, the functions in these cases resemble the functions
plotted in Fig. 3 for large vt values. This similarity implies
that due to the electric field, the torsional function for levels
correlating to higher J values in the field-free limit is mixed
with that of levels characterized by large vt values.

B. Expectation value of the torsional angle

The expectation value of the torsional angle ρe is calculated
setting O to cos 4ρ in Eq. (18). The angle ρe is then obtained
from ρe = 1

4 cos−1〈cos 4ρ〉. Figure 8 shows the variations of
ρe, for Case I potential, for M = 0, A+

1g rotation-torsion-Stark

FIG. 8. (Color online) The expectation value of the torsional
angle ρe is plotted as a function of the laser beam intensity in Case
I potential for M = 0, A+

1g rotation-torsion-Stark interaction levels
with n = 1, solid line, n = 2, long dashed line, n = 3, dot-dashed
line, n = 4, dotted line, and n = 5, dashed line. The value of n is also
indicated for each curve.
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FIG. 9. (Color online) The expectation value of the torsional
angle ρe is plotted as a function of the laser beam intensity in Case II
potential for M = 0, A+

1g rotation-torsion-Stark interaction levels with
n = 1, solid line; n = 2, long dashed line; n = 3, dot-dashed line;
n = 4, dotted line; and n = 5, dashed line. The value of n is also
indicated for each curve.

interaction levels with 1 � n � 5. In the field-free limit, ρe

is about 22.5◦ for 1 � n � 4 and 15◦ for n = 5, as can be
inferred from the free internal rotation functions. When the
intensity of the laser beam increases, ρe displays a complicated
behavior except for n = 1. For the largest intensity value,
torsional alignment takes place for the n = 1 and 4 levels
as their ρe-values are close to zero; for the n = 1 level, this
is consistent with Fig. 4. The n = 2, 3, and 5 levels display
no torsional alignment as their ρe values are much larger than
zero. For the n = 5 level, this is expected from the form of
its torsional function, given in Fig. 6. Figure 9 displays the
same results as described in the legend of Fig. 8, but for Case
II potential. In the field-free limit, the torsional function is
centered near ρ = 0. Figure 9 shows indeed that for a zero
intensity ρe is small and is only 3◦ for all five levels. When the
intensity of the laser beam increases, ρe decreases slowly down
to 2.5◦ for n = 1. For levels with n > 1, ρe displays a more
complicated behavior and can be as large as 8◦. For n = 2, the
variations of ρe are consistent with Fig. 7 and a large increase
takes place for I = 7.5 × 1013 W/cm2. Figure 9 emphasizes
that torsional alignment takes place for n = 1, 4, and 5, as for
these levels ρe is close to 0. Similar qualitative conclusions
hold for Case III potential for which torsional alignment only
takes place for a few levels. At last, for Case IV potential, ρe

varies slowly with the laser beam intensity for all levels and
remains close to 22◦.

C. Thermal averages

In previous sections the behavior of individual molecules
were dealt with. Here we give results for a thermal ensemble.
For that, we assume that the ensemble is initially described
by a Boltzmann distribution. We further assume that the time
evolution is adiabatic regardless of the initial state. This implies
an adiabatic transfer of populations from the initial field-free
ensemble to the nonzero field ensemble [24].

Thermal averages involving the direction cosines matrix el-
ements between the space-fixed Z axis and the molecular-fixed
x, y, and z axes, �Zx , �Zy , and �Zz were calculated. Figure 10
displays the variations of the thermal averages 〈〈�2

Zx〉〉 and
〈〈�2

Zz〉〉 as a function of the intensity of the laser beam for

FIG. 10. (Color online) Thermal average of the squared direction
cosine �2

Zx , solid line, and �2
Zz, dashed line, as a function of the

intensity of the laser beam for Case I potential and for temperatures
equal to 0.1 K, upper panel, and 5 K, lower panel. The thermal average
〈〈�2

Zy〉〉 is not drawn as it is equal to 〈〈�2
Zx〉〉.

Case I potential and for two temperatures. The thermal average
〈〈�2

Zy〉〉 does not appear in this figure as it is equal to 〈〈�2
Zx〉〉

for symmetry reasons. In the field-free limit, as shown by
Fig. 10, we have 〈〈�2

Zx〉〉 = 〈〈�2
Zy〉〉 = 〈〈�2

Zz〉〉 = 1/3. When
the intensity of the laser beam increases, 〈〈�2

Zx〉〉 = 〈〈�2
Zy〉〉

rises from 1/3 to 1/2, while 〈〈�2
Zz〉〉 decreases from 1/3 to 0.

For the lowest temperature, a fast variation takes place; for the
highest one, the variation is slower. In agreement with Eq. (15),
this behavior is consistent with the molecule-fixed z axis
becoming perpendicular to the space-fixed Z and a rotational
function becoming localized near θ = π/2 for a large enough
intensity of the laser beam. This angular alignment is similar
to that of a symmetric top molecule with a polarizability tensor
corresponding to the prolate spheroidal case. For Cases II, III,
and IV potentials, the thermal averages of the squared direction
cosine matrix elements display qualitatively the same behavior
when the intensity of the laser beam increases.

Thermal averages of the angle of internal rotation ρt were
also calculated expressing it in terms of the thermal average
of cos 4ρ with ρt = 1

4 cos−1〈〈cos 4ρ〉〉. The variations of ρt

with the intensity of the laser beam are plotted in Fig. 11
for two temperatures and for Cases I, II, and III potentials.
For the lowest temperature, ρt becomes close to zero when
the intensity of the laser beam increases. For Case I and II
potentials, this occurs for an intensity as low as 1014 W/cm2.
For Case III potential, ρt is still 10◦ for the largest value of
the intensity. For the highest temperature, ρt does not go to
zero, even for the largest intensity value. This behavior can
be understood more easily with the help of Figs. 8 and 9.
For the lowest temperature, the thermal averages only involve
low-lying levels like the n = 1 levels in these figures, which
are characterized by a value of ρe going to zero with increasing
values of the intensity of the laser beam. For the highest
temperature, the thermal averages involve higher-lying levels
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FIG. 11. (Color online) The thermal average ρt is plotted as a
function of the intensity of the laser field for temperatures of 0.1 K,
solid line, and 5 K, dotted line. Case I, II, and III potentials are
identified using circles, triangles, and squares, respectively.

like the n > 1 levels in Figs. 8 and 9, which are characterized
by a value of ρe which does not always go to zero. The thermal
average ρt is not plotted in Fig. 11 for Case IV potential
because, as can be inferred from the results in Sec. IV B, it
barely varies with the intensity of the laser beam and remains
close to 22◦ for both temperatures.

V. DISCUSSION

The present article reports the results of a theoretical
investigation into the behavior of a nonrigid molecule subject
to a strong electric field. A detailed account of the theory
presented in our previous paper [14] is given and additional
evidence supporting the conclusions of this paper is presented.

After presenting the exact Hamiltonian, it is shown that a
DVR approach [15,16] allows us to calculate rotation-torsion-
Stark energy levels for fixed values of the torsional angle ρ.
These results are applied to nonrigid biphenyl-like molecules
displaying a large amplitude torsional motion corresponding
to respective rotations of their two phenyl groups. It is
emphasized that for these highly symmetrical molecules, our
theoretical approach yields symmetry labels for the energy
levels in G

(2)
16 , leading to a better understanding of the effects

of the external electric field.
Numerical results are obtained in the form of averaged

torsional functions as well as expectation values and thermal
averages of the torsional angle. Four different hindering poten-
tials characterized by different barrier heights and minima are
taken into account. Averaged torsional functions are plotted in
Figs. 4 to 7 for an intensity of a circularly polarized laser beam
going from 0 to 2 × 1014 W/cm2. In these 2D figures, unlike in
Ref. [14], the intensity varies smoothly. It is also important to
stress that the symmetry labeling using G

(2)
16 allows us to follow

adiabatically a given level for all intensities of the laser beam.
Expectation values for the angle of internal rotation are

plotted in Figs. 8 and 9. These results are consistent with
torsional alignment taking place for levels correlating to low
energy values in the field-free limit, as long as the height
of the barriers hindering the internal rotation is smaller than
500 cm−1. The corresponding torsional functions become
localized near values of ρ corresponding to the four planar con-
figurations that minimize the interaction with the laser field.

For levels correlating to higher energies in the field-free limit,
no torsional alignment occurs. This significant result allows
us to understand why, as already stressed [14], the torsional
alignment is destroyed when the temperature increases.

The results in Figs. 8 and 9 should be compared to those in
Fig. 4 of Ref. [12]. The torsional alignment factor plotted in
that figure is quite similar to the expectation values considered
in the present work. In Fig. 4 of Ref. [12], it can be seen that for
all types of torsional potential, the torsional alignment factor
increases smoothly with the effective interaction strength. This
behavior is similar to that of the n = 1 level in Figs. 8 and 9.
The complicated behavior found in this work for n > 1 levels
cannot be obtained using the simplified approach of Ref. [12]
because in that approach the overall rotation is ignored.

Rotational alignment also plays an important role in
torsional alignment. In effect, the present results show that,
regardless of the nature of the hindering potential, the angular
alignment is similar to that of a symmetric-top molecule with
a polarizability tensor corresponding to the prolate spheroidal
case. This kind of alignment takes place for laser beams with
an intensity as low as 5 × 1013 W/cm2 and for a temperature
as high as 5 K.

The complicated dependence of the averaged torsional
function with the laser intensity, displayed in Figs. 6 and 7, is
due to the existence of avoided crossings that by hypothesis
are transversed adiabatically; that is, we assume that the laser
envelope varies slowly enough as to guarantee a truly adiabatic
time evolution. Note that the quantum adiabatic theorem holds
strictly in the limit corresponding to an infinitely slow time-
dependent perturbation. For perturbations of finite duration,
the validity of an adiabatic approximation depends on, among
other things, the existence of avoided crossings between
instantaneous energy levels. Thus, if the avoided crossings are
weak, the time required to achieve a truly adiabatic evolution
could be so large that a practical implementation of such
adiabatic strategy would be prevented. Additionally, adiabatic
following implies strong changes in the character of the
functions before and after encountering an avoided crossing.
Thus, maximum overlap between the involved functions is
obtained instead by fully diabatic following.

Sophisticated methods have been proposed to control
torsional motions. These methods are based on a two-step
strategy. In the first step, a long nonresonant elliptically
polarized laser pulse gives rise to 3D alignment. The field
must be weak enough for the torsional degree of freedom
to be unaffected. In the second step, a short pulse imparts
a kick to the molecule, initiating torsion about a stereogenic
axis [10]. Experimental evidence was given in Refs. [9,10] that
the combined effect of the two lasers improves the torsional
alignment. The theoretical model developed by Stapelfeldt
and coworkers assumes that the kicking pulse interacts
with a prealigned molecule whose torsional eigenstates are
essentially field-free torsional eigenfunctions. This view is
consistent with our results since the strong interaction between
torsion and rotation mediated by the field is avoided for the
first adiabatic laser. An interesting issue, related to the design
of future experiments involving additional lasers, is whether
the 3D alignment achieved by the first adiabatic laser will be
conserved or lost when the second laser kicks the molecule
and excites the torsion. In effect, the model by Madsen and
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coworkers [8–10] implies that at the time the second laser
kicks the molecule the wave functions are essentially given by
product functions of the form

�(t0) = �ff
tor,n�

p
rot,n, (19)

where �ff
tor,n is a field-free torsional eigenstate and �

p
rot,n

is a 3D-aligned pendular rotational state given by a linear
combination of field-free rotational eigenstates. After the kick,
this wave function evolves to

�(tf ) =
∑

n

cn�
ff
tor,n�

p
rot,n. (20)

When the second laser ends, and during the further time-
evolution driven by the first adiabatic laser that still is on, the
molecule remains well aligned as far as each �

p
rot,n function

entering in the linear combination is well aligned. Basically,
the average of Eqs. (14) and (15), with respect to each torsional
state changes little with �ff

tor,n. Otherwise, the further evolution
under the field due to the first laser will misalign the molecule.
A related problem was studied in Ref. [25], where it was shown
that a molecule, for which fast intramolecular vibrational
relaxation (IVR) takes place, when placed in the presence
of an orienting static field, keeps its orientation long after IVR
occurs, if the μv/Bv ratio, where μv is the average dipole
moment and Bv the average rotational constant for vibrational
state v is nearly constant for the different states involved in the
dynamics.

It has been shown that the coupling between a torsional
internal motion and the overall rotation can be strong enough
to give rise to rotation-torsion-Stark eigenstates that are
delocalized in the torsional angle. Therefore, creation of
torsional alignment by adiabatic methods could be impossible
to attain. The main conclusion is that prospective strategies
aimed to manipulate with lasers large-amplitude molecular
vibrations require taking into account the effects coming from

other vibrations or from the overall rotation, as is standard
practice in molecular spectroscopy [26].
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APPENDIX: WEIGHTS AND POINTS

For the FBR functions in Eq. (2), the weights and points
are the following:

ωα = 2π

2N + 1
and ρα = 2π (α − N − 1)

2N + 1
, (A1)

with 1 � α � 2N + 1. The DVR functions take the following
expression:

uα(ρ) = gN (ρ − ρα)/
√

2N + 1, (A2)

where

gq(ρ) = 1√
2π

sin ρ(q + 1/2)

sin ρ/2
. (A3)

For FBR functions Cn(ρ), with 0 � n � N , the weights and
points are the following:

ωα = 2π

N + 1
and ρc

α = π (N − α + 3/2)

N + 1
, (A4)

where 1 � α � N + 1. For the FBR functions Sn(ρ), with
1 � n � N , the weights and points are the following:

ωα = 2π

N + 1
and ρs

α = π (N − α + 1)

N + 1
, (A5)

where 1 � α � N .
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