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The low-frequency cutoff paradox occurring in 1/f processes has been revisited in a recent Letter [M. Niemann,
H. Kantz, and E. Barkai, Phys. Rev. Lett. 110, 140603 (2013)]. A model of independent pulses exhibiting an
integrable 1/f β power spectrum with β > 1 explains this paradox. In this paper we explore a complementary
possibility based on the use of multiplicative models to generate integrable 1/f β processes. Three distinct types
of models are considered. One of the most used methods of generating 1/f processes based on correlated pulses
is among these models. Consequently we find that, contrary to what is generally thought, the low-frequency
cutoff is not necessary to avoid the postulated divergence in a wide variety of processes.
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I. INTRODUCTION

Parceval’s identity states that the mean-squared fluctuation
of a signal coincides with its total power spectrum. This
implies that any physical process with finite mean-squared
fluctuations is limited to having a 1/f β spectrum, either with
β < 1, or with β � 1 but with a cutoff at low frequencies.
The so-called low-frequency cutoff paradox appears because
there are many experiments, mainly with electronic devices
[1], whose spectral density exhibits a 1/f β shape with β � 1
but without any apparent cutoff, even at very low frequencies.
In a recent Letter [2] a solution to this paradox has been
postulated by including the possibility of having spectra whose
amplitudes vary with the size of the time series as A(T )/f β .
A simple model of dichotomous noise with renewal times
serves to support this possibility. The model is suggested by
recent laser experiments where an intermittent behavior is
detected.

In [3] the possibility of dealing with processes whose
spectral power varies with the size of time series is considered
in all detail by introducing an independent exponent η

measuring this variation by using A(T ) ∼ T η. In this work
ensembles of time series {YT (t)} with variable size T and size
independent initial conditions are analyzed. The size of time
series is an important variable that leads to the possibility
of double scaling in statistical functions as correlation or
spectral densities. The fact of having a double scaling in
the spectrum is well known in the context of surface growth
where the global or local character of the scaling is taken
into account [4]. Using the same reasoning one can consider
the local scaling by means of the so-called spectral exponent
αs which is directly related to β as β = 2αs + 1. Note that
αs coincides with the Hurst exponent when αs ∈ (0,1/2) [3].
The global scaling is directly assumed by the scaling of

the mean-squared fluctuations δ2
T = (YT (t) − YT (t))2 with the

size as 〈δ2
T 〉 ∼ T 2α . So, the condition of finite mean-squared

fluctuations can be established, in terms of this exponent, as
α � 0. In our notation an overline # means time averaging,
whereas brackets 〈#〉 indicate sample averaging. The scaling
is better observed in sample averaged functions. The spectral
density of each sample, defined as ST (f ) = 1

T
ỸT (f )ỸT (−f )

where ỸT (f ) is the Fourier transform, is a very rough function.
It is necessary to have a large enough number of samples to get
an averaged spectrum S(f,T ) = 〈ST (f )〉 where the scaling is

clearly observed. This scaling can be written in terms of the
local and global exponents, by using the Parseval’s identity in
the form δ2

T ∼ ∫ 1/�

1/T
ST (f )df with � = const and T → ∞, as

S(f,T ) ∼

⎧⎪⎪⎨
⎪⎪⎩

T 2(α−αs )

f 2αs+1 if αs � 0, α �= 0,

(log(T ))−1

f
if αs = 0, α = 0,

T 2α

f 2αs+1 if αs < 0.

(1)

This scaling clarifies the original suggestion of Mandelbrot
[5] stating that a fractal curve (αs > 0) cannot be a strictly
stationary process, which would imply the simultaneous
conditions of finite variance (α � 0) and a correlation only
dependent on time differences (η = 0). Both conditions only
hold for the class of stationary noise (SN) with α = 0, αs < 0
[3]. But, however, for αs � 0 there exists the possibility of
being stationary in a weak sense (α = 0) as in the case
of the model introduced in [2], which in [3] is generically
called the class of stationary (weak sense) fractal curves (SF).
Obviously, this class shows integrable spectra (α = 0) and
explains the cutoff paradox, although the spectra shift with
size as A(T ) ∼ T −2αs . In this paper we will show the existence
of a wide variety of processes exhibiting integrable spectra
(α � 0) in the range of interest αs � 0. As in the previous
case they are good candidates to explain the cutoff paradox,
since cutoff at low frequencies is not necessary for the total
power spectrum to be finite. This wide variety arises because,
as we will show, it is enough to consider models derived
from multiplicative stochastic equations with exponent μ > 1.
They are complementary to the model presented in [2]. In
this sense it would be of interest from an experimental point
of view to distinguish between both types of processes. We
propose here three kinds of models: multiplicative stochastic
equations, correlated pulses, and intermittent maps. For the
sake of illustration we take the case of αs = 0 (called 1F class
in [3]) as more representative throughout the whole range of
parameters. Furthermore, as a guide for experimentalists, we
also study techniques to identify the multiplicative character
of the time series generated by these processes.

II. MODELS

Let us consider distinct models to generate processes with
1/f β integrable spectra with β � 1. Our aim is not to be
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exhaustive but to show a significant variety of models that
admit simple numerical realizations.

Renewal pulses. Series with 1/f β spectra can be generated
by using renewal point processes [6] although for β > 1
only the stationary case (with a cutoff in the inter-pulse
generation) was considered. Here we take the same model
used in [3], which is a generalization of the one used in
[2]. It consists of a series of pulses with a renewal process
for the interpulse time {τi} whose time probability follows a
power law, P (τ ) = (d − 1)τ−d , with 1 < d < 2, τ ∈ (1,∞),
without cutoff at large times. The shape of pulses is irrelevant
while pulse accumulation is insignificant. This happens when
the pulse width is similar to its interpulse time. Simulations
are done with exponential pulses in the form of Y (t) =∑

i yi exp(−|t−ti |
τi

), where ti = ∑i
j=1 τj . In these conditions

the value of exponents is [3] α = 0, αs = 1 − d/2. In order to
study symmetry properties we take random amplitudes with
uniform probability, P (y) = const, in the interval (−b,1 − b).
With b = 0 the generated series is completely asymmetric,
while for b = 0.5 it is symmetric. In previous works this model
was limited to generating series with exponent α ∈ (0,1/2)
forgetting the interesting case α = 0, which is easily generated
taking d = 2. As we will show, this case is especially important
since it is a limit of all multiplicative processes. Simulations
with d = 2 are presented along the paper with the label R1.
For the sake of comparison the case with d = 1.5 is also shown
(R2).

Multiplicative stochastic equations. The use of equations
with multiplicative white noise as generators of 1/f β noise
is a well-known fact that has always been treated in its
stationary version. That is, as the model is not stationary, some
kind of cutoff is introduced to reach a stationary state [7,8].
Furthermore, the necessity of this cutoff is justified to keep
an integrable spectral density. An important result that follows
from these works is the possibility of relating parameters of
the Langevin equation

Ẏ (t) = (μ − εκ)Y (2μ−1) + ξ (t)Yμ, (2)

where ε = 1/2 in the Ito prescription (ε = 1 in the
Stratonovich prescription) and ξ (t) is a Gaussian white noise,
with κ the exponent of the stationary probability distribution
Pst (Y ) ∼ Y−κ , αs the spectral exponent, and ν a dynamical
exponent. This last exponent comes from the scaling of the
conditional probability [8]:

W (Y,λt |Y ′,λt ′) ∼ λ−νW (λ−νY,t |λ−νY ′,t ′). (3)

Hence, in this version, this kind of model cannot be considered
as a candidate to explain the long correlation observed in
experiments. But when studying the case of free evolution
from a given initial condition [3] one obtains a different
conclusion. On the one hand, the global exponent α, that
can be easily estimated by using a simple scaling counting
in the Langevin equation, coincides with ν. On the other
hand, the scaling of the stationary probability density can
be substituted by P (Y,t) ∼ Y−κ t−1. The resulting value of
the exponents is α = 1

2(1−μ) and αs = 3−κ
2 α. Here two facts

are worth remarking. One is that simply with a multiplicative
exponent μ > 1 we obtain processes with α < 0, that exhibit
integrable 1/f β spectra without necessity of cutoff. Another is

that the case with α = 0 is not attainable from a multiplicative
process since it implies an infinite multiplicative exponent
μ = ∞. In this sense we say that multiplicative models
are complementary to the renewal process. Although these
results are rather general for multiplicative processes one
can even achieve more generality by considering stationary
correlated noise, ξc(t) in the Langevin equation. ξc(t) is a
noise in the SN class, with α = 0, αs ∈ (−1,0) that is here
numerically implemented as the derivative of a fractional
Brownian motion (FBM) process of exponent (Hurst) 1 + c

[3]. Now the exponent of the probability density κ ′ is not
easily related with parameters of the Langevin equation, and
the exponent α changes as a result of the new scaling of
the noise ξc(λt) ∼ λcξc(t). Then a more general value of
exponents α = 1+c

1−μ
and αs = 3−κ ′

2 α is obtained. Note that in
the limit of noise memory c → −1 and for any multiplicative
process the exponents of the generated series tends to the
value αs = α = 0. In general, simulations of multiplicative
equations with μ > 1 are not trivial, since special techniques
with varying time intervals are required [7], but there is a case
where simulations are easily performed even with correlated
noise. It consists of taking the q power, Z(t) = |Y (t)|q , of
a FBM process whose Langevin equation, Ẏ (t) = ξc(t), is
a multiplicative equation with μ = 0. In the Stratonovich
prescription, using the standard rules of calculus and reflective
boundary conditions at Z = 0, we get the Langevin equation

Ż(t) = qZ1−1/qξc(t), (4)

that is, we obtain another multiplicative equation with a power
exponent μ′ = 1 − 1

q
, and hence α = (1 + c)q. On the other

hand, from simulations one sees that the exponent of the
probability density holds, κ ′ = κ = 1 − 1/q and consequently
αs = (q + 1/2)(1 + c). Then a band of pure 1/f processes in
the 1F class can be generated taking q = −1/2 and varying
c ∈ (−1,0). For the sake of illustration we show in the figures
two examples, one close to the stationary case (c = −0.9,α =
−0.1) labeled as M1 and the other with the standard white noise
(M2, c = −0.5,α = −0.25) which is clearly not stationary. To
generate FBM processes with a normal initial distribution we
use Levinson’s algorithm implemented in Mathwork Matlab.

Correlated pulses. A standard method of generating 1/f β

processes consists of taking a series of pulses whose interpulse
time process {τi} is correlated. The best-known case is when
the time process is a random walk, τi+1 − τi = ξ (i), in which
case the spectrum is a pure 1/f process [9]. In [3] the value of α

was calculated showing that the series behaves asymptotically
as a multiplicative process. The obtained value, α = −1/3,
which is corroborated numerically, indicates that the integrated
spectrum is finite, the cutoff unnecessary, and the model
generates a 1/f process without paradoxes. In this paper, as in
the previous model, the effect of memory is investigated taking
for the interpulse series an FBM process such as τi+1 − τi =
ξc(i). The value of α can be calculated easily, as in the
case without memory, obtaining the asymptotic multiplicative
process. Note that the shape of pulses is irrelevant, so we can
take a flat pulse with Y ∼ τ−1, and that dτ

dt
= 1

τ 1+c ξc(t), thus
obtaining for the process Y a multiplicative equation such as

Ẏ ∼ Y 3+cξc(t). (5)
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The value of α, obtained by using a simple power counting in
this equation, is α = 1+c

2+c
. As in the previous case the exponent

κ ′ = κ and αs = 0. Simulations presented in the figures are
a series of exponential (E) and flat (F) pulses in the limit of
noise memory with c = −0.9 (E1, F1) and in the white noise
case c = −0.5 (E2).

Intermittent maps. The renewal model introduced in [2] was
suggested by recent experiments where a kind of intermittent
behavior was observed. Intermittent behavior can be easily
modeled by chaotic maps [10]. Usually parameters of the map
are fitted to have stationary behavior [11] and the generated
time series belong to the SN class (αs < 0,α = 0). But in
general maps of this kind exhibit any possible dynamics. For
the sake of illustration we have considered here a simple
chaotic map given by

Y → Y + Y θ+1 mod 1. (6)

The form of this map suggests a multiplicative process
with exponent θ and complete dependent noise ξ (t) = Y .
Simulations indicate that for θ � 3 the generated time series
are in our range of exponents αs � 0, α < 0. We take random
initial conditions with uniform probability in the interval
(0.4,0.5). Representing this model we show the case θ = 3
which generates pure 1/f noise with α = −1/3. It is labeled
as IM.

III. COMPLETE SPECTRAL ANALYSIS

In a first step a complete spectral analysis [3] is performed
for the above introduced models to check the validity of the
scaling theory. For the sake of illustration we have chosen the
most representative case which is the pure 1/f noise (αs = 0).
For the models with pulses only the complete asymmetric
case (b = 0) is considered here. When αs � 0 the exponents
α and αs can be obtained from a log-log representation of
S(f,T )T −2(α′−αs ) against f , as given by the scaling (1). The
exponent αs is obtained from the slope of each spectrum, which
is 2αs + 1. Then the exponent α′ is varied until the best collapse
of the spectral data with distinct sizes is found. This defines
the true exponent α. We can see in Fig. 1 that the data collapse
for the asymptotic low frequencies is almost perfect in all
cases and the obtained exponents agree with the estimations.
Note that the data collapse of spectra for αs = α = 0 (R1)
is in full agreement with the spectral scaling function where
the shift of spectra follows a logarithmic variation with T

(1). In Fig. 2 the probability density P (Y,T ) calculated as
a normalized histogram of the values of series of the past ten
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FIG. 1. (Color online) Plot of scaled spectra of 1/f processes
(αs = 0) with sizes T = 29 (red), 211 (blue), 213 (brown), and 215

(black). The values of α to obtain the best data collapse, shown in
the figure, are −0.1 (E1), −0.3 (E2), −0.33 (IM), 0. (R1), −0.1
(M1), and −0.25 (M2). R1 is scaled in a logarithmic form as A(T ) ∼
( log(T ))−1. Spectra of each model are shifted upwards by one decade
with respect to the previous model. The number of samples used in
the spectral average is 1000.

times is shown for series of size T = 213 and 100 000 samples.
The asymptotic behavior P (Y,T ) ∼ 1

Y 3 , corresponding to a
1/f process of multiplicative origin, is clearly observed in
the multiplicative, correlated flat pulses and intermittent map
models. As expected, the exponential decay of P (Y,T ), which
is a sign of an additive process, is observed in the renewal
pulse process but also in the case of correlated exponential
pulses, which possess a multiplicative character. Hence not
any process coming from a multiplicative process exhibits
a power law in its probability density. In order to facilitate
the inspection of figures a table (see Table I) with the main
information of all simulated series is included in the paper.

IV. ANALYSIS OF SPECTRAL FLUCTUATIONS

The spectrum of a given sample ST (f ) exhibits character-
istic fluctuations that can be analyzed to give supplementary
information useful in model identification. In our case we are
interested in the identification of additive and multiplicative
models. A first step in the analysis of ST (f ) as a frequency
series consists of transforming the nonuniform series into a
uniform one. We can see that the series ZT = ST (f )f 2αs+1

TABLE I. Simulated time series.

Label Symbol Model Parameters αs α

R1 Triangle up Renewal pulses d = 2 0 0
R2 Line Renewal pulses d = 1.5 0.25 0
M1 Cross Multi. stochastic eq. q = −1/2,c = −0.9 0 −0.1
M2 Circle Multi. stochastic eq. q = −1/2,c = −0.5 0 −0.25
E1 Triangle down Correlated pulses (Expt.) c = −0.9 0 −0.1
E2 Diamond Correlated pulses (Expt.) c = −0.5 0 −1/3
F1 Star Correlated pulses (Flat) c = −0.9 0 −0.1
IM Square Intermittent map θ = 3 0 −1/3
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FIG. 2. (Color online) Probability density of Y at the end of the
time interval for samples of size T = 213 and using 100 000 samples.
Symbols and colors used for the distinct models are R1 (triangle up,
black), E1 (triangle down, blue), E2 (diamond, green), IM (square,
maroon), R2 (line, orange), M1 (cross, red), M2 (circle, brown), and
F1 (star, violet). Note that the main figure is in log-log axes, while
the inset is semilog.

is uniform in the sense that the sampling average, 〈ZT 〉,
and variance, 〈(ZT − 〈ZT 〉)2〉, are almost constant in fre-
quency. Then we can treat this uniform series of frequencies,
{ZT }, as if they were time series {YT }. Correlations can be
investigated with the spectral densities {SZT (f )}. Defining
the amplitude of each spectrum ST (f ) as aT = ZT we can
investigate the statistics of the internal spectral fluctuations
{ST (f ) − aT /f 2αs+1} and those of the amplitudes themselves
{aT }. In general, we have observed with our models two
kinds of results associated with the multiplicative or additive
character of the generated series. A pure multiplicative process
exhibits a strong correlation in ZT , with an averaged spectral
density SZ(f,T ) ∼ 1/f 2, whereas additive processes have

0 1 2 3 4 5 6
aT/A(T)

0.001

0.01

0.1

1

P

aT/A(T)

P

FIG. 3. (Color online) Probability density of the relative am-
plitude at/A(T ) of spectra corresponding to the distinct models.
Symbols and colors are the same as in the previous figure. Here
the main figure is on semilog axis, while the inset is log-log. The
dashed line in the inset, which serves as a guide for the eye, shows a
1/x2 behavior.
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FIG. 4. (Color online) Spectra of C1 (top) and RP1 (bottom)
processes with distinct degree of symmetry. In the C1 case the
spectrum goes from 1/f to flat when increasing symmetry from b = 0
to 0.5 with a step of 0.1. In the RP1 case symmetry is irrelevant.

weaker correlation with SZ(f,T ) ∼ 1/f β , β < 1. Concerning
probability densities of internal fluctuations and amplitudes,
multiplicative processes show power laws, whereas additive
processes show exponential tails. As an example, in Fig. 3
we plot the probability density of the relative amplitude
aT /A(T ), which is a magnitude independent of T , for
several representative models. Note that here the models of
exponential pulses and intermittent maps exhibit exponential
tails despite their multiplicative origin.

V. SYMMETRY

It is worth remarking on the effect of symmetry on the
spectral properties of series. Changes of symmetry (parameter
b) in the renewal model are irrelevant; only a change in the
value of the averaged mean value, 〈YT 〉, is detected. On
the contrary, multiplicative processes are more sensitive to
these changes. For instance, the model with correlated pulses

keeps its scaling properties, 〈Y T 〉 ∼ 〈δ2
T 〉1/2 ∼ T α , while it

is asymmetric (b �= 1/2) but becomes uncorrelated, with a
flat spectrum and 〈Y T 〉 = 0, when it is symmetric (b = 1/2).
These properties can be seen in Fig. 4, where the parameter b

in the generation of series of pulses R1 and E1 is varied. Note
that in the asymmetric case the series shows almost the same
properties. Hence, close to a stationary 1/f process, symmetry
is an indication of the additivity of the model.

VI. CONCLUSIONS

There exist a wide variety of models derived from
multiplicative processes that show 1/f β integrable spectra
with β > 1. Like the model presented in [2] they are good
candidates to explain the low-frequency cutoff paradox of
1/f processes. As they are complementary we investigate
techniques to distinguish them in an experimental situation.
With the help of simulations we show that pure multiplicative
processes obtained directly from a stochastic equation, like
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M1 and M2, exhibit power laws in both probability densities,
P (Y,T ) and P (at/A(T )) (Figs. 3 and 4). Hence they are
easily distinguished from other series coming from additive
processes such as R1 and R2 that exhibit exponential tails.

However, other series related to multiplicative processes, such
as E1, E2, and IM, exhibit exponential tails in some of
the probability densities and therefore are more difficult to
distinguish.
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