- 1 Institut de Cienciès del Mar (ICM-CSIC)
- 2 Royal Netherlands Meteorological Institute (KNMI)

Royal Netherlands Meteorological Institute Ministry of Infrastructure and the Environment

Towards an improved ocean forcing using scatterometer winds

A. Trindade¹, **M. Portabella**¹, W. Lin¹, A. Stoffelen², A. Verhoef², J. de Kloe²

IOVWST Meeting, Portland, Oregon, 2015

Outline

- Sampling errors
 - Scatterometer constellation (2013)
 - ERA* higher resolution data set
- 2 Summary

Outline

- Sampling errors
 - Scatterometer constellation (2013)
 - ERA* higher resolution data set
- 2 Summary

DATA: ASCAT-A.ASCAT-B.OceanSat-2.HY-2A and RapidScat I

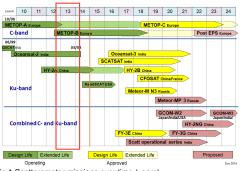


Fig.1 Scatterometer missions over time (years)

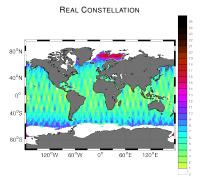
25 km products [50 km]

Real Constellation (RC):

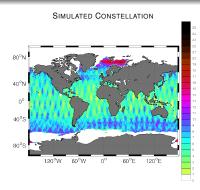
ASCAT-A&B (9:30&21:30)

OceanSat-2

(12:00&00:00)

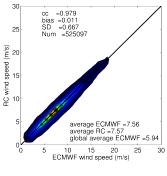

HY-2A (6:00&18:00)

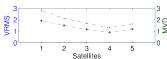
Sim. Constellation (SC):


RC + RSCAT

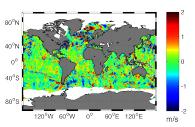
Assessment of the maximum global daily coverage I

	ASCAT-A	ASCAT-B	OSCAT	HSCAT
ascending	3	3	4	5
descending	3	3	4	4
both	6	6	8	7



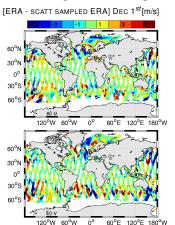

MAXIMUM NUMBER OF SATELLITE PASSES FOR A DAY. ERA-INTERIM ON SCATTEROMETER SAMPLED ORBITS (0.25x0.25 GRID)

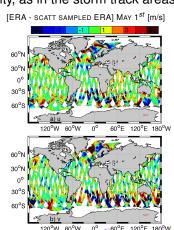
- Substantial increase in the spatial coverage for a day
- Sampling density variations with time and latitude
- More than 5 passes at mid-latitudes
- Better coverage in the tropics and (notably) at mid latitudes for the SC


Sampling errors: non-uniform time mean vs. uniform time mean I

VRMS and MVD as a function N satellites in orbit(2013)

- The mean day for the real constellation has the lowest hias and std
- Larger errors in areas of strong wind variability




THE COLOR MAP DEPICTS THE WIND SPEED DIFFERENCES BETWEEN A DAY OF THESE SCATTEROMETER-SAMPLED ECMWF WINDS AND LINIFORMLY SAMPLED ECMWF WINDS.

DATA: ASCAT-A, ERA-interim climatology 2012 (U10s)

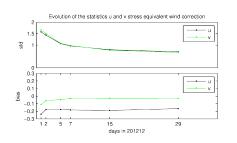
- stress eq. winds: 12.5 km product (coastal) [25 km] (KNMI), climatology [200 km spatial resolution]
- Regions of strong wind variability, as in the storm track areas.

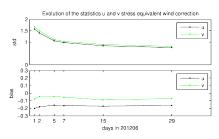
Correction of ERA interim surface winds (U10s*)

Resolving both atmospheric and fine ocean scales

The use of modeling for research would widely benefit from a wind stress forcing data set with high spatial and temporal resolution.

Correction

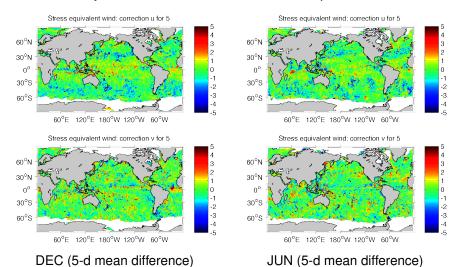

 $U10s^*(t) = U10s(t) + small scale variability$

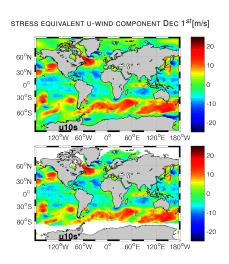

Correction = $(U10s_{scatt} - U10s_{eras})(\bar{t})$

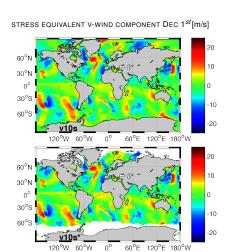
Scatterometer data will provide information on smaller scales

This "noise" contains information on the eddy scale for ocean currents, moist convection, coastal interaction and stability parameterization of surface fluxes

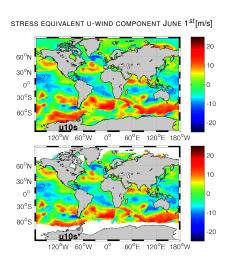
How long should the winds be accumulated?

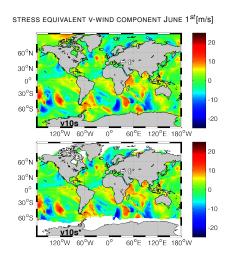


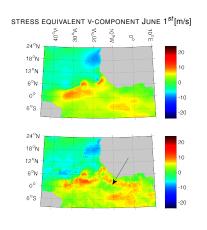

Compromising on the accumulation length


- The length of the accumulation should be weighted according to the physical phenomenon one intends to resolve
- A 5 day accumulation should still account for the eddy scale on strong West boundary current systems like the Gulf stream, the Agulhas or the Kuroshio current (stationary)

This systematic correction is seasonal dependent




ERA vs ERA*



ERA vs ERA*

ERA* Details

- v-wind component ERA* (bottom) shows a clear meridional wind effect south of the African coast and another effect south of the equator
- Moist convection?
- Needs further spatial and temporal analysis
- Test implications for curl and divergence

Main results

- Wind scatterometer constellation increases temporal and spatial coverage (although remains latitude dependent)
- Our low bias and std between a non-uniform daily time mean and a uniform daily time mean
- Sampling errors prevail on regions of strong wind variability
- ERA* corrected stress equivalent data set resolves small scales details

Main results

- Wind scatterometer constellation increases temporal and spatial coverage (although remains latitude dependent)
- Our low bias and std between a non-uniform daily time mean and a uniform daily time mean
- Sampling errors prevail on regions of strong wind variability
- ERA* corrected stress equivalent data set resolves small scales details

NEXT

- Further develop the mitigation of the sampling errors of the scatterometer constellation winds
- Validation of the stress product with global current data
- Ompute the 10-m stress data set for 2008 both for the Ku-band scatterometer QuikScat and ASCAT

THE END :-) Thank you!

NEXT

- Further develop the mitigation of the sampling errors of the scatterometer constellation winds
- Validation of the stress product with global current data
- Ompute the 10-m stress data set for 2008 both for the Ku-band scatterometer QuikScat and ASCAT

THE END :-) Thank you!

