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Effects of nonlinear dispersion on squeezed states in two-photon devices
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The deleterious effects of nonlinear dispersion on squeezed light in two-photon devices when ab-
sorption losses are included have been analyzed making use of the variables called two-mode
quadrature-phase amplitudes. The uncertainties in the quadrature amplitudes have been computed
from a generalized Fokker-Planck equation. The dependence of squeezing on the nonlinear cou-
pling, the modulation (including the case of high modulations), the pumping phase (where nonlinear
dispersion causes an intensity-dependent shift in the minimum squeezing), and the absorption losses
have been studied.

I. INTRODUCTION

Levenson et ah. ' have experimentally demonstrated the
importance of nonlinear dispersion in the squeezing pro-
cess in parametric interactions. They have pointed out
that the nonlinear susceptibility also causes an intensity-
dependent phase shift between the pump and the signal
and idler modes in two-photon devices. This effect can be
taken into account by means of an additional term in the
interaction Hamiltonian. Milburn et al. have presented
a unified treatment of two-mode squeezed-state genera-
tion in optical fibers. In this article we study the
inAuence of nonlinear dispersion on the uncertainties of
the two-mode quadrature-phase amplitudes by means of
new variables introduced by Caves and Schumaker.

An intense laser beam at frequency 2Q —the pump
beam —that illuminates a suitable nonlinear medium will
be considered. The output light consists of pairs of
simultaneously emitted photons which excite pairs of
modes at frequencies 0+a, where @&A is a modulation
frequency. The annihilation operators for the two modes
are denoted by a+ and a, and satisfy the usual commu-
tation relations

[a+,a ]= [a+,a ]=0,
[a+,a+ ]=[a,a ]= l .

The free Hamiltonian for the two modes is given by

Ho =Pi(Q+e)a+a+ +tt't(Q —e)a a =H„+HM,

Htt =fin(a+a++a a ),
HM =Re(a+a+ —a a ) .

The Hamiltonian for an ideal two-photon process in
the Schrodinger picture (SP) can be written

H=H + itc(t)(a —a e '~ "—a a e '~ ")
2

where tc(t) is an arbitrary real function of time. The pro-
cess is characterized by the function tc(t)e 'I'r ", and
may be used to describe, for example, an ideal parametric

amplifier.
We will take into account the effects of nonlinear

dispersion by means of the Hamiltonian:

HD =Kite'(a+a+ +a" a ), (4)

which represents a pump-induced phase shift of the side
bands.

The following variables, called two-mode quadrature
amplitudes, will be used to describe squeezing in a two-
photon device in the SP:

' ]/2

a, (t)= 0+@
2A

eight+

1/2

A+aa (t)= —i2 2Q

0—e
2A

1/2

1/2

The commutator algebra of these amplitudes is

[a„a,]= [a~,a, ]=e/0,
[a, , a~]=0,
[a„a2]=[a, , a2]=i;

moreover, we will work in the modulation picture (MP),
which is an interaction picture where the free time depen-
dence at the carrier frequency 0, is transferred from the
states to the operators (the states retaining the remaining
free time dependence at modulation frequency e); the free
Hamiltonian for the two output modes [Eq. (2)] is in the
MP:

Ho HM

and the interaction Hamiltonian [Eq. (3)]:

HI= —,'Ai~(a+a e '+ —a+a e '~) .

In terms of the two-mode quadrature-phase amplitudes
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the total Hamiltonian, including the nonlinear dispersion
term, has the form -{V) g, + Wzgz)P + —

( Vzg, + Wzg, )P+ c.c.

1
Ho+Hn =Pi [(e c—rtc')(ia, az —iaza, )

k+ k

+(tc' —ere)(a &a &+azaz)], where

'
c)g, c)$,

*

H, =i% e—'~(a, +i a, )( a~+i az)
k

—itrt e—"~(a, i—az)(a, —ia, ),
where k+=[(f1~ e)III]', o. =elIl, and k = —,'tc/A, +A,

We will include damping in the nonlinear material by
means of the usual term in the Hamiltonian, and the
master equation for the reduced density matrix can be
written

V, =ye+i e+i crk sin(2cp)+k cos(2@),

V, =~'+ k sin(2cp) —i okcos.(2g),

W, = —~'+k sin(2y) —iak cos2@,

W, =ye+i e i crk—sin(2cp) —k cos(2y),

and the diffusion matrix

Bp
at

-4 [a,a&,p]+8 [azaz, p]+ C[aza, ,p]

+D[a,az, p)+ (3p

Bt

~here

1 l K3 =i (o e —tc') —— — sin(2cp),
(g+g )z 2

1 K8 =t (ere K )+ sin(2(p)
(g+g )z 2

1 KC= (crtc' —e)+ — cos(2y),
(gqg )z 21, i

( e cr~')+ — —cos(2cp),
(/+g )z 2

1 —i
D=yq(1 —o )

It should be noted that this diffusion matrix is indepen-
dent of the nonlinear coupling and has non-negative ei-
genvalues. This fact is a property of the employed j-
ordered two-mode displacement operator.

Since we will be interested in the symmetrized prod-
ucts of the two-mode quadrature-phase amplitudes, it is
convenient to express Eq. (12) in terms of a QPD corre-
sponding to operators written in symmetric order
(Wigner QPD). It has been shown that for symmetric
ordering the Fokker-Planck equation has the same drift
matrix as for antinormal ordering [Eq. (12)] and the
diffusion matrix is

and the damping term of the master equation reads 1+o.
D=

i (1 —o. )

—i(1 —o)
(13)

Bp =y&(2a+ pa +
—a + a+ p

—pa +a+a' d

+2a pa+ —at a p
—pat a )

where yd is the damping constant.

II. GENERALIZED FOKKER-PLANCK
EQUATION

In order to study the noise properties of the output
light we have calculated the covariance matrix
C,„,.=((g,„g,*, )) =(g.g,", ) —(g, )(g,*) .=1,2, by
means of standard methods. " For simplicity, a unitary
transformation g= Ug' has been performed, that diago-
nalizes the diffusion matrix:

The two-mode quasiprobability distribution (QPD) in-
troduced by Schumaker and Caves will be used here.
Such distributions correspond to a j-ordered two-mode
displacement operator for the two-mode quadrature-
phase amplitudes o:, which orders the two modes in the
single-mode sense (a, and az always appear to the right
of cx, and uz in the case of antinormal ordering). Writing
Eq. (11) in terms of the two-mode quadrature-phase am-
plitudes in the modulation picture and performing an-
tinormal ordering in the former sense in Eqs. (10) and
(11), we obtain the following Fokker-Planck equation for
the QPD P(g, , gz):

The average values in the new variables verify
(g'), = Y'(t)(g')„, where Y'(t) is the evolution matrix
determined by the equation Y(t) = 3 ' Y'(t), Y'{0)= l.
The transformed drift matrix is

ye+i (e+tc') —ik{1+cr )e '~

ik (1 —0. )e '~ yd+i(~ —K')

and after some algebra it is obtained that the matrix ele-
ments v,'„„(t)exp[—(ye+i e)] are
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~dt—2i sinh
Kd 2

( )
. K 1+CD

1

' ]/2
Wdt

e '~sinh
2

y2, (t)= —
1

Kd

1 —o.

1+o.

1 /2
~dt

e '~sinh
2

Vdt
y'» (t) =cosh

2

~'=0, we recover the evolution matrix without nonlinear
dispersion.

On the other hand, it can be easily shown that the co-
variance matrix satisfies

(17)

(16) C'(t) = Y'(t)C'(0) Y'(t)

+ Y' t Y'' ' t'D' Y' ' t' Y' tdt'.
0

y 22(t) =cosh
kdt

2
+2i sinh

Kd 2

where 1~d=(~ —4~' )' . It should be mentioned that if

The results for the covariance matrix and its
transformed C(t)= UC'(t)U are given in the Appendix.
If we assume that the initial state is a two-mode coherent
state, it is obtained as follows:

(Y(t)C(0)Y (t))„=e " —1——
ryder 1 41~' 41~1''sin[2g(1 cr —)'/ ]2+ 2

Kd Ky

1 v 4v'

Kd Kd
2 2

41~~'sin[2y(1 —cr )' ] cosh(a. zt )
Kd

cos[2g(1 —o )' ]sinh(x„t)
2 K'd

(Y(t)C(0)Y (t))2, =e
r

—
ryder

(4

2
1—

2
Kd

4KK sin[2y(1 —a )' ]
Kd

(18)

1 K 4K Klc sin[2y(1 —o )' ] cosll /cd t )
4 Kd Kd Kd

+ — cos[2y(1 —o. )' ]sinh(t~dt )
2 Kd

III. NOISE IN THE QUADRATURE-PHASE AMPLITUDES

It has been shown that the noise in the quadrature phases is given by

([bE ( tt)r] ) =20( lba
l ), m =1,2

where (

lpga

l ) is the symmetrically order squares variance of the two-mode quadrature-phase amplitudes:

)=—,'(a a +a a ) l(a )l, m=1 2.
Thus, we are interested in the "reduced" spectral-density matrix:

X „=(b,a ha„), =tr[p(b, a b,a„),„]=(a a„),„—(a )(a„),

(19)

(20)

(21)

and, in particular, in its diagonal elements X = ( lpga l
). It has been also shown that the uncertainties in a, and a2

verify the uncertainty principle:

(lb l2)1/2(lb l2)1/2) 1l([ t])l —1 (22)

Equation (22) describes squeezing since noise can be reduced below the zero-point level only by squeezing noise from
one quadrature phase into the other. Moreover, the only states that yield equality in Eq. (22) are two-mode coherent
states.

For an initial two-mode coherent state, and making use of the correspondence between density operators and
quasiprobability distributions for symmetric ordering, the uncertainties in the two-mode quadrature-phase amplitudes
are obtained from (20):
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&„=(Isa,/'&=e " "" +[—0.5+sin[2cp(1 —a )' ]I '3cos(&3vt)

cos[2 ( 1 a2)1/2]s ( +3 t ) + ( 1
~ydI) [2a —

( 1 —o )
' ]sin(2Ip)

2&3 3

2yd(o —2(1 —o )' sin(2Ip) —2$d 1

X
3

+x(1—o )' cos(2')+e

~d

3~'+4y„'

2y„[—o+2(1 —a. )' Sin(2Ip)]
X (cos+3a.t )

3
—~(1—o )' cos(2Ip)

+ — [Ica —2Ic(1 —a )'y sin(2@) —2y (1—cr )' cos(2g)]

I2)
—2y„I 2+sin[2Ip(1 —o )' ] 0. 5+sin(2Ip)(1 —a )'

3 3
cos( 3Kt

cos[2g(1 —o )'r ] . — —&y„I 2o+(1 —o' )'y sin(2Ip)

2&3

Pd

3~ +4y„
2yd[o +2(1—o. }' Sin(2Ip}]

3
—x(1 cr )' co—s(2')

—2pd i 2yd[a+2(1 —o. )' Sin(2Ip)]
+e ' [cos(&3Ict )] Ic(1 —o )' cos(2@)—

3

+ — [Ico+2x(1—o )' sin(2Ip)+2yd(1 —o. )cos(2Ip)]v'3
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FIG. 1. Evolution of the uncertainties in the two-mode
quadrature-phase amplitudes X„,X» for ~= 1.75, curve a; 1.50,
curve b; 1.25, curve e; and 1.0, curve, d. The normalized values
of the other parameters were yd =5 X 10, o =0.28, and g=0.
Curves labeled ( ———) and (. . ) correspond to fluctua-
tions with nonlinear dispersion.
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FIG. 2. Dependence of the fluctuations on the modulation
o. =e/A. Curve a, o =0.1; curve b, o. =0.6; and curve e,
o. =0.9.
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FIG. 3. Dependence of the fluctuations on the input phase g.
Curve a, y=0; curve b, y=20 .

FIG. 4. Dependence of the fluctuations on the absorption
losses; curve a, y& =0.05; cur~e b, yd =0.2; curve c, yd =0.3.

where we have made K —K. The uncertainties when non-
linear dispersion is not considered (z'=0) are given in the
Appendix.

We have studied the evolution of the noise in the
quadrature-phase amplitudes along the nonlinear materi-
al for different values of the nonlinear coupling K, the in-
put phase g, the modulation cr =e/0, and the damping
constant. Special attention has been paid to the limiting
cases that can be studied within the model, i.e., high
modulations (0.~ 1 ), and high losses; moreover, the
noises with and without nonlinear dispersion have been
compared. Usual data in squeezing experiments by
parametric amplification have been employed in Figs.
1 —4, where the parameters are given in normalized
values. It should be noted that the usual squeezing pa-
rameter' s is Kt /2 in our description.

The deleterious effect of nonlinear dispersion in the de-
gree of squeezing attained can be observed in Fig. 1,
where curves labeled ( —~ —~ —) are the fiuctuations X»
when nonlinear dispersion is neglected. On the other
hand, the increase of the squeezing degree with the non-
linear coupling is also shown. The dependence of the
noises in both quadrature-phase amplitudes X» and X&2
with the modulation is given in Fig. 2 ~ It is worth noting
that curves a and b correspond to cr =0. 1 and 0.6, respec-
tively, while curve e corresponds to o. =0.9; it is found
that deleterious effect of high modulations on squeezing
increases strongly from u =0.6.

The behavior of the reduced fluctuations amplitude
strongly depends on the input phase when nonlinear
dispersion is considered. We have found that for can=10,
X» attains a minimum which depends on the nonlinear
coupling K, while the minimum is achieved at y=0 when
nonlinear dispersion is neglected. This behavior is in
agreement with the results of Refs. 1 and 2. On the other

hand, we have also studied the dependence of the fluctua-
tions on the damping constant and it has been observed
that the deleterious effect of the absorption losses strong-
ly increases from a certain value of yd depending on the
nonlinear coupling, while for smaller values of the damp-
ing constant, the squeezing degree remains practically
constant; for example, for a value of the nonlinear cou-
pling K=1.25, this limit value for the absorption losses is

yd =0. 1 (Fig. 4).
In summary, we have analyzed the deleterious effects

of nonlinear dispersion on the squeezing process in two-
photon devices, taking into account the dependence of
the fluctuations on the parameters which govern the pro-
cess. It should be mentioned that the model employed
enables us to study the process when the damping in the
two modes 0+@ is different, " such study being in pro-
gress at the present time. It should also be mentioned
that this method is mainly suited to study nondegenerate
parametric amplifiers, since it provides a direct depen-
dence on the modulation frequency.
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APPENDIX

The result of the second term of Eq. (17) for the covari-
ance matrix

I'(r) = J Y'(r) Y' '(r')D'( Y' ) '(r') Y' (t)dr'
0

1S
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2 2
Kd K —2yd t —2y, III1(t)=(1+cr ) (1—e )+ I

—2yd +e [Kdsinh(Kdt )+2ydcosh(Kdt )] I
2Kd K„—4y„

(t) I e (1 2)1/2 2ig
I

, (e ' —1)
Kd

yd

- -4y2 2

I4K y d —2yd1+e
2

Kd

4K'yd
+ t cosh(Kd t )

Kd

2(K'+1yd )+ sinh(Kdt) (24)

I22(t) = —(1 —o )
Kd K —2yd t yd 2 —2yd t

(1 —e ")+
I
—2yd+e "[Kdsinh(Kdt)+2ydcosh(Kdt)]I

2Kd Kd 4yd Kd

where the asterisk denotes the complex conjugate.
Transforming back the I' matrix, I= UI'U, we obtain

r

'(1 —o')' '
i (2g)

11
2 Kd Kd

yd 2KK 2yd K CT+ 2yd(1 —cr )'r sin(2')+K(1 —o )' cos(2y)—
Kd 4yd Kd Kd

+e " [cosh(Kdt)] 2yd - — 2yd(1 —cr )' sin(2p) —K(1 —a )' cos(2y)
Kd Kd

+ [sinh(Kd t )]
Kd

I

(1 —o' )'r sin(2y) —2yd (1 —cr )' cos(2y)
Kd Kd

2
1(Kd K ) —2yd I(t)=I+ (t)= —(1—tr ) KK cos(21') (1 —e )

Kd

2

+K( 1 —o. ) . , [ 4K'y d cos( 2y—) + sin(2y) ]
yd

—2iK yd 2 1/2

Kd
—4yd Kd

4K'yd cos(2y)
+e [K(l cr )' —] —sin(2y)

Kd

21 K yd+ cosh(Kdt)
Kd

+ [2(1—o )' [K'cos(2g) —
ysdi (n2g)] i+IKsi hnKtd.

Kd

—2yd I 2KI (t)=(1—e ) —1—22 2 2
Kd

KK'( 1 —cr )
' 'sin( 2y )

2
Kd

I 2
+ —

2yd ( 1 —o )' sin(2qr )
—K( 1 —o )' cos(2@)—2yd

Kd 4yd Kd Kd

—2yd ~ K C7
2

+e " [cosh(Kdt] 2yd +
Kd

2KK 2yd
(1 —cr )' sin(2@)+K(1 rr )' cos(2y)—

Kd

+[sinh(Kdt)] + (1 —a )' sin(2g)+2yd
K CT 2KK

Kd Kd Kd
(1—cr )' cos(2y)

When nonlinear dispersion is not considered, K =0, we obtain from (18) and (25) the following uncertainties in the
two-mode quadrature-phase amplitudes:
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X» = ( ~ha, }=
—,'e " [cosh(tet )

—(1—cr )' cos(2y)sinh(t~t )]

+
2 z

(tc(1 —cr )' cos(2y) —2}„cr
K 4Py

+e "
( [cosh(ttt )][2yzo —tt(1 —o )' cos(2y)]

+[sinh(at)][so —2yd(1 —o )' cos(2g)]I },

X&2= ( ~baz~ ) =
—,'e "[cosh(at)+(1 o—}' cos(2y)sinh(tet )

(26)

+
~ ~

( —t~(1 —o )' cos(2y) —2ydtr2 4y2

+e [[cosh(tet)][2ydo. +tt(1 —o )' cos(2y)]

+[sinh(at)][ttcr+2} d(1 —cr )' cos(2cp)]I } .
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