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We study the dynamics of a trapped spin-1 condensate in a magnetic field. First, we analyze the homoge-
neous system, for which the dynamics can be understood in terms of orbits in phase space. We analytically
solve for the dynamical evolution of the populations of the various Zeeman components of the homogeneous
system. This result is then applied via a local-density approximation to trapped quasi-one-dimensional con-
densates. Our analysis of the trapped system in a magnetic field shows that both the mean-field and Zeeman
regimes are simultaneously realized, and we argue that the border between these two regions is where spin
domains and phase defects are generated. We propose a method to experimentally tune the position of this
border.
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I. INTRODUCTION

Bose-Einstein condensates �BECs� with a spin degree of
freedom are an interesting field of research in many-body
physics as they realize both superfluidity and magnetism in a
well-controlled environment. First realized experimentally
with 23Na ten years ago �1,2�, their study has matured re-
markably over the last few years, with several groups study-
ing their dynamics �3–6� and thermodynamics �7,8�. Of par-
ticular interest is the study of the process by which spin
domains are formed during time evolution, a phenomenon
observed experimentally �6,9,10� and in numerical simula-
tions based on a mean-field approach �11–13�.

The complicated dynamics of these nonlinear systems, es-
pecially when they are subjected to time-varying external
fields, makes the physical understanding of the structure for-
mation process somehow elusive. To address this point, we
present here a simple model based on an analytic solution for
the homogeneous system for arbitrary magnetic fields B and
magnetizations M. This solution is then applied to the study
of realistic trapped spin-1 condensates by means of the local-
density approximation �LDA�. This approximation has al-
ready been applied successfully in a number of studies on
scalar BECs, as well as cold Fermi gases. From the analysis
of our results we are able to provide an intuitive picture of
the process leading to the structure formation. Further, we
argue that it should be possible to experimentally “tune” the
spatial region where this process starts within the conden-
sate.

The paper is organized as follows. In Sec. II A we present
the phase space of a homogeneous system under a magnetic
field B and for arbitrary M, and introduce the phase-space
orbits that describe the dynamics of a conservative system.
In Sec. II B we solve analytically the dynamical evolution of
the homogeneous system. Then, in Sec. III we describe our
local-density approximation for a trapped system and present
numerical results for its dynamics �Sec. III A�, which we
compare with simulations based on a mean-field treatment
�Sec. III C�. In Sec. IV we discuss the progressive dephasing

of different spatial points of the condensate in a homoge-
neous magnetic field and relate this to the process of struc-
ture formation, with an indication of a possible experimental
test. Finally, we conclude in Sec. V.

II. ANALYTICAL RESULTS FOR THE HOMOGENEOUS
SYSTEM

A. Energetics of the homogeneous system

A homogeneous condensate of atoms with total spin F can
be described by a vector order parameter �� with 2F+1 com-
ponents,

�� = � �F

]

�−F
� . �1�

The density of atoms in a given Zeeman component m=
−F , . . . ,F is nm= ��m�2 and the total density is given by n
=�m��m�2. Introducing the relative densities for the homoge-
neous system �m=nm /n, one has

�
m

�m = 1. �2�

Given that n is a conserved quantity, Eq. �2� will be fulfilled
at all times during the dynamical evolution. Moreover, the
magnetization

M = �
m

m�m �3�

is also a conserved quantity �11�.
We now focus our analysis to the case of a F=1 conden-

sate. We write the various components of the order parameter
as �m=	n�m exp�i�m�. This ansatz, together with conditions
�2� and �3�, leads to the following expression for the energy
per particle of the homogeneous system in the mean-field
approach �14,15�:*j.mur@ucl.ac.uk
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E��0,M,�� = c2n
�0�1 − �0� +
M2

2

+ �0	�1 − �0�2 − M2cos �� + ��1 − �0� .

�4�

Here �=2�0−�1−�−1, while c2 is given in terms of the
s-wave scattering lengths af in the channels of total spin f
=0,2, by c2=4��2�a2−a0� / �3M�, with M as the atomic
mass. Finally, �= �E−+E+−2E0� /2, where the energies of the
atomic Zeeman states are given by the Breit-Rabi formula
�16� Em=−Ehfs /8−Ehfs

	1+m�+�2 /2 �m=−1,0 ,+1�, with
Ehfs being the atomic hyperfine splitting and �= �gI�N
+gJ�B�B /Ehfs is a function of the external magnetic field B.
Here, gI ,gJ are the nuclear and electronic Landé factors, and
�N ,�B are the nuclear and Bohr magnetons, respectively. A
sketch of the surface E is given in Fig. 1.

As indicated above, M is a constant during dynamical
evolution. Similarly, given initial conditions ��0

in ,�in�, E
=E��0

in ,M ,�in� will also be conserved, thus defining an orbit

on the surface E in ��0 ,�� space. A sketch of one such orbit
is presented in Fig. 2. One should note that depending on the
initial conditions, the orbit defined by E=const can be closed
or open. In the first case, �=��t� will be a periodic function
of time, while in the latter case, ���t�� will grow indefinitely
with time. In both cases, however, �0=�0�t� will be a peri-
odic function of time.

B. Dynamics of the homogeneous system

We are interested in the time evolution of the densities of
the different Zeeman components, nm=n�m. From Eqs. �2�
and �3� we have

�	1 =
1 	 M − �0

2
. �5�

Therefore, we only need to follow the evolution of �0, which
is given by

��0

�t
� �0

˙ =
2

�
c2n�0	�1 − �0�2 − M2 sin � . �6�

With Eq. �4�, we rewrite this as

��0
˙ �2 =

4

�2�c2n�0�2��1 − �0�2 − M2�

− 
E − ��1 − �0� − c2n��0�1 − �0� +
M2

2
��2� .

It can be shown that the term in �0
4 actually drops out and we

are left with a cubic polynomial on �0,

��0
˙ �2 � A��0 − 
1���0 − 
2���0 − 
3� , �7�

with

FIG. 1. �Color online� Energy �in units of �c2�n� of the homoge-
neous system for the cases �a� M=0, B=0 and �b� M=0.3, B
=1 mG, as given by Eq. �4� for a spin-1 condensate of 87Rb.

FIG. 2. �Color online� Contour plot of the energy surface corre-
sponding to M=0.3 and B=100 mG. The white line shows the
orbit corresponding to the initial conditions �0

in=1 /2, �in=� /2 �in-
dicated by the white dot�. The minimum of E is at �0�0.455, �
=0. Note the presence of open orbits for energies above that of the
indicated white line.
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A ª −
8c2n�

�2 , �8�

and 
 j �j=1,2 ,3� are the roots of ��0
˙ �2, 
1�
2�
3. For

ground-state �F=1� alkalies ��0. Therefore, 
1�0�t�

2 for c2�0 and 
2�0�t�
3 for c2�0 �17�. For con-
creteness, in the following we will assume c20, i.e., ferro-
magnetic interactions.

We will now integrate the time evolution of �0. To do so,
we introduce an auxiliary variable z through �0= �
2
−
1�z2+
1. This will satisfy the differential equation

ż =
	A

2
	
2 − 
1

	�z2 − 1��z2 − k−2� , �9�

where we defined

k2
ª


2 − 
1


3 − 
1
� �0,1� . �10�

The first-order differential Eq. �9� can be solved analytically
by separating the variables z and t, and integrating

	A

2
�

t0

t

dt =
1

	
2 − 
1
�

z0

zt dz
	�1 − z2��k−2 − z2�

=
1

	
3 − 
1
�

z0

zt dz
	�1 − z2��1 − k2z2�

.

The solution to the last integral can be expressed in terms of
the elliptic integral of the first kind �18�,

F��,k� = �
0

sin � dz
	�1 − z2��1 − k2z2�

.

Taking as initial condition z�t= t0�=z0 and using the fact that
F�−u ,k�=−F�u ,k�, we can express zt in a compact form by
means of the Jacobi elliptic functions �19�, which are defined
as the inverses of the elliptic integrals,

zt � z�t� = sn
�0 +
	A�
3 − 
1�

2
�t − t0��k� , �11�

with z0=sn��0 �k�, i.e., �0ªF�arcsin�z0� ,k�. Finally, we undo
the change in variables to write down the time evolution of
the population of the �m=0� state,

�0�t� = 
1 + �
2 − 
1�sn2
�0 +
	A�
3 − 
1�

2
�t − t0��k� .

�12�

In accordance with the identity �19�

sn2���k� =
1 − cn�2��k�
1 + dn�2��k�

,

and given that both cn�2� �k� and dn�2� �k� are periodic
functions in � with period 2K�k�, �0�t� will be a periodic
function of time with period

T =
2�

	− 2c2n��
3 − 
1�
K�	
2 − 
1


3 − 
1
� . �13�

Here, K�k�=F�� /2,k� stands for the complete elliptic inte-
gral of the first kind. We note that result �13� agrees with that
in Ref. �17�, where T was calculated directly by performing

the integral T=�d�0 /�0
˙ over a period of evolution. Further,

let us point out that the average value �0
av

= �1 /T��t0
t0+T�0�t�dt does not necessarily coincide with the po-

sition of the minimum of E, i.e., �0
av may differ from the

equilibrium value �0
eq �as given, e.g., in Ref. �14� for the case

B=0�. This is illustrated in Figs. 3�b� and 4�b�.

C. Evolution in the absence of a magnetic field

We observe that the representation of ��0
˙ �2 as a cubic

polynomial on �0, Eq. �7�, cannot be performed when A=0,
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FIG. 3. �Color online� Evolution of the population of the m=0
Zeeman component, �0�t�, for the cases �a� M=0, B=0 and �b�
M=0.3, B=100 mG, starting in both instances from �0

in=0.5, �in

=� /2. In both panels, the solid line corresponds to the analytic
result, �a� Eq. �16� or �b� �12�, while the circles are a numerical

integration of the differential equation for �0̇. The dashed line gives
the expected average value of �0, �0

av�0.433. The arrows indicate
the amplitude and period as predicted by the analytical results. In
the bottom plot, also the value of the equilibrium population �0

eq

�0.455 is indicated by a dotted line, while the dashed-dotted line
stands for a fit to Eq. �21� �displaced vertically by 0.1 for clarity�.
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i.e., when B=0. In this case, the analytic expression �12� is
meaningless, as it would apparently result in no time evolu-

tion at all. Actually, in this situation, ��0
˙ �2 can be written as

a quadratic polynomial on �0,

��0
˙ �2 = −

4

�2 �2c2nE�0
2 − 2c2nE��0 + �E��2�

� Ā��0 − 
̄1���0 − 
̄2� , �14�


̄1,2 =
E�

2E

1 �	1 −

2E

c2n
� �
̄1 � 
̄2� . �15�

Here E�=E−c2nM2 /2. Note that Āª−8c2nE /�2�−c2
2�0

for c2�0 as well as for c2�0, and in both cases we will

have 
̄1�0�t�
̄2. Following a procedure analogous to
that above, we arrive at

�0�t� = 
̄1 + �
̄2 − 
̄1�sin2
�̄0 −
�

TB=0
�t − t0�� , �16�

with sin �̄0= ���0
in− 
̄1� / �
̄2− 
̄1��1/2. In this case, �0 follows

a pure sinusoidal evolution as has been predicted before in a
number of references, e.g., �14,17,20�. The average value is

�0
av= �
̄1+ 
̄2� /2=E� / �2E�, and the period reads �compare

with �20��

TB=0 =
��

	2c2nE
. �17�

We show in Fig. 3 the time evolution of �0�t� for two
representative cases. The different panels compare the ana-
lytic evolution—given by Eq. �12� or �16�—with a numerical

solution of the corresponding equation for �0
˙ . In all cases,

we see that the amplitude as well as the period of the time
evolution are well predicted by the analytic results. Finally,
we show in Fig. 4 a plot of ��t� vs �0�t�, corresponding to the
time evolution depicted in Fig. 3. For the case with magnetic
field and M�0 we observe that the average value �0

av

�0.433 �indicated by the dashed line� differs from the posi-
tion of the minimum of E ��0

eq�0.455, cf. Fig. 2� due to the
deformation of the orbit.

III. DYNAMICS OF THE TRAPPED SYSTEM

We have established in the previous section the dynamical
evolution of a homogeneous spin-1 condensate in terms of
orbits in the ��0 ,�� plane constrained by �i� conservation of
density, �ii� conservation of magnetization, and �iii� conser-
vation of energy. The resulting dynamics of the population of
the �m=0� Zeeman component has been shown to be a peri-
odic function of time, with a period determined by the den-
sity n of the system, its magnetization M, as well as the
initial conditions of the evolution �implicit in E and, there-

fore, in �
 j� j=1,2,3 or �
̄ j� j=1,2�, cf. Eqs. �13� and �17�. Now,
we will transfer these results to a realistic case of a trapped,
quasi-one-dimensional �1D� condensate.

A. Local-density approximation

The initial conditions for the evolution of a trapped spinor
condensate are the set of complex values �m

in�x� for all Zee-
man components m and all positions x where the density is
not zero. In typical experiments, the preparation of the initial
state is such that nm�x� /n�x� is a constant independent of
position. This, together with the fact that �c2�� �c0� for the
systems studied so far, has lead to some theoretical works
based on the so-called single-mode approximation �SMA�,
which assumes that nm�x , t�=n�x��m�t� for all times t of the
evolution, i.e., that the spatial variation in the density of each
Zeeman component is always given by the total density pro-
file. However, numerical studies beyond the SMA �e.g.,
�11,12,20�� predicted the formation of spin domains as time
goes by. These have been observed in a number of experi-
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FIG. 4. �Color online� Phase-space plot ��0 ,�� corresponding to
�a� the evolution shown in Fig. 3�a� and �b� Fig. 3�b� �compare with
Fig. 2�. The solid line is the analytic result in �a� Eq. �16� and �b�
Eq. �12�, while the circles are the solution of the differential equa-

tions for �0̇ and �̇. The vertical dashed lines stand for the average
value �0

av in each case.
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ments, e.g., �2,6�. In order to be able to observe the forma-
tion of spin domains during time evolution in a trapped sys-
tem, we will therefore not make use of the SMA but apply
the analytical results of Sec. II via the LDA, i.e., we will
assume that the evolution of the �m=0� population at each
point within the condensate, �0�x , t�, is given by Eq. �12� �or
Eq. �16�� with the substitution n→n�x�. Here, the total den-
sity is normalized to the total number of atoms in the con-
densate, �dxn�x�=N. Similarly, we introduce the local den-
sities of atoms in a given Zeeman state nm�x , t� normalized
as �dxnm�x , t�=Nm�t�. The conservation laws read now
�mNm�t�=N and �mmNm�t�=M. We note that n�x� does not
change in time at low enough temperatures �11� unless mo-
mentum is imparted to the center of mass or to one or more
of the Zeeman components �21�.

In the language of the phase space introduced in Sec. II A,
a trapped system corresponds to an infinite-dimensional
phase space, with a pair of variables ��0�x� ,��x�� associated
to each point x. According to the LDA, we divide this whole
phase space in sections corresponding to the different posi-
tions and assume that they are independent. The initial con-
dition described above, nm�x� /n�x�=const, corresponds then
to the dynamical system starting in all the different positions
x at the same point of the corresponding phase space,
��0�x , t=0�=�0

in , ��x , t=0�=�in�. The dynamical evolution
of the system corresponds then to the population �0�x , t� at
each point x following its own particular orbit in the corre-
sponding ��0�x� ,��x�� space, that is, �0 at position x follows
the dynamical equation of the homogeneous system �12� �or
Eq. �16�� with the parameters 
 j and A determined by the
local density n�x�. In other words, we assume that the posi-
tion dependence is only parametric and comes through the
values of the parameters 
 j =
 j�x� and T=T�x�. We will
indicate this by �0�x , t�=�0

LDA�x , t���0
n�x��t�. The density at

position x of atoms in the Zeeman component m at time t
will then be

nm�x,t� = n�x��m�x,t� , �18�

with �	1�x , t�=�	1
n�x��t� given by Eq. �5� with the substitution

�0→�0
n�x��t�, and M=M�t=0� is a conserved quantity �11�.

Note that the orbits associated to different points x may
differ from one another, as their shapes depend inter alia on
the local density n�x�, cf. Eq. �4�. This fact, together with the
position dependence of the parameters 
 j�x� and T�x�, is
expected to lead to a dephasing of the evolution of the partial
densities nm�x , t� at the different points, washing out the os-
cillations in the integrated populations, Nm�t�, in contrast to
the stable oscillations that we have found for the homoge-
neous system, cf. Fig. 3.

In order to evaluate Nm�t� it is necessary to know the
density profile of the system. A good estimate for n�x� in
trapped atomic gases is given by the Thomas-Fermi approxi-
mation,

nTF�x� = �nmax

RTF
2 �RTF

2 − �x�2� , �x�  RTF

0, otherwise.
� �19�

For a quasi-1D system with total number of atoms N and
central density nmax, RTF=3N / �4nmax�. The integrated popu-
lation in �m=0� then reads

N0�t� =� dxnTF�x��0
nTF�x��t� . �20�

B. Analytic approximation with sinusoidal time
dependence

The time dependence of �0
n�x��t� has, in principle, to be

calculated from Eq. �12� for each position x at each time
step, and then integral �20� performed numerically to deter-
mine N0�t�. It is possible however to give an analytical esti-
mation for N0�t� if we make a further assumption on the time
evolution. From Fig. 3, we see that the evolution of �0�t� for
the homogeneous system is very close to a sinusoidal func-
tion even when B�0 �22�. This is illustrated in Fig. 3�b�,
where a function of the form

�0
cos�t� = a + b cos�� + �t� �21�

has been fitted to the numerical values obtained from Eq.
�12�. The fit is very good, even for this case, where the orbit
in phase space is strongly deformed �cf. Fig. 4�b��. The ad-
vantage of approximating the time evolution of �0 by Eq.
�21� is that it allows for an analytic evaluation of the spatial
integral �20�, taking into account the position dependence of
�. Indeed, from Eq. �13� we expect ��x��n�x�� �RTF

2 −x2�. It
is easy to show that

N0
cos�t� =� dxnTF�x�a + b cos
� + �0�1 −

x2

RTF
2 �t��

=
nmax

6��0t�3/2 �8a��0t�3/2 + 6b	�0t sin�2��

+ 3	2�b�cos���S��� − sin���C����

+ 6	2�b�0t�cos���C��� + sin���S����� . �22�

Here S��� and C��� are the Fresnel integrals �19�, and we
introduced �=�+�0t and �=	2�0t /�.

We show in Fig. 5 the time evolution of the integrated
�m=0� population as given by Eqs. �20� and �22�. This cal-
culation has been done for a quasi-1D system of 20 000 87Rb
atoms in a trap such that the central density is 4.4
�1014 cm−3. The initial conditions are �0

in=0.5, �in=� /2,
and M=0.3, and we have taken a magnetic field B
=100 mG �cf. Fig. 2�. The solid line in the figure corre-
sponds to the numerical integration of Eq. �20� with
�0�x , t�=�0

n�x��t� given by Eq. �12�. The circles stand for the
analytic expression �22� with the parameters a ,b ,� ,�0 taken
so that �0

cos�t� for a homogeneous system with density n
=nmax reproduces the same behavior as that given by Eq.
�12� at the same density: a= �
1+
2� /2, b= �
1−
2� /2, �
=2�0, �0=2� /TLDA, and TLDA=T�nmax�. The agreement be-
tween the two calculations is very good at all times. There-
fore, we conclude that the average value of �0 as well as the
characteristic period of the oscillations is well determined by
the values 
 j and TLDA calculated with the central density,
while the time scale for the damping of the oscillations is
determined by the spatial profile of the density.

Regarding the dephasing of the evolution of �0�x , t�
among different points, it is not very strong in the sense that
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the damping of the oscillations is relatively slow. To be more
precise, one can have a reasonable fit to the solid line in Fig.
5 by a function of the form

N0�t� = N̄0 + �N0 exp�− �	t�cos�2�0� +
2�

T�
t� , �23�

with N̄0�a, �N0�b, �0���0, and T��TLDA.

C. Comparison with the mean-field approach

We proceed finally to compare the approximate calcula-
tion of N0�t� with a more complete approach in terms of the
dynamical equations for the three components of the vector
order parameter, �m�x , t�, cf. Eq. �1�. In the mean-field ap-
proximation, such equations can be cast in the form of three
coupled Gross-Pitaevskii equations �11�,

i�
��	1

�t
= �Hs + c2�n	1 + n0 − n�1���	1 + c2�0

2��1
� + ��	1,

�24a�

i�
��0

�t
= �Hs + c2�n1 + n−1���0 + 2c2�1�0

��−1, �24b�

where Hs=−�2 / �2M��2+Vext�x�+c0n�x� and c0=4��2�a0
+2a2� / �3M�.

The results of solving Eqs. �24� with a Runge-Kutta algo-
rithm are included in Fig. 5 as a dashed line. The average
value of the oscillating �0�t� is well estimated by the analyti-
cal model of Sec. II B. Also, the characteristic time scale of
the oscillations is well estimated by Eq. �13�. The overall
agreement is good for times t�100 ms. After this time, the
analytical estimate keeps oscillating with a slowly decreasing
amplitude, while the numerical solution of the coupled Eqs.
�24� shows fluctuating oscillations. This behavior has been
observed before, and the transition at t= tinst�100 ms has
been related to a dynamical instability that leads to the for-

mation of dynamical spin domains in the system �6,11,12�. It
is thus not surprising that our simple model fails for t� tinst.
It is nevertheless remarkable that the time scale set by
TLDA=T�nmax��89 ms is still a good estimate of the char-
acteristic oscillation time even much later during the time
evolution.

IV. DEPHASING IN A MAGNETIC FIELD AND THE
PROCESS OF STRUCTURE FORMATION IN

FINITE SYSTEMS

A qualitative difference between the homogeneous system
and the confined one appears when a magnetic field is
present, and therefore, A�0. The dynamics of a spinor con-
densate in a magnetic field is known to show two limiting
behaviors: the mean-field regime, where the interaction en-
ergy dominates the evolution, and the Zeeman regime, where
the evolution is driven by the Zeeman term of the Hamil-
tonian �10,17,23�. The crossover between the two regimes
occurs when c2n��. This transition can be studied in real
time by changing the �homogeneous� magnetic field on
which the condensate is immersed �10,24,25�.

This transition can also be observed between different
spatial regions of an inhomogeneous system. Indeed, if we
assume that the magnetic field, magnetization, and central
density are chosen so that �c2�n�x=0��� �so that at the cen-
ter we are in the mean-field regime�, then at the wings of the
system, where n�x�→0, we will be in the Zeeman regime.
Therefore, we expect to have a region in real space where the
behavior with time changes qualitatively. For a profile as in
Eq. �19�, this transition border is given by

xtrans

RTF
= Re
1 −

�

c2nmax
�1/2

. �25�

Naturally, for �=0, there is no transition �the density van-
ishes at x=RTF�. On the other hand, for large enough mag-
netic field the whole system is in the Zeeman regime �xtrans
=0�.

These two regimes evolve with different characteristic
times, Tmf�� / ��c2�n� and TZeeman�� /	2c2n�, cf. Eqs. �17�
and �13�. Because of this, we can expect �0 and the phase in
the inner part of the condensate ��x��xtrans� to evolve at a
different rate than in the outer wings of the system ��x�
�xtrans�, resulting in a particular spatial dependence of the
phase. We note that the appearance of a spatial structure in
the phase will lead to the creation of spin currents �11� and,
thus, to spin textures as reported in �9,10�. Even though a
smooth density profile will lead to a smooth variation in
T�x�=T�n�x�� with position, from our model we expect that
these qualitatively different behaviors should be observable
for times t� ttrans=min�Tmf,TZeeman�

Interestingly, in light of the discussion in Sec. III C, we
observe that the time when the dynamical instability is ex-
pected to set in is close to the time when the divergence
between mean-field and Zeeman regimes should be observ-
able, tinst� ttrans. Because processes such as spin currents fall
beyond LDA, their appearance implies a breakdown of our
model, which is therefore not applicable to analyze the pro-
cess of structure formation. This breakdown explains the
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FIG. 5. �Color online� Time evolution of the integrated �m=0�
population �normalized to the total population, N=20 000� for �0

in

=0.5, �in=� /2, M=0.3, and B=100 mG. The solid line shows the
LDA result, Eq. �20�, with �0�x , t�=�0

n�x��t�. The circles stand for
the analytic estimate of Eq. �22�, and the dashed line is the result of
integrating the set of coupled Gross-Pitaevskii Eqs. �24�.
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lack of agreement between the results of our LDA model and
those from Eqs. �24� for t� tinst observed in Fig. 5.

The experiments reported in Ref. �10� showed the appear-
ance of spin domains to be simultaneous with that of topo-
logical defects �phase windings� and also spin currents. This
observation is consistent with the model just sketched. The
time scale for the appearance of spin domains is estimated in
that reference to be �� / �2�c2�n� �26�. Similarly, Saito et al.
�24� determined the time scale for the occurrence of a dy-
namical instability to be tinst=� / ��c2�n� when the magnetic
field is small; this estimate coincides with our Tmf. On the
other hand, for larger magnetic fields �q� �c2�n with q
= ��BB�2 / �4Ehfs��, the relevant instability time scale is tinst
=� /	q�q+2c2n�, which is similar to TZeeman.

From their simulations, Saito and Ueda indicated �12� that
the formation of spin domains starts at the center of the con-
densate, and then spreads out. In our model, however, the
position where the phase slip appears is determined by xtrans,
and therefore is, in principle, amenable to be modified ex-
perimentally. It seems interesting to investigate the prospect
to control the spatial appearance of spin domains and phase
structures as predicted by Eq. �25�.

V. SUMMARY AND CONCLUSIONS

We have studied the dynamics of a trapped spin-1 con-
densate under a magnetic field. First, we have analyzed the

homogeneous system and seen that its dynamics can be un-
derstood in terms of orbits in the ��0 ,�� space. We have then
solved analytically for the dynamical evolution �0�t�. We
have used this information to study the trapped system by
means of the LDA. The results of this approach agree with
those of the mean-field treatment for evolution times before
the occurrence of a dynamical instability �12�. In particular,
the expected average value of �0, as well as the characteristic
time scale of its dynamics, are well predicted by the formulas
for the homogeneous system.

Our analysis of the trapped system has shown that in the
presence of a magnetic field, both the mean-field and Zee-
man regimes are realized in a single spinor condensate. The
analysis of this model allows for some qualitative insight
into the process of structure formation. In particular, our
model identifies a transition point �cf. Eq. �25�� around
which this structure is generated and predicts that it should
be tunable, which could be tested in future experiments.
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