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Quantum simulation with a boson sampling circuit
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In this work we study a system that consists of 2M matter qubits that interact through a boson sampling circuit,
i.e., an M-port interferometer, embedded in two different architectures. We prove that, under the conditions
required to derive a master equation, the qubits evolve according to effective bipartite XY spin Hamiltonians,
with or without local and collective dissipation terms. This opens the door to the simulation of any bipartite spin
or hard-core boson models and exploring dissipative phase transitions as the competition between coherent and
incoherent exchange of excitations. We also show that in the purely dissipative regime this model has a large
number of exact and approximate dark states, whose structure and decay rates can be estimated analytically. We
finally argue that this system may be used for the adiabatic preparation of boson sampling states encoded in the
matter qubits.
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I. INTRODUCTION

Optical circuits are linear devices that route photons along
different paths. They can be found at a variety of scales,
from classical circuits built using macroscopic lenses and
mirrors [1,2] to photonic crystals that achieve routing and
confinement by means of nanostructuring a metamaterial [3,4],
on-chip waveguides [5], waveguides imprinted using fem-
tosecond pulses [6], or reconfigurable optical microchips [7,8].

In addition to their widespread use in telecommunications,
optical circuits have found two extraordinary applications in
quantum science. Photonic pathways enable the engineering
of electromagnetic environments for atoms or quantum dots, to
enhance and control light-matter interactions [4,9], implement
nonlinear transformations on light [10], or engineer photon-
mediated interactions [11,12].

An additional novel application is the study of compu-
tational models based on boson sampling [13–23]. Within
this paradigm, a particular kind of optical circuit known as
a multiport interferometer is fed with a nonclassical input
of one photon in N out of M � N ports. Aaronson and
Arkhipov [13] showed that the events with exactly N photons
exiting M distinct ports have a probability distribution that,
under reasonable conjectures, is classically hard to simulate
for arbitrary circuits [24]. Therefore, optical circuits are
good candidates to demonstrate the supremacy of quantum
computing models [25].

In this work, we merge the two research lines mentioned
above into an application that studies the long-time effective
dynamics between matter qubits interacting through boson
sampling circuits [cf. Fig. 1(a)]. We build on the idea that
the time evolution with general spin XY Hamiltonians is
formally linked to boson sampling [26]. Here, we show that
this relation emerges not only at a mathematical level but also
in physical implementations. More precisely, we consider a
setup with 2M two-level systems coupled to the ports of an
M-line interferometer—symbolized by green circles and blue
waveguides in Fig. 1(a). We show that this system exhibits
an effective spin-spin interaction which may be dissipative
[cf. Fig. 1(b)] or coherent [cf. Fig. 1(c)]. In the first case, the
dissipative interaction has got a collective nature. We prove

that these models have a large space of dark and quasidark
states, which we can analyze for arbitrary random unitaries. In
the second case, our system implements arbitrary bipartite XY

spin models with long-range interactions, whose dynamics are
classically hard to simulate. Moreover, the same setup can
be used to directly prepare and study boson sampling states
directly in the matter qubits. The main conclusion of this
work is that the combination of optical circuits and few-level
systems offers unique opportunities for quantum simulation
and quantum information processing.

The structure of this work is as follows. Throughout
Sec. II we introduce the physical setup and its description in
terms of abstract unitary transformations. Starting from these
spin-boson models, Sec. III derives the effective interaction
between emitters, in both the coherent and incoherent regimes.
These models are then used in Sec. IV to study applications
in quantum simulations, the potential of achieving quantum
supremacy, and dissipative state engineering. Section V
summarizes the results and discusses their potential impact
in various fields. Finally, for the sake of readability, we
group several appendices with the explicit calculations for
the interferometer transformation, the effective models, and
the boson-sampling state preparation.

II. PHYSICAL SETUP

We consider two arrays of qubits or two-level systems that
interact through an optical circuit. The circuit is regarded as a
linear transformation U of the annihilation operators, from M

input channels to M output channels,

a′
mk = Umn(k)ank , (1)

where the linear transformation depends in general on the
linear momentum, k, associated with the bosonic modes
with the anihilation operators amk and a′

mk . As explained in
Appendix A, this unitary map can be built using beam splitters
and phase shifters. Nevertheless, the same idea can be extended
to more general setups with optical [15–17,20] or microwave
media [21] that propagate photons through a finite number of
channels.
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FIG. 1. (a) Our setup consists of two sets of matter qubits or
two-level systems (green) effectively connected with each other
by the photons that propagate through a linear optics circuit (blue
waveguides). Such a circuit could be built, for instance, from beam
splitters and phase shifters. This circuit may be open (b), with free
photons, or it may be converted into a resonator by terminating the
ends with mirrors or closing it periodically (c) with additional optical
paths.

We consider an architecture in which we have one matter
qubit coupled to each of the input or output ports of the
photonic circuit [cf. Fig. 1(a)]. This architecture may be
embedded in two different physical configurations. In the first
of them, shown in Fig. 1(b), the photonic channels extend in
both directions well beyond the qubits and support propagating
waves. The Hamiltonian reads

H =
M∑

m=1

�

2

(
σ z

in,m + σ z
out,m

) +
M∑

m=1

∑
k

ωk a
†
mkamk

+
∑
m,k

gk σ x
in,m(a†

mk + amk)

+
∑
m,n,k

gk σ x
out,m(Umn(k)a†

nk + U ∗
mn(k)ank), (2)

where � is the qubit splitting, ωk is the photon frequency,
k is the corresponding momentum, and the σ

β
α,m are the

Pauli operators for the two sets of α = in and out of M

matter qubits each. The qubit-mode coupling constant is
of the form gk = ḡk/

√
L = μ

√
2πωk/

√
L, with L being a

quantization length for the waveguide modes and μ being
the dipolar coupling strength. We will eventually take the
continuum limit replacing the sum over momenta with an
integral,

∑
k g2

k → 1
2π

∫ +∞
−∞ dkḡ2

k , but the sums are kept for
convenience throughout the calculations.

Note also the difference in the coupling amplitudes of the
input and ouptut qubits in Eq. (2). The output qubits couple
through the unitary transformation U (k) implemented by the
optical circuit, which in general is a function of the photon
momentum k with the only constraint being U (−k) = U ∗(k)
(cf. Appendix A).

An alternative setup would be an optical circuit where
the output ports are closed with mirrors, thereby creating a
resonator. The analysis of such circuits might be complicated in
general, because the unitary U depends on photon momentum
and the modes need to satisfy zero-field boundary conditions.
For the sake of simplicity we have devised a configuration
of the form shown in Fig. 1(c). This configuration ensures

that we may define photonic modes provided that kL′ = 2πz,
where z ∈ Z and L′ is the total length of the resonator. In
addition, input and output qubits perceive the same distribution
of fields in this configuration as they do in the setup of Fig. 1(b).
Consequently, the Hamiltonian of this alternative configuration
is the same as Eq. (2), with the difference that we will never
replace the sums with integrals.

III. EFFECTIVE MODELS

So far we have considered linear transformations on a
collection of bosonic modes connecting two sets of qubits.
We now derive effective models for the qubits by tracing out
those bosonic degrees of freedom in the two different setups
considered. We begin with the resonator system, in which the
discrete spectrum gives rise to a purely coherent interaction.
We then continue with the open waveguide circuit, for
which both Hamiltonian interactions and collective dissipation
coexist.

A. Closed circuit: Spin Hamiltonian

We work with the model for the resonator setup shown
in Fig. 1(c), where the optical circuit is introduced twice to
have appropriate boundary conditions. We assume a dispersive
limit in which the frequency spacing between cavity modes
δω = c 2π/L is much larger than the qubit-resonator coupling
gk ∼ g. In this regime, if qubits are off-resonant from all
cavity modes and |ωk − �| > g, we can use second-order
perturbation theory to derive an effective qubit interaction
mediated by the exchange of virtual photons:

Hspin =
M∑

m=1

(
�̃

2
σ z

in,m + �̃

2
σ z

out,m

)

+
∑
m,n

Jmn(σ+
out,mσ−

in,n + σ+
in,mσ−

out,n). (3)

The virtual photon exchange gives rise to a renormalization of
the qubit frequency �̃ = � + δ, where

δ =
∑

k

g2
k

� − ωk

(4)

is the effective shift, and the effective exchange interaction is
given by

Jmn =
∑

k

Re[Umn(k)]
g2

k

� − ωk

, (5)

which depends on the transformation U (k) implemented by
the optical circuit for each value of the photon momentum k.
In most cases, one of the contributions in Eq. (5) will dominate
with respect to all the others, allowing a direct identification
of Jmn with Re[Umn(ωk ≈ �)].

B. Open circuit: Master equation

We now work with the model (2), in which the photons
form a continuum of modes propagating in both directions.
Following the derivation in Appendix B, we obtain an effective
master equation for the reduced density matrix of the qubits
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ρ0. This equation only depends on the unitary transformation
that represents the optical circuit at the resonance point, U ≡
U (k�), and the spontaneous emission rate 
 of each qubit onto
its corresponding photonic channel [cf. Eq. (B8)]:

dρ0

dt
= −i [Heff,ρ0] + 
 L[ρ0]. (6)

This equation contains an effective Hamiltonian,

Heff = 

∑
m,n

Im[Umn] σ+
out,m σ−

in,n + H.c., (7)

and a dissipation term,

L[ρ0] =
∑
m

∑
α∈{in,out}

L1[ρ0; σ−
α,m,σ+

α,m]

+
∑
m,n

Re[Umn]L1[ρ0; σ+
out,m,σ−

in,n] + H.c., (8)

defined in terms of the Lindblad superoperator

L1[ρ0; A,B] = Bρ0A − 1
2 {ρ0,AB}. (9)

The dissipation terms in Eq. (8) are consistent with the
application of Fermi’s golden rule to the degrees of freedom of
this system. The Re[Unm] factors accompanying the nonlocal
spin-flip terms arise from the fact each spin can excite photons
in both directions, k > 0 and k < 0, and that the dependence
on k of the corresponding matrix elements for the associated
transitions satisfies U (−k) = U (k)∗ (cf. Appendix A).

IV. APPLICATIONS

A. Quantum simulation of spin models and spin-boson sampling

Working in the resonator regime, Eq. (3) opens the door
to the simulation of any bipartite spin or hard-core boson
model. More precisely, for any bipartite spin-spin interaction
described by a real and symmetric matrix J , we can identify
a unitary matrix U such that J ∝ Re[U ] in an elementwise
manner. The procedure for this would start by diagonalizing
J = W †�W , for a certain unitary transformation W and
a diagonal form �mn = λmδmn. We then would find out
the largest eigenvalue δ = max |�mm| and construct U =
W † exp (i)W , where the diagonal matrix mn = θmδmn is
chosen such that cos(θm) = λm/δ.

A very relevant subset of problems in this context corre-
sponds to spin sampling. In this case U ∈ SO(M) ∈ RM×M

would be a random orthogonal matrix drawn from the Haar
measure. As it was proven in Ref. [26], an XY model
with random, long-range interactions implements a short-time
dynamics that is as complex as boson sampling. Our resonator
setup provides a possible physical implementation of this
idea. More precisely, if we excite N  M input spins and
probe the output qubits after a time T � π/δ, the distribution
of excitations in this subsystem would be described by the
permanent of an N × N minor of U , just as in the case of
boson sampling [13]. Provided that M is large enough, the
resulting dynamics would be classically hard to simulate.

B. Dissipative regime and dark states

It is also interesting to take the opposite limit in which
coherent tunneling is completely suppressed and we only

have collective dissipation. In this case, U = O, where O

is an orthogonal transformation, and we can write the master
equation as

dρ0

dt
= 
LO[ρ0] = 


M∑
m=1

L1[ρ0; S−
m,S+

m ], (10)

in terms of collective spin operators

S+
m = 1√

2

(
σ+

in,m +
∑

n

Onm σ+
out,n

)
. (11)

We may now look for stationary states, solving the equation
LO[ρ0] = 0. Besides the trivial stationary solution that is the
ground state |0〉 = ⊗2M

m=1 |↓m〉, we find M exact dark states
W+ |0〉 of the dynamics that correspond to delocalized spin
excitations. These states, which are created by the operators

W+
m = 1√

2

(∑
n

Omnσ
+
in,n − σ+

out,m

)
, (12)

are called dark states because they are exactly decoupled from
the photonic fields. The states (12) appear as a generalization
of the singlet states [12] that are the dark states of a system
consisting of two qubits interacting with a lossless photonic
waveguide.

In addition to these exact dark states, in our problem we
also find other quasistationary states that are constructed by
repeatedly applying different W+

m operators. As explained in
Appendix C, we find that a state with N distinct dark-state
quasiparticle excitations decays at the rate

γN = 


√√√√ N∑
n=2

(−1)n

2n+1

N !

(N − n)!

n!

Mn
, (13)

with γ1 := 0. Thus, in the very dilute limit, γN can be very
small and the resulting states may be regarded as de facto dark
states. This limit of diluteness is reached even for moderate
circuit sizes. We have verified this by performing a Monte
Carlo simulation of the circuit and estimating the decay rates
with up to M = 50 modes and up to N = 5 excitations.
These results are shown in Fig. 2 alongside the theoretical
predictions.

C. Adiabatic rreparation of boson sampling states

An attractive feature of model (3) is that it can be used to
adiabatically prepare the boson sampling state. Given a random
unitary transformation U sampled with the Haar measure, the
boson sampling state with N excitations in M modes is given
by

|φBS〉 =
N∏

n=1

M∑
m=1

Umn a†
m |0〉 . (14)

This state is the one obtained by injecting N bosons in the first
N  M modes of a multiport interferometer implementing
the transformation U . We now show how to encode an
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FIG. 2. Effective decay rates averaged over random unitary op-
erators U for different numbers of modes M and quasiparticle filling
N = 2, . . . ,5. Dashed lines represent the analytic results (13) for
increasing values of N (from bottom to top), while the corresponding
sets of points with error bars represent the decay rates estimated from
a Monte Carlo simulation of the system.

approximately similar state in the qubits:

|ψBS〉 =
N∏

n=1

M∑
m=1

Umn σ+
out,m |0〉 + O(ε), (15)

where the error ε = ψ − φ can be made arbitrarily small.
Our protocol builds on the results of Ref. [26], which states

that the dynamics of a multimode bosonic system with few
excitations (N  M) can be approximated by the evolution
of a spin model with a similarly small number of excitations.
The protocol assumes that we can build a random spin-spin
interaction of the form (3) where J = U ∈ RM×M is our
randomly sampled orthogonal transformation. We also assume
that in the effective model we can tune the energies of the input
and output qubits, using external fields. The time-dependent
Hamiltonian reads

H = Hspin + ε

M∑
m=1

(
[1 − λ(t)]σ z

out,m + λ(t)σ z
in,m

)
. (16)

The switching function λ(t) interpolates smoothly λ(0) = 1
and λ(T ) = 0 over a long time T . We start with an initial state
|ψ(0)〉 = ∏N

m=1 σ+
in,m |0〉, in a regime in which ε λ(0) � |J |

prevents tunneling. We then adiabatically shift λ to 0, until
at time T we have λ(T ) = 0. As shown in Appendix D,
provided λ̇ remains small compared to |J |, the system should
then converge to a ground state that consists of N excitations
in the output qubits. In other words, |ψ(T )〉 � |ψBS〉. The
resulting state should be arbitrarily close to a boson sampling
state, provided that the number of excitations is dilute
enough.

V. CONCLUSIONS

We have presented a setup and a model for engineer-
ing photon-mediated interactions between two-level emitters
using optical circuits. This idea represents a rather general
paradigm that encompasses and extends previous approaches

towards similar goals in one-dimensional photonic envi-
ronments [11,12]. Using the tools in this paper we can
reverse-engineer arbitrary bipartite interactions, such as high-
dimensional XY spin Hamiltonians, finding the optical circuits
that implement them, and rely on reconfigurable circuits [7] or
single-purpose devices [5,6] to implement them.

We have discussed various applications of the resulting
setups, which range from studies of quantum complexity
and quantum supremacy through short time evolution [26]
or through the preparation of boson sampling states to using
the optical circuit dark states for quantum information and
quantum optics applications.

These applications can be tested in a variety of state-of-
the-art platforms. For instance, setups with trapped atoms in
photonic crystals have demonstrated strong light-matter inter-
actions [10] that are sufficient for implementing the dissipative
models in this work. Solid-state devices such as quantum
dots have also achieved sufficient coupling strengths [9],
but in this case inhomogeneous broadening of levels might
make them more suitable for studying disorder in our spin
Hamiltonians.

All our proposals can be extended to work with supercon-
ducting quantum circuits, where microwave transformations
such as beam splitters have been demonstrated [27,28]. In
this case, the enhanced light-matter interaction allows the
ultrastrong coupling regime to reach the continuum [29] and
we can no longer apply the Markov approximations. However,
rather simple generalizations of our treatment based on the
polaron transformation [30,31] show that we still recover spin-
spin interactions, but now they become of the Ising type. This
opens the door to simulating other types of dissipative phase
transitions [32–35], but also opens questions regarding the
quantum complexity of Ising models and their time evolution.

Another important generalization would be using only a
subset of qubits, or placing qubits at a subset of ports and
blocking other channels with mirrors or closed loops. These
and other designs, which allow implementing more general
spin Hamiltonians which are not bipartite, will be explored in
further work.

Finally, this work has been developed under reasonable
assumptions of Markovianity and long photon wave packets,
where the time for photons to travel between qubits greatly
exceeds the spontaneous emission rate. These open interesting
questions about how to generalize our theoretical framework
to include retardation effects.
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APPENDIX A: WAVES FROM OPTICAL
TRANSFORMATIONS

An arbitrary M × M optical transformation Umn may be
decompose into a series of at most M2 interferometers and
phase shifters [1,2] of the form shown in Fig. 3. Assuming
this optical interpretation of the circuit, we find that the lth
operation will couple mth and nth modes through the unitary
transformation(

a′
m(+k)

a′
n(+k)

)
= Umn(+k)

(
am(+k)
an(+k)

)
, (A1)

which, following the conventions in Ref. [1], depends on two
angular parameters:

Ul(φl,θl) :=
(

sin(θlνk)eiφlνk/2 cos(θlνk)eiφlνk/2

cos(θlνk) − sin(θlνk)

)
. (A2)

Note that the unitary transformation also depends on the
momentum of the photon.

Taking as reference the unitary transformation that is
implemented for the photons that are resonant with the qubits,
k = k�, a general transformation will typically read

U (+k) =
M∏

n=1

Un(φn,θn,νk). (A3)

An important question is what happens to the photons
propagating in the opposite direction. It is not difficult to
convince oneself that by having a backward-moving plane
wave we will obtain the relation

�a(−k) =
1∏

n=M

UT
n (φn,θn,νk) �a ′(−k), (A4)

where UT arises from the particular form of the optical
transformation (A2). Since the product of unitaries runs in an
opposite order to that of Eq. (A3), when we apply the inverse
transformations to extract �a ′ we recover the simple result

�a ′(−k) =
M∏

n=1

U ∗
n (φn,θn,νk) �a(−k) =: U ∗(+k) �a(−k). (A5)

In other words, we have found the relationship

U (−k) = U ∗(+k), (A6)

which is a generalization of the relation between forward-
moving and backward-moving waves, exp (±ikx), in one-
dimensional waveguides.

FIG. 3. A two-port interferometer built with two 50-50 beam
splitters and two phase shifters, θ and φ, implements the most general
unitary transformation from input modes (ai,aj ) into output modes
(a′

m,a′
n).

APPENDIX B: DERIVATION OF A MASTER EQUATION
FOR THE OPEN CIRCUIT

A master equation that describes the effective qubit dy-
namics generated by the Hamiltonian (2) may be derived in
the Markovian regime. This limit assumes that the traveling
time of the photons through the optical circuit is much shorter
than the spontaneous emission rate of the qubits, which is of
the order of the spectral function J (ω) = π

∑
k g2

k δ(ωk − ω) at
the resonance point ω = �. We also assume a weak coupling
limit gk  �, ωk . Under these approximations, a procedure
similar to the one described in the Supplemental Material of
Ref. [36] may be followed.

We start from the Liouville-von Neumman equation after
having performed the Born-Markov approximation:

dρ0

dt
= −

∫ ∞

0
dτ trB{HI (t),[HI (t − τ ),ρ0(t)ρB]}

= +
∫ ∞

0
dτ trB{HI (t − τ )ρ0(t)ρB HI (t)} + H.c.

−
∫ ∞

0
dτ trB{HI (t)HI (t − τ )ρ0(t)ρB} + H.c. (B1)

Here HI (t) refers to the interacting part of the Hamiltonian (2)
in the interaction picture, and trB refers to the partial trace over
the bosonic degrees of freedom.

The next step consists of expanding these expressions and
performing the rotating wave approximation, while assuming
that the equilibrium state of the photonic degrees of freedom
is close to the ground state. This yields the following for the
first term in Eq. (B1):∫ ∞

0
dτ trB{HI (t − τ )ρ0(t)ρB HI (t)}

= π
∑
m,k

g2
k δ(ωk − �)

∑
α∈{in,out}

σ−
α,m ρ0 σ+

α,m + i �

+π
∑
m,n,k

g2
k δ(ωk − �)Unm(k) σ−

in,m ρ0 σ+
out,m + H.c.,

(B2)

where � ≡ �[ρ0, . . .] is a complicated functional which is
Hermitian and therefore disappears when adding the term (B2)
to its complex conjugate in Eq. (B1).

Following the same procedure with the second term in
Eq. (B1) gives a more complicated contribution:∫ ∞

0
dτ trB{HI (t)HI (t − τ )ρ0(t)ρB}

= π
∑
m,k

g2
k δ(ωk − �)

∑
α∈{in,out}

σ+
α,m σ−

α,m ρ0

+π
∑
m,n,k

g2
k δ(ωk − �) Unm(k) σ+

in,m σ−
out,m ρ0 + H.c.

− iPV

{∑
m,k

g2
k

ωk − �

} ∑
α∈{in,out}

σ+
α,m σ−

α,m ρ0

− iPV

{∑
m,n,k

g2
k

ωk − �
Unm(k)σ+

in,m σ−
out,m ρ0 + H.c.

}
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− iPV

{∑
m,k

g2
k

ωk + �

} ∑
α∈{in,out}

σ−
α,m σ+

α,m ρ0

− iPV

{∑
m,n,k

g2
k

ωk + �
Unm(k)σ−

in,m σ+
out,m ρ0 + H.c.

}
,

(B3)

where PV means that the Cauchy principal value of the
integrals in momenta k should be computed.

The aforementioned integrations in k may be substituted
by integrals in the photon frequency ω ≡ ωk by making use of
the property (A6) of U (k), and including the density of states
D(ω) = dkωk . After this change of variable, all the integrals
can be evaluated explicitly; either as a consequence of the
definition of the δ distribution or by using the Kramers-Kronig
relations,

Re{f (�)} = 1

π

∫ +∞

−∞

dω

ω − �
Im{f (ω)}, (B4)

Im{f (�)} = − 1

π

∫ +∞

−∞

dω

ω − �
Re{f (ω)}, (B5)

which hold provided that f (ω) is an analytic function in the
upper half of the complex plane.

Besides a renormalization of the qubit frequencies, which
does not affect the dynamics in the interaction picture, the
result of integrating Eqs. (B2) and (B3) is∫ ∞

0
dτ trB{HI (t − τ )ρ0(t)ρB HI (t)} + H.c.

= 

∑
m

(σ−
out,m ρ0 σ+

out,m + σ−
in,m ρ0 σ+

in,m)

+

∑
m,n

Re[Unm]σ−
out,n ρ0 σ+

in,m + H.c., (B6)

∫ ∞

0
dτ trB{HI (t)HI (t − τ )ρ0(t)ρB}

= 


2

∑
m

(σ+
out,m σ−

out,m + σ+
in,m σ−

in,m)ρ0

+ 


2

∑
m,n

Unm(σ+
out,n σ−

in,m + σ+
in,m σ−

out,n)ρ0, (B7)

where the spontaneous emission rate parameter


 = J (�) = 2 ḡ2
�D(�) (B8)

is the natural time scale for the dipolar qubit-waveguide
interaction and U ≡ U (k�).

Substituting Eqs. (B6) and (B7) into (B1) gives as a
result the effective master equation (6), with the different
contributions discussed in Sec. III B.

APPENDIX C: CROWDING OF ASYMPTOTIC SOLUTIONS

The stationary solutions (12) obtained in Sec. IV B are
delocalized excitations that, by construction, are not dissipated
according to the dynamics described by the master equa-
tion (10). However, there is no prescription in these dynamics
preventing a state with more than one such an excitation

from dissipating. Even though this point is rigorously true,
under certain conditions the decay of these “crowded” dark
states may be superseded by the typical time scale 1/
 of the
effective dynamics.

The magnitude of the decay of a crowded dark state,

|ψdark(j1, . . . ,jN )〉 =
N∏

α=1

W+
jα

|0〉 , (C1)

is determined, in units of 
, by the norm of the state resulting
from the application of a collective annihilator S−

i on this state:

N =
√√√√〈0|

1∏
α=N

W−
jα

S+
i S−

i

N∏
β=1

W+
jβ

|0〉, (C2)

where it is assumed that all jα indices are different.
The norm (C2) can be calculated by commuting the S−

i

operator with the string of W+
jβ

operators that lay to the right,

following at the same time an identical path by commuting S+
i

with the W−
jα

operators to the left. The commutator of S−
i and

W+
jα

is

[S−
i ,W+

jβ
] = 1

2 Ojβi

(
σ z

out,jβ
− σ z

in,i

)
(C3)

and is required in order to conduct these operations. We also
need to know that

[
σ z

in,jα
,W±

jβ

] = ±
√

2 Ojβjα
σ±

in,jα
, (C4)[

σ z
out,jα

,W±
jβ

] = ∓
√

2 δjβjα
σ±

out,jα
. (C5)

After each successive commutation (C3)–(C5) performed
on Eq. (C2), we get either terms with the same number of Pauli
matrices or terms with one less Pauli matrix. Most of these are
0 upon explicit inspection, either because (σ z

out,jβ
− σ z

in,i) |0〉 =
0, or as a consequence of having assumed that no jα index is
repeated, or because the application of (C4) leaves a vanishing
product of Pauli matrices.

The only nonvanishing terms are those which depend on
quadratic powers of sets of 2,3, . . . ,N coefficients of the ith
column of the unitary transformation U , with the rows being
chosen among the dark-state indices jα appearing in Eq. (C1):

N =

√√√√√∑
α<β

O2
jαiO

2
jβ i

2

⎡
⎣1 −

∑
γ �=α,β

O2
jγ i

2
(1 − · · · )

⎤
⎦ . (C6)

When averaged over the Haar measure, the expected values
of the matrix elements of O are E(Oji) ∼ O( 1√

M
). Counting

the number of different possible combinations of n < N

coefficients appearing in Eq. (C6) yields

E(N 2) =
N∑

n=2

(−1)n

2n−1

(
N

2

)
P N−2

n−2

(
n

2

)
P n−2

n−2

=
N∑

n=2

(−1)n

2n+1

N !

(N − n)!

n!

Mn
. (C7)

Where the decay parameter of these quasistationary dark
states is given by 
 × E(N ). Considering the dilute limit M �
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N > 1, it follows that E(N ) ∼ M−1  1. The consequence
of this being that the typical time scales associated with the
decay of a state with multiple dark-state excitations are much
larger than the characteristic time scale 
−1 of the dynamics
described by Eq. (10).

APPENDIX D: ADIABATIC CONNECTION
TO BOSON SAMPLING

Let us start by proving that, when using harmonic oscillators
and nonclassical states, it is possible to adiabatically prepare
a boson sampling distribution. The setup that we have in mind
is a collection of M input and M output bosonic modes (i.e.,
resonators) connected between themselves through an optical
transformation such as the one in Fig. 1. Provided that these
resonators satisfy the same requirements as in Sec. III B, we
will be able to write down an effective Hamiltonian of the form

HBS =
∑

i

�̃(a†
in,nain,n + a

†
out,naout,n)

+
∑
m,n

Jn,m(a†
out,nain,m + H.c)

+ ε
∑

n

([1 − λ(t)]a†
out,naout,n + λ(t)a†

in,nain,n). (D1)

Since Jn,m ∝ Un,m, we may define new collective operators,

cout,m =
∑

n

Umn aout,n, (D2)

which diagonalize the previous Hamiltonian

HBS =
∑

i

(�in(t)a†
in,nain,n + �out(t)a

†
out,naout,n)

+ δ
∑
m

(c†out,nain,m + H.c), (D3)

where we have introduced �in = �̃ + ε λ(t) and �out(t) =

�̃ + ε[1 − λ(t)]. It is now rather simple to apply the adiabatic
theorem to each of the M local Hamiltonians that connect ain,m

to the corresponding cout,m. The result is that by switching off
λ(t) in a time T � 1/|δ|, and provided |ε| � |δ|, we will
adiabatically transfer the state a

†
in,m |0〉 onto an output state

c
†
out,m |0〉. This way, if we start with N excitations,

|φ(0)〉 =
N∏

m=1

a†
in,m |0〉 , (D4)

the final state will be, up to small corrections, the output of the
interferometer with N input photons,

|φ(T )〉 �
N∏

m=1

∑
n

Unm a
†
out,n |0〉 . (D5)

It remains to be proven that we achieve a similar state when
using the spin Hamiltonian (3) and the input state

|ψ(0)〉 =
∏
m

σ+
m |0〉 . (D6)

For this we invoke the result in Ref. [26] which establishes that
the distance between the hard-core boson state |ψ(t)〉, evolved
under Eq. (3), and the soft-boson state |φ(t)〉, evolved under
Eq. (D1), is bounded by

‖ψ − φ‖ �
∫ T

0
dt‖QHBSP1pair‖2‖P1pair φ(t)‖2, (D7)

where Q and P1pair project onto the hard-core subspace and
the space of states with at most one bunched mode. Therefore,
it can be concluded that

‖ψ − φ‖ � O

(
T

N2

√
M

)
, (D8)

so that it becomes possible to decrease the error arbitrarily by
either making the system more dilute or adjusting the evolution
time.
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